Площадь поверхности куба, формулы и примеры / Блог :: Бингоскул
- Блог
- →
- Площадь поверхности куба, формулы и примеры
Формулы для нахождения площади поверхности куба:
Существует две формулы:
- Через длину грани H: S=6*H^2
- Через длину диагонали d: S=6*H^2=6*(\frac{d}{\sqrt{3}})
Как найти площадь поверхности куба?
- Чтобы найти с гранью H, надо сложить сумму площадей всех его граней, то есть вычислить площадь квадрата со стороной H, и умножить полученный результат на 6.
S=6*H - Если известна только диагональ грани куба, надо его диагональ d поделить на квадратный корень из трёх и результат умножить на 6.
S=6*(\frac{d}{\sqrt{3}})
Примеры
- Дан куб с ребром H = 7. Для начала возведем длину его грани в квадрат:
H2 = H * H = 7 * 7 = 49. Мы получили периметр одной грани.
Для вычисления площади результат из первого действия умножим на количество граней:
S = 6 * 49 = 249.
Мы получили искомый результат.
Ответ: 294. - Дан куб с диагональю ребра d=13. Требуется найти площадь его поверхности
Вычислим его грань H, исходя из формулы H=\frac{d}{\sqrt{3}}= \frac{13}{\sqrt{3}}= 7,51.
Теперь, когда нам известна величина грани куба, воспользуемся первой формулой, и умножим результат на 6 :
S = 6 * H2 = 6 * 7,5122 = 6 * 56,43 ≈ 338.
Мы снова получили искомый результат.
Ответ: 338.
Площадь поверхности прямоугольного параллелепипеда равна
Sпов = (аb + bc + ac) * 2
Так как у куба а = b = c
Sпов. куба = (аа + аа +аа) * 2 = 6 а2
Sпов. куба = 6 а2
Пример. Площадь поверхности куба равна 18. Найдите его диагональ.
Пусть ребро куба равно а.
Sпов. куба = 6 а2
6а^2 =18
a=\sqrt{3}
\Delta BB_{1}D:B_{1}D=\sqrt{BB_1^2+BD^2}
B_1D=a*\sqrt{3}
B_1D=3
bingoschool.ru
Немного информации о кубе и о способах того, как вычислить площадь поверхности куба :: SYL.ru
Куб — удивительная фигура. Он одинаковый со всех сторон. Любая его грань может вмиг стать основанием или боковой. И от этого ничего не изменится. А формулы для него всегда легко запоминаются. И неважно, что нужно найти — объем или площадь поверхности куба. В последнем случае даже не нужно учить что-то новое. Достаточно помнить только формулу площади квадрата.
Что такое площадь?
Эту величину принято обозначать латинской буквой S. Причем это справедливо для школьных предметов, таких как физика и математика. Измеряется она в квадратных единицах длины. Все зависит от данных в задаче величин. Это могут быть мм, см, м или км в квадрате. Причем возможны случаи, когда единицы даже не указаны. Идет речь просто о числовом выражении площади без наименования.
Так что же такое площадь? Это величина, которая является числовой характеристикой рассматриваемой фигуры или объемного тела. Она показывает размер ее поверхности, которая ограничена сторонами фигуры.
Какая фигура называется кубом?
Эта фигура является многогранником. Причем непростым. Он правильный, то есть у него все элементы равны друг другу. Будь то стороны или грани. Каждая поверхность куба представляет собой квадрат.
Другое название куба — правильный гексаэдр, если по-русски, то шестигранник. Он может быть образован из четырехугольной призмы или параллелепипеда. При соблюдении условия, когда все ребра равны и углы образуют 90 градусов.
Эта фигура настолько гармонична, что часто используется в быту. Например, первые игрушки малыша — кубики. А забава для тех, кто постарше, — кубик Рубика.
Как связан куб с другими фигурами и телами?
Если начертить сечение куба, которое проходит через три его грани, то оно будет иметь вид треугольника. По мере удаления от вершины сечение будет все больше. Настанет момент, когда пересекаться будут уже 4 грани, и фигура в сечении станет четырехугольником. Если провести сечение через центр куба так, чтобы оно было перпендикулярно его главным диагоналям, то получится правильный шестиугольник.
Внутри куба можно начертить тетраэдр (треугольную пирамиду). За вершину тетраэдра берется один из его углов. Остальные три совпадут с вершинами, которые лежат на противоположных концах ребер выбранного угла куба.
В него можно вписать октаэдр (выпуклый правильный многогранник, который похож на две соединенные пирамиды). Для этого нужно найти центры всех граней куба. Они будут вершинами октаэдра.
Возможна и обратная операция, то есть внутрь октаэдра реально вписать куб. Только теперь центры граней первого станут вершинами для второго.
Метод 1: вычисление площади куба по его ребру
Для того чтобы вычислить всю площадь поверхности куба, потребуется знание одного из его элементов. Самый простой способ решения, когда известно его ребро или, другими словами, сторона квадрата, из которого он состоит. Обычно эта величина обозначается латинской буквой «а».
Теперь нужно вспомнить формулу, по которой вычисляется площадь квадрата. Чтобы не запутаться, введено ее обозначение буквой S1.
Для удобства лучше задать номера всем формулам. Эта будет первой.
Но это площадь только одного квадратика. Всего их шесть: 4 по бокам и 2 снизу и сверху. Тогда площадь поверхности куба вычисляется по такой формуле: S = 6 * a2. Ее номер 2.
Метод 2: как вычислить площадь, если известен объем тела
Этот способ сводится к тому, чтобы сосчитать длину ребра по известному объему. И потом уже воспользоваться известной формулой, которая здесь обозначена цифрой 2.
Из математического выражения для объема гексаэдра выводится то, по которому можно сосчитать длину ребра. Вот она:
Нумерация продолжается, и здесь уже цифра 3.
Теперь его можно вычислить и подставить во вторую формулу. Если действовать по нормам математики, то нужно вывести такое выражение:
Это формула площади всей поверхности куба, которой можно воспользоваться, если известен объем. Номер этой записи 4.
Метод 3: расчет площади по диагонали куба
Для того чтобы рассчитать площадь полной поверхности куба, также потребуется вывести ребро через известную диагональ. Здесь используется формула для главной диагонали гексаэдра:
Это формула №5.
Из нее легко вывести выражение для ребра куба:
Это шестая формула. После его вычисления можно снова воспользоваться формулой под вторым номером. Но лучше записать такую:
Она оказывается пронумерованной цифрой 7. Если внимательно посмотреть, то можно заметить, что последняя формула удобнее, чем поэтапный расчет.
Метод 4: как воспользоваться радиусом вписанной или описанной окружности для вычисления площади куба
Если обозначить радиус описанной около гексаэдра окружности буквой R, то площадь поверхности куба будет легко вычислить по такой формуле:
Ее порядковый номер 8. Она легко получается благодаря тому, что диаметр окружности полностью совпадает с главной диагональю.
Обозначив радиус вписанной окружности латинской буквой r, можно получить такую формулу для площади всей поверхности гексаэдра:
Это формула №9.
Несколько слов о боковой поверхности гексаэдра
Если в задаче требуется найти площадь боковой поверхности куба, то нужно воспользоваться уже описанным выше приемом. Когда уже дано ребро тела, то просто площадь квадрата нужно умножить на 4. Эта цифра появилась из-за того, что боковых граней у куба всего 4. Математическая запись этого выражения такая:
Ее номер 10. Если даны какие-то другие величины, то поступают аналогично описанным выше методам.
Примеры задач
Условие первой. Известна площадь поверхности куба. Она равна 200 см². Необходимо вычислить главную диагональ куба.
Решение.
1 способ. Нужно воспользоваться формулой, которая обозначена цифрой 2. Из нее будет несложно вывести «а». Эта математическая запись будет выглядеть как квадратный корень из частного, равного S на 6. После подстановки чисел получается:
а = √ (200/6) = √ (100/3) = 10 √3 (см).
Пятая формула позволяет сразу вычислить главную диагональ куба. Для этого нужно значение ребра умножить на √3. Это просто. В ответе получается, что диагональ равна 10 см.
2 способ. На случай если забылась формула для диагонали, но помнится теорема Пифагора.
Аналогично тому, как было в первом способе, найти ребро. Потом нужно записать теорему для гипотенузы два раза: первую для треугольника на грани, вторую для того, который содержит искомую диагональ.
х² = а² + а², где х — диагональ квадрата.
d² = х² + а² = а² + а² + а² = 3 а². Из этой записи легко видно, как получается формула для диагонали. А дальше все расчеты будут, как в первом способе. Он немножко длиннее, но позволяет не запоминать формулу, а получить ее самостоятельно.
Ответ: диагональ куба равна 10 см.
Условие второй. По известной площади поверхности, которая равна 54 см2, вычислить объем куба.
Решение.
Пользуясь формулой под вторым номером, нужно узнать значение ребра куба. То, как это делается, подробно описано в первом способе решения предыдущей задачи. Проведя все вычисления, получим, что а = 3 см.
Теперь нужно воспользоваться формулой для объема куба, в которой длина ребра возводится в третью степень. Значит, объем будет считаться так: V = 33 = 27 см3.
Ответ: объем куба равен 27 см3.
Условие третьей. Требуется найти ребро куба, для которого выполняется следующее условие. При увеличении ребра на 9 единиц площадь всей поверхности увеличивается на 594.
Решение.
Поскольку явных чисел в задаче не дано, только разности между тем, что было, и тем, что стало, то нужно ввести дополнительные обозначения. Это несложно. Пусть искомая величина будет равна «а». Тогда увеличенное ребро куба будет равно (а + 9).
Зная это, нужно записать формулу для площади поверхности куба два раза. Первая — для начального значения ребра — совпадет с той, которая пронумерована цифрой 2. Вторая будет немного отличаться. В ней вместо «а» нужно записать сумму (а + 9). Так как в задаче идет речь о разности площадей, то нужно вычесть из большей площади меньшую:
6 * (а + 9)2 — 6 * а2 = 594.
Нужно провести преобразования. Сначала вынести за скобку 6 в левой части равенства, а потом упростить то, что останется в скобках. А именно (а + 9)2 — а2. Здесь записана разность квадратов, которую можно преобразовать так: (а + 9 — а)(а + 9 + а). После упрощения выражения получается 9(2а + 9).
Теперь его нужно умножить на 6, то есть то число, что было перед скобкой, и приравнять к 594: 54(2а + 9) = 594. Это линейное уравнение с одной неизвестной. Его легко решить. Сначала нужно раскрыть скобки, а потом перенести в левую часть равенства слагаемое с неизвестной величиной, а числа — в правую. Получится уравнение: 2а = 2. Из него видно, что искомая величина равна 1.
Ответ: а = 1.
www.syl.ru
Как найти диагональ куба если известна площадь поверхности
Движения. Вариант 2. А1. Начертите треугольник АВС. Постройте его образ: при симметрии относительно биссектрисы его угла В;. при симметрии относительно точки Н, если АН – высота треугольника;. при параллельном переносе на вектор АО, где О – центр описанной около треугольника окружности;.
Что такое диагональ куба, и как ее найти
Что такое куб, и какие диагонали он имеет
Куб (правильный многогранник или гексаэдр) представляет собой объемную фигуру, каждая грань – это квадрат, у которого, как нам известно, все стороны равны. Диагональю куба является отрезок, который проходит через центр фигуры и соединяет симметричные вершины. В правильном гексаэдре имеется 4 диагонали, и все они будут равны. Очень важно не путать диагональ самой фигуры с диагональю ее грани или квадрата, который лежит на его основании. Диагональ грани куба проходит через центр грани и соединяет противоположные вершины квадрата.
Формула, по которой можно найти диагональ куба
Диагональ правильного многогранника можно найти по очень простой формуле, которую необходимо запомнить. D=a√3, где D обозначаем диагональ куба, а – это ребро. Приведем пример задачи, где необходимо найти диагональ, если известно, что длина его ребра равна 2 см. Здесь все просто D = 2√3, даже считать ничего не надо. Во втором примере, пусть ребро куба будет равно √3 см, то тогда получаем D = √3√3=√9=3. Ответ: D равен 3 см.
Формула, по которой можно найти диагональ грани куба
Если известна диагональ грани куба
По условию задачи, нам дана только диагональ грани правильного многогранника, которая равна, предположим, √2 см, а нам необходимо найти диагональ куба. Формула решения этой задачи немного сложнее предыдущей. Если нам известно d, то мы можем найти ребро куба, исходя из нашей второй формулы d=a√2. Получаем а= d/√2= √2/√2=1см (это наше ребро). А если известна эта величина, то найти диагональ куба не составит труда: D = 1√3= √3. Вот так мы решили нашу задачку.
Если известна площадь поверхности
Следующий алгоритм решения строится на нахождении диагонали по площади поверхности куба. Предположим, что она равна 72 см 2 . Для начала найдем площадь одной грани, а всего их 6. Значит, 72 необходимо поделить на 6, получаем 12 см 2 . Это площадь одной грани. Чтобы найти ребро правильного многогранника, необходимо вспомнить формулу S=a 2 , значит a=√S. Подставляем и получаем a=√12 (ребро куба). А если мы знаем это значение, то и диагональ найти не сложно D= a√3= √12 √3 = √36 = 6. Ответ: диагональ куба равна 6 см 2 .
Если известна длина ребер куба
Бывают такие случаи, когда в задаче дана только длина всех ребер куба. Тогда необходимо это значение разделить на 12. Именно столько сторон в правильном многограннике. Например, если сумма всех ребер равна 40, то одна сторона будет равна 40/12=3,333. Вставляем в нашу первую формулу и получаем ответ!
Как найти диагональ куба если известна площадь поверхности
Как найти диагональ куба если известна площадь
В разделе
Тогда площадь грани х6
Тогда сторона ребро куба корень (х6)
Диагональ равна утроенный квадрат стороны, то есть 3·(х6) = х2
Берете грань за х тогда площадь будет x^3 находите х а дальше и треугольника диагональ
По теореме пифагора.
Ширина и длина у куба — катеты и они одинаковы.
И формула гипотенуза в квадрате=высота в квадрате + ширина в квадрате.
Ну площадь поверхности куба — квадрат же.
Ну вот к примеру — площадь — 16
Значит диагональ равна х^2=4^2+4^2
И равна корень из 32
Я думаю, что для начала надо узнать площадь одной стороны, т. к. сторон шесть и они все равны, то и общую площадь надо поделить на шесть. дальше узнать длину грани, то есть корень квадратный и т. д.
Как найти диагональ куба если известна площадь поверхности
Что такое диагональ куба, и как ее найти
Что такое куб, и какие диагонали он имеет
Куб (правильный многогранник или гексаэдр) представляет собой объемную фигуру, каждая грань – это квадрат, у которого, как нам известно, все стороны равны. Диагональю куба является отрезок, который проходит через центр фигуры и соединяет симметричные вершины. В правильном гексаэдре имеется 4 диагонали, и все они будут равны. Очень важно не путать диагональ самой фигуры с диагональю ее грани или квадра
poiskvstavropole.ru
как найти диагональ куба,если известна только полная площадь поверхности ?
Пусть площадь поверхности х. тогда площадь грани х\6 тогда сторона ребро куба корень (х\6) диагональ равна утроенный квадрат стороны, то есть 3·(х\6) = х\2 Удачи))
берете грань за х тогда площадь будет x^3 находите х а дальше и треугольника диагональ
По теореме пифагора. Диагональ — гипотенуза Ширина и длина у куба — катеты и они одинаковы. И формула гипотенуза в квадрате=высота в квадрате + ширина в квадрате. Ну площадь поверхности куба — квадрат же. Ну вот к примеру — площадь — 16 Значит высота=ширина=4 Значит диагональ равна х^2=4^2+4^2 И равна корень из 32
я думаю, что для начала надо узнать площадь одной стороны, т. к. сторон шесть и они все равны, то и общую площадь надо поделить на шесть. дальше узнать длину грани, то есть корень квадратный и т. д.
touch.otvet.mail.ru
Как найти площадь поверхности куба?
Куб представляет собой объемный вариант квадрата. Зная длину ребра куба (а), можно воспользоваться наиболее распространенной формулой по определению площади поверхности (S). Исходя из того, что площадь квадрата соответствует длине возведенной в квадрат грани, и у куба их шесть, получается: S = 6∙a². Эта формула определяет площадь полной поверхности куба.
Способы определения площади куба
- Если задан объем (V) пространства, что ограничен сторонами куба, а длина ребра неизвестна, то площадь (S) определяется таким образом.
Когда единственно известная величина фигуры, представляет собой возведенную в третью степень длину ребра, тогда размер длины стороны каждой грани куба определяют посредством извлечения кубического корня из имеющегося параметра. Формула площади поверхности куба имеет вид: S = 6∙(³√V)².
- Когда задана длина диагонали гексаэдра (L), тогда длину одной грани можно легко вычислить, а вместе с ней и площадь фигуры. Диагональ определяют так: L/v3. А площадь куба поэтому вычисляется так: S = 6∙(L/√3)² = 2∙L², что очень удобно при расчетах.
- Как найти площадь поверхности куба, когда указан радиус описанной около гексаэдра сферы (R)? Просто! Необходимо только применить формулу такую: S = 8∙R²= 2∙(2∙R)². Такое возможно благодаря тому, что диагональ куба соответствует параметру диаметра сферы.
- Зная радиус вписанной в гексаэдр окружности, формулу площади поверхности куба записывают так: S = 24∙r².
Площадь боковой поверхности куба
S = s1+s2+s3+s4, в которой слагаемые представляют собой площади четырех параллелограммов соответственно, которые образуют боковую поверхность параллелепипеда.
Формула площади боковой поверхности куба может быть представлена как S = P•h при условии, что задан прямой параллелепипед, с известным периметром основания P и высотой h.
Когда расчеты нужно провести по прямоугольному п
elhow.ru
Площадь куба | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU
Площадь куба, она же площадь полной поверхности куба, равна увеличенной в шесть раз площади одной его грани. Так как площадь куба зависит только от ребра, зная ее, можно легко вычислить ребро и затем все остальные параметры куба. S_(п.п.)=6a^2 a=√(S_(п.п.)/6)
Соответственно, площадь стороны куба – одной его грани, будет равна площади полной поверхности разделенной на шесть, а площадь боковой поверхности, состоящей из четырех граней, — двум третям площади полной поверхности куба. S=S_(п.п.)/6 S_(б.п.)=2/3 S_(п.п.)
Для того чтобы найти объем куба, необходимо его ребро возвести в третью степень. Используя полученную формулу ребра куба через площадь полной поверхности, получим, что объем куба равен одной шестой квадратного корня из площади куба в третьей степени, деленной на шесть. V=a^3=(√(S_(п.п.)/6))^3=1/6 √(〖S_(п.п.)〗^3/6)
Периметр куба можно найти, умножив ребро куба на 12. Если подставить вместо ребра квадратный корень через площадь куба, то получим следующую формулу для периметра куба: P=12a=12√(S_(п.п.)/6)
Диагональ одной стороны куба является по определению диагональю квадрата, которая вычисляется как произведение стороны квадрата на корень из двух. Так как ребро куба является стороной этого квадрата, то диагональ будет равна квадратному корню из площади, деленной на 3. d=a√2=√(S_(п.п.)/3)
Чтобы рассчитать диагональ куба, необходимо провести дополнительное построение на чертеже, соединяющее ребро куба и одну из вершин диагонали в прямоугольный треугольник. Это дает возможность воспользоваться теоремой Пифагора и вычислить диагональ куба через площадь, подставив формулу вместо ребра куба. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3=√(S_(п.п.)/2)
Радиус сферы, вписанной в куб, по определению равен половине ребра куба или половине квадратного корня из площади куба, деленной на шесть. (рис. 2.2) r=a/2=1/2 √(S_(п.п.)/6)
Радиус сферы, описанной вокруг куба, представлен половиной диагонали куба, которая равна площади полной поверхности куба, деленной на два, под корнем. (рис.2.3) R=D/2=1/2 √(S_(п.п.)/6)
geleot.ru
Что такое диагональ куба, и как ее найти
Что такое куб, и какие диагонали он имеет
Куб (правильный многогранник или гексаэдр) представляет собой объемную фигуру, каждая грань – это квадрат, у которого, как нам известно, все стороны равны. Диагональю куба является отрезок, который проходит через центр фигуры и соединяет симметричные вершины. В правильном гексаэдре имеется 4 диагонали, и все они будут равны. Очень важно не путать диагональ самой фигуры с диагональю ее грани или квадрата, который лежит на его основании. Диагональ грани куба проходит через центр грани и соединяет противоположные вершины квадрата.
Формула, по которой можно найти диагональ куба
Диагональ правильного многогранника можно найти по очень простой формуле, которую необходимо запомнить. D=a√3, где D обозначаем диагональ куба, а – это ребро. Приведем пример задачи, где необходимо найти диагональ, если известно, что длина его ребра равна 2 см. Здесь все просто D = 2√3, даже считать ничего не надо. Во втором примере, пусть ребро куба будет равно √3 см, то тогда получаем D = √3√3=√9=3. Ответ: D равен 3 см.
Формула, по которой можно найти диагональ грани куба
Диаго
наль грани можно также найти по формуле. Диагоналей, которые лежат на гранях, всего 12 штук, и они все равны между собой. Теперь запоминаем d=a√2, где d – это диагональ квадрата, а – это также ребро куба или сторона квадрата. Понять откуда взялась эта формула, очень просто. Ведь две стороны квадрата и диагональ образуют прямоугольный треугольник. В этом трио диагональ играет роль гипотенузы, а стороны квадрата — это катеты, которые имеют одинаковую длину. Вспомним теорему Пифагора, и все тут же встанет на свои места. Теперь задача: ребро гексаэдра равняется √8 см, необходимо найти диагональ его грани. Вставляем в формулу, и у нас получается d=√8 √2=√16=4. Ответ: диагональ грани куба равняется 4 см.Если известна диагональ грани куба
По условию задачи, нам дана только диагональ грани правильного многогранника, которая равна, предположим, √2 см, а нам необходимо найти диагональ куба. Формула решения этой задачи немного сложнее предыдущей. Если нам известно d, то мы можем найти ребро куба, исходя из нашей второй формулы d=a√2. Получаем а= d/√2= √2/√2=1см (это наше ребро). А если известна эта величина, то найти диагональ куба не составит труда: D = 1√3= √3. Вот так мы решили нашу задачку.
Если известна площадь поверхности
Следующий алгоритм решения строится на нахождении диагонали по площади поверхности куба. Предположим, что она равна 72 см2. Для начала найдем площадь одной грани, а всего их 6. Значит, 72 необходимо поделить на 6, получаем 12 см2. Это площадь одной грани. Чтобы найти ребро правильного многогранника, необходимо вспомнить формулу S=a2, значит a=√S. Подставляем и получаем a=√12 (ребро куба). А если мы знаем это значение, то и диагональ найти не сложно D= a√3= √12 √3 = √36 = 6. Ответ: диагональ куба равна 6 см2.
Если известна длина ребер куба
Бывают такие случаи, когда в задаче дана только длина всех ребер куба. Тогда необходимо это значение разделить на 12. Именно столько сторон в правильном многограннике. Например, если сумма всех ребер равна 40, то одна сторона будет равна 40/12=3,333. Вставляем в нашу первую формулу и получаем ответ!
fb.ru
Leave A Comment