Задание №13. Стереометрия с доказательством. ЕГЭ. Математика. 1

1.  Планиметрия 

2.  Стереометрия 
3.  Начала теории вероятностей 

4.  Теория вероятностей

5.  Простейшие уравнения
6.  Преобразование выражений 
7.  Производная функции 
8.  Практические задачи 
9.  Текствые задачи 
10.  Графики функций 
11.  Исследование функций
12.  Уравнения 
13.  Стереометрия с доказ-вом
14.  Неравенства 
15.  Финансовая математика 
16.  Планиметрия с доказ-вом 
17.  Задачи с параметром 
18.  Задачи на логику 

      БАЗА ЗАДАНИЙ

Задание № 13. Стереометрия с доказательством.

1. В кубе ABCDA1B1C1D1 все рёбра равны 5. На его ребре BB1 отмечена точка K так, что KB=4. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.
а) Докажите, что A1P:PB1=3:1, где P — точка пересечения плоскости α с ребром A1B1.
б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

2. В кубе ABCDA1B1C

1D1 все рёбра равны 5. На его ребре BB1 отмечена точка K так, что KB=4. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.
а) Докажите, что A1P:PB1=3:1, где P — точка пересечения плоскости α с ребром A1B1.
б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.

4. В правильной треугольной пирамиде SABC сторона основания

AB=6, а боковое ребро SA=4. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
б) Найдите периметр многоугольника, являющегося сечением пирамиды SABC плоскостью α.
Ответ: б) 8 + 2√2

5. В правильной треугольной пирамиде SABC сторона основания AB=60, а боковое ребро SA=37. Точки M и N — середины рёбер SA и SB соответственно.

Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
б) Найдите расстояние от вершины A до плоскости α.
Ответ: б) 5√3

7. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=4 и BC=6. Длины боковых рёбер пирамиды SA=3, SB=5, SD=3√5.
а) Докажите, что SA— высота пирамиды.
б) Найдите расстояние от вершины A до плоскости SBC.

Ответ: б) 2,4

8. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=8 и BC=6. Длины боковых рёбер пирамиды SA=√21, SB=√85, SD=√57.
а) Докажите, что SA — высота пирамиды.
б) Найдите угол между прямыми SC и BD.

9. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=5 и диагональю BD=9. Все боковые рёбра пирамиды равны 5. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF=BE=4.
а) Докажите, что плоскость

CEF параллельна ребру SB.

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки до плоскости ABC.

10. В правильной треугольной призме ABCA1B1C1 сторона основания AB равна 6, а боковое ребро AA1 равно 2√2. На рёбрах AB, A1B1 и B1C1 отмечены точки M, N и K соответственно, причём AM = B1N= C1K=2.
а) Пусть L — точка пересечения плоскости MNK

с ребром AC. Докажите, что MNKL — квадрат.
б) Найдите площадь сечения призмы плоскостью MNK.
Ответ: б) 15

11. В правильной треугольной призме ABCA1B1C1 сторона AB основания равна 6, а боковое ребро AA1=3. На ребре AB отмечена точка K так, что AK=1. Точки M и L— середины рёбер A1C1 и B1C1 соответственно. Плоскость γ параллельна прямой

AC и содержит точки K и L.
а) Докажите, что прямая BM перпендикулярна плоскости γ.
б) Найдите расстояние от точки C до плоскости γ.
Ответ: б) 3/4

12. В правильной четырёхугольной призме ABCDA1B1C1D1 сторона AB основания равна 8, а боковое ребро AA1 равно 4√2. На рёбрах BC и C1D1 отмечены точки K и L соответственно, причём BK= C1L=2.

Плоскость γ параллельна прямой BD и содержит точки K и L.
а) Докажите, что прямая A1C перпендикулярна плоскости γ.
б) Найдите расстояние от точки B до плоскости γ.

13. В основании прямой треугольной призмы ABCA1B1C1 лежит равнобедренный (AB=BC) треугольник ABC. Точка K— середина ребра A1B1, а точка M делит ребро AC в отношении AM:MC=1:3.
а) Докажите, что KM⊥AC.
б) Найдите угол между прямой KM и плоскостью ABB

1, если AB=6, AC=8, AA1= 3.

14. В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: AB=2√2,  AD=6,  AA1=10. На рёбрах AA1 и BB1 отмечены точки E и F  соответств. , причём A1E:EA =3:2 и B1F:FB=3:7. Точка T — середина ребра B1C1.
а) Докажите, что плоскость EFT проходит через точку

D1.
б) Найдите площадь сечения параллелепипеда плоскостью EFT.
Ответ: б) 22,5

15. На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E:EA=1:2, на ребре BB1 — точка F так, что B1F:FB=1:5 , а точка Т —середина ребра B1C1. Известно, что AB=2, AD=6, AA1=6.

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью

EFT и плоскостью AA1B1.

16. На ребрах CD и BB1  куба ABCDA1B1C1D1  c  ребром 12 отмечены точки  Р и Q соответственно, причем DP=4, а B1Q=3. Плоскость APQ пересекает ребро CC1 в точке М.
а) Докажите, что точка М является серединой ребра CC1.
б) Найдите расстояние от точки С до плоскости APQ.

17. В правильной четырехугольной пирамиде SABCD

сторона основания АВ равна 16, а высота равна 4. На ребрах АВ, CD и AS отмечены точки M, N и К соответственно, причем AM=DN=4 и АК=3.
а) Докажите, что плоскости MNK и SBC параллельны.
б) Найдите расстояние от точки К до плоскости SBC.

18. В правильной треугольной пирамиде SABC сторона основания АВ равна 12, а высота равна 1. На ребрах АВ, АС и AS отмечены точки М, N и К соответственно, причем АМ=AN=3 и AK=7/4.
а) Докажите, что плоскости MNK и SBC параллельны.
б) Найдите расстояние от точки M до плоскости SBC.

19. Основанием прямой четырехугольной призмы ABCDA1B1C1D1 является квадрат ABCD со стороной 4, высота призмы равна 6. Точка K делит ребро AA1 в соотношении AK:KA1=1:2. Через точки K и B проведена плоскость α, параллельная прямой AC и пересекающая ребро DD1 в точке M.
а) Докажите, что плоскость α делит ребро DD1 в отношении DM:MD1=2:1.
б) Найдите площадь сечения.
Ответ: б) 8√6

20. В правильной треугольной призме ABCA1B1C1 сторона AB основания равна 12, а боковое ребро AA1 равно 3√6. На ребрах AB и B1C1 отмечены точки K и L соответственно, причем AK=2, B1L=4. Точка M середина A1C1. Плоскость γ параллельна прямой AC и содержит точки K и L.
а) Докажите, что прямая BM перпендикулярна плоскости γ.
б) Найдите расстояние от точки C до плоскости γ.
Ответ: б) √2

21. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=√5 и BC=2. Длины боковых рёбер пирамиды SA=√7, SB=2√3, SD=√11.
а) Докажите, что SA — высота пирамиды.
б) Найдите угол между прямой SC и плоскостью ASB.
Ответ: б) 30

22. В правильной четырехугольной пирамиде SABCD все ребра равны 5. На ребрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA=AQ=RC=2.
а) Докажите, что плоскость PQR перпендикулярна ребру SD.
б) Найдите расстояние от вершины D до плоскости PQR.
Ответ: б) 7/2

23. В треугольной пирамиде PABC с основанием ABC известно, что AB=13, PB=15, cos PBA=48/65. Основанием высоты этой пирамиды является точка C. Прямые PA и BC перпендикулярны.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите объем пирамиды PABC.
Ответ: б) 90

24. Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Прямые CA1 и AB1 перпендикулярны.
а) Докажите, что AA1=AC.
б) Найдите расстояние между прямыми CA1 и AB1, если AC = 6, BC = 3.
Ответ: б) √2

1     2    3

Главная

6. В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 8. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
б) Найдите объём пирамиды, вершиной которой является точка C, а основанием — сечение пирамиды SABC плоскостью α.

3. Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α, содержащей прямую BD1 и параллельной прямой AC, является ромб.
а) Докажите, что грань ABCD— квадрат.
б) Найдите угол между плоскостями α и BCC1, если AA1=10, AB=12.

Решение №2312 Дана правильная треугольная пирамида SABC, сторона основания AB = 16, высота SH = 10, точка K – середина бокового ребра SА.

Дана правильная треугольная пирамида SABC, сторона основания AB = 16, высота SH = 10, точка K – середина бокового ребра SА. Плоскость, параллельная плоскости АВС, проходит через точку K и пересекает ребра SB и SC в точках Q и P соответственно.

а) Докажите, что площадь четырёхугольника BCPQ составляет \frac{3}{4} площади треугольника SBC
б) Найдите объем пирамиды KBCPQ.

Источник: Ященко ЕГЭ 2022 (36 вар)

Решение:

а) Доказать: SBCPQ = \frac{3}{4}·SΔSBC
    Т.к. плоскость, параллельная плоскости АВС, проходит через точку K и пересекает ребра SB и SC в точках Q и P соответственно, то Q и P являются серединами рёбер SB и SC соответственно. {2}\cdot \frac{\sqrt{3}}{4}\cdot 10=\frac{640\sqrt{3}}{3}

(площадь основания нашли по формуле площади равностороннего треугольника)

    Высота пирамиды КBCPQ в два раза меньше высоты пирамиды SABC проведённой из вершины А (т.к. ΔАВС||ΔKQP, KQ, KP, QP – средние линии). 
    Площадь основания пирамиды КBCPQ составляет \frac{3}{4}·SΔSBC (площадь основания пирамиды SABC).
    Найдём объём пирамиды КBCPQ:

V_{KBCPQ}=\frac{1}{2}\cdot \frac{3}{4}\cdot V_{SABC}=\frac{1}{2}\cdot \frac{3}{4}\cdot \frac{640\sqrt{3}}{3}=80\sqrt{3} 

Ответ: 80\sqrt{3}.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.6 / 5. Количество оценок: 94

Оценок пока нет. Поставь оценку первым.

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

1. Какова площадь поверхности треугольной пирамиды?
2. Площадь поверхности треугольной пирамиды Формула
3. Как рассчитать площадь поверхности треугольных пирамид?
4. Площадь боковой поверхности треугольной пирамиды
5. Часто задаваемые вопросы о площади поверхности треугольной пирамиды Формула