Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Закон Ома для всей цепи.
ЗАДАЧИ на ЕГЭ

Формулы, используемые на уроках физики в 10-11 классах «Закон Ома для всей цепи. Расчет электрических цепей» для подготовки к ЕГЭ по физике.

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотрите также другие конспекты по решению задач:

ЕГЭ: Закон Ома для участка цепи  ОГЭ: Закон Ома в 8 классе


Закон Ома для всей цепи.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.   Вольтметр, подключенный к лампочке, показывает U = 4 В, а амперметр — I = 2 А (рис. 6-10). Чему равно внутреннее сопротивление r источника тока, к которому эта лампочка присоединена, если ЭДС источника ε = 5 В?
Примечание: если в условии задачи ничего не сказано о сопротивлении амперметра, то этим сопротивлением можно пренебречь, а если ничего не сказано о сопротивлении вольтметра, то его следует считать бесконечно большим, а силу тока, текущего через вольтметр, равной нулю. Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

РЕШЕНИЕ.

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ


Задача № 2.   Дана схема (рис. 6-11, а). Во сколько раз изменится сила тока, текущего в неразветвленной части цепи, и напряжение на полюсах источника тока, если ключ К замкнуть? Сопротивление лампы Л2 вдвое больше сопротивления лампы Л1, а внутреннее сопротивление источника тока в 10 раз меньше сопротивления лампы Л

1Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

 


Задача № 3.   В резисторе сопротивлением R = 5 Ом сила тока I = 0,2 А. Резистор присоединен к источнику тока с ЭДС ε = 2 В. Найти силу тока короткого замыкания Iк.з. 

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 4.  Вольтметр, подключенный к полюсам источника тока при разомкнутой внешней цепи, показал U1 = 8 В. Когда же цепь замкнули на некоторый резистор (рис. 6-12, а), вольтметр показал U2 = 5 В. Что покажет этот вольтметр, если последовательно к этому резистору подключить еще один такой же (рис. 6-12, б) ? Что покажет этот вольтметр, если второй резистор присоединить к первому параллельно (рис. 6-12, в)? Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 5.   Цепь питается от источника тока с ЭДС ε = 4 В и внутреннем сопротивлением г = 0,2 Ом. Построить график зависимости силы тока I

в цепи и напряжения U на полюсах источника тока от внешнего сопротивления R.

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 6.   Амперметр, будучи накоротко присоединен к гальваническому элементу с ЭДС

ε = 2 В и внутренним сопротивлением r = 0,2 Ом, показал ток силой I1 = 3 А . Какую силу тока I2 покажет этот амперметр, если его зашунтировать сопротивлением Rш = 0,1 Ом?

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 7.   Дана схема (рис. 6-16). Емкости конденсаторов С1, С2 и ЭДС источника тока ε известны. Известно также, что ток короткого замыкания Iк.з. этого источника в три раза превосходит ток I, текущий в этой цепи. Найти напряженности Е1 и Е2 полей в конденсаторах, если расстояния между их обкладками равны d. Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ
Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 8.   Дана схема (рис. 6-17). Известны емкости С и 2С конденсаторов, сопротивления R и 2R проводников и ЭДС источника тока ε. Внутренним сопротивлением источника тока можно пренебречь (г = 0). Определить напряжения

U1 и U2 на конденсаторах и заряды q1 и q2 этих конденсаторов. Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 9.   Имеется N одинаковых источников тока, которые соединяют сначала последовательно, затем параллельно, подключая каждый раз к одному и тому же внешнему сопротивлению

R. Внутреннее сопротивление каждого источника r. Во сколько раз при этом изменяется напряжение на внешней части цепи?

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 10.  Электрическая цепь состоит из источника тока с ЭДС ε = 180 В и потенциометра сопротивлением R = 5 кОм. Ползунок потенциометра стоит посередине прибора (рис. 6-21, а). Найти показания вольтметров U1 и U2, подключенных к потенциометру, если их сопротивления R1 = 6 кОм и R2 = 4 кОм. Внутренним сопротивлением r источника тока пренебречь. Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ
Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 11.   Дана схема, изображенная на рис. 6-22, а. Сопротивления R1, R2 и R известны. Известны также ЭДС источника тока ε и его внутреннее сопротивление r. Найти силу тока I2 в сопротивлении R

2Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

 Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ  Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Задача № 12.   Проволока из нихрома образует кольцо диаметром D = 2 м (рис. 6-23, а). В центре кольца помещен источник тока с ε = 2В и внутренним сопротивлением r = 1,5 Ом, соединенный в точках а и b с кольцом такой же проволокой. Найти разность потенциалов  φb – φа между точками b и а. Удельное сопротивление нихрома р = 1,1 мкОм•м, площадь поперечного сечения проволоки S = 1 мм2Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Смотреть решение и ответ

 Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ  Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

 


Это конспект по теме «Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ». Выберите дальнейшие действия:

 

2013-6 — Стр 15

32. Определить величину падения напряжения на полностью включённом реостате, выполненном из никелиновой проволоки длиной l = 7,5 м, если плотность тока j = 1,5 106 А/м2.

 

I

 

 

U

 

US

Решение

 

j =

;

jS =

=

; U = jξl ≈1,5 106

42 10−8 7,5 ≈ 4,7 B;

S

R

ξl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33. Можно ли включать в сеть с напряжением U = 220 В обмотку реостата, на котором написано: а) R1 = 30 Ом, I1 = 5 А; б) R2 = 2000 Ом, I2 = 0,2 А?

Решение

U1 = I1R1 =150B;

U > U1;

U2 = I2R2 = 400B;

U < U1;

Впервом случае включать реостат нельзя, во втором случае − можно.

34.От источника напряжения Ui = 45 В необходимо питать нагревательную спираль сопротивлением R0 = 20 Ом, рассчитанную на напряжение U0 =30 В. Имеются три реостата на которых написано: а) I1 = 2 A, R1 = 6 Ом; б) I2 = 4А, R2

=30 Ом; в) I3 = 0,6A, R3 = 800 Ом. Какой из этих реостатов необходимо использовать для подключения спирали?

Решение

1. Падение напряжения на реостатах:

U1 = I1R1 =12B; U2 = I2R2 =120B; U3 = 480B;

2.Первый реостат не подходит, т.к. на нём будет падать маленькое напряжение. Третий реостат обеспечивает слишком большое падение напряжение, остаётся второй реостат.

3.При включении последовательно спирали и второго реостата имеем:

R

Σ

= R

0

+ R

2

= 50 Ом; I =

U1

= 0,9A;

U* = IR

2

= 27B;

U

− U* =18B;

 

 

 

 

 

 

1

 

i

1

 

 

 

 

 

 

 

 

 

 

 

 

 

35. До какой температуры нагревается электромагнит во время работы, если его медная обмотка при t0 = 0 0С имеет сопротивление R0 = 50 Ом, а во

время работы увеличивается на

R = 8 Ом?

 

 

 

 

 

 

 

 

 

 

R +

Решение

 

 

 

 

R + R

 

R = R0 (1+ α

T);

R

 

 

 

 

 

 

 

 

1

 

 

R0

 

=1+ α

T; T =

 

 

R

−1 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

1

 

 

58

 

 

 

0

 

 

 

 

 

 

 

T =

 

 

 

 

 

 

−1

≈ 37

 

C;

 

 

 

 

 

 

0,0043

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36. На сколько градусов нужно повысить температуру медного проводника, взятого при t0 = 0 0С, чтобы его сопротивление увеличилось в 3 раза?

 

 

Решение

 

 

 

R

= 3 =1− α T;

T =

2

 

=

2

≈ 465 K;

 

α

0,0043

R0

 

 

 

Ток в металлах — Студопедия

1171. Постройте вольтамперную характеристику для металлического проводника сопротивлением 1 Ом. Как изменится угол φ наклона графика к оси U при изменении сопротивления R проводника? Какую величину характеризует tgφ?

1172. Сколько электронов проходит через поперечное сечение проводника за 1 нс при силе тока 32 мкА?

1173. Найдите скорость упорядоченного движения электронов в проводе с площадью поперечного сечения 5 мм2 при силе тока 10 А, если концентрация электронов проводимости 5∙1028 м-3.

1174. Найдите скорость упорядоченного движения электронов в медном проводе с площадью поперечного сечения 25 мм2 при силе тока 50 А, считая, что на каждый атом приходится одни электрон проводимости.

1175. Какова скорость дрейфа электронов в медном проводе диаметром 4 мм, по которому к стартеру грузовика подводится ток 100 А?

1176. Один полюс источника тока присоединили к электрической лампе медным проводом, а другой полюс – алюминиевым проводом такого же диаметра. Сравните скорость упорядоченного движения электронов в подводящих проводах, считая, что на каждый атом приходится один электрон проводимости.

1177. С какой частотой следует вращать металлический диск радиусом 25 см, чтобы можно было обнаружить разность потенциалов между осью и краем диска, возникшему благодаря центробежному эффекту? Чувствительность гальванометра 10-6 В.

1178. На рисунке 196 изображена схема электрической цепи, состоящей из электрической лампы мощностью 40 Вт, ключа К, и лампочки от карманного фонарика. Цепь включили в городскую сеть при замкнутом ключе, а затем ключ разомкнули. В этом случае лампочки горели нормально. Когда же в другом случае эту цепь включили в ту же сеть при разомкнутом ключе К, лампочка от карманного фонаря сразу перегорела. Почему?


1179. Сопротивление длинного медного провода при температуре 20°С равно 0,005 Ом. Каково его сопротивление при температуре 80°С?

1180. Температура вольфрамовой нити накаливания электрической лампы приблизительно равна 2000°С. Каково сопротивление 60 – ваттной лампы в рабочем состоянии? Лампа рассчитана на стандартное напряжение. Каково сопротивление этой нити при комнатной температуре? Какой ток потребляет лампа сразу после включения?

1181. Определите температуру нити накала лампочки, если при включении в сеть напряжением 220 В по нити идет ток 0,68 А. Сопротивление вольфрамовой нити электрической лампочки при температуре 20°С равно 36 Ом. Тепловой коэффициент сопротивления вольфрама 4,6∙10-3 К-1.

Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Закон Ома для участка электрической цепи

1. Электрическим током называют упорядоченное движение заряженных частиц.

Для того чтобы в проводнике существовал электрический ток, необходимы два условия: наличие свободных заряженных частиц и электрического поля, которое создаёт их направленное движение.

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока. В растворе поваренной соли в воде происходит электролитическая диссоциация — процесс разложения молекулы поваренной соли на положительный ион натрия и отрицательный ион хлора. Если в сосуд с раствором поваренной соли поместить две металлические пластины, соединённые с источником тока (рис. 79), то положительный ион натрия в электрическом поле будет двигаться к пластине, соединенной с отрицательным полюсом источника тока, называемым катодом, а отрицательный ион хлора — с положительным полюсом источника тока, называемым анодом.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока но цепи. При внесении пламени в воздушный промежуток между пластинами происходит ионизация газа (рис. 80). При этом от атома «отрываются» электроны и образуется положительный ион. Во время движения электрон может присоединиться к нейтральному атому и образовать отрицательный ион. Положительные ионы движутся к отрицательному электроду, а отрицательные ионы и электроны — к положительному электроду.

2. Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

3. Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться (рис. 81).

Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Это происходит потому, что между электродами существует электрическое поле, в котором ионы (положительно заряженные ионы меди и отрицательно заряженные ионы кислотного остатка) движутся к соответствующим электродам. Достигнув отрицательного электрода, ионы меди получают недостающие электроны, при этом восстанавливается чистая медь.

4. Характеристикой тока в цепи служит величина, называемая силой тока ​\( (I) \)​. Силой тока называют физическую величину, равную отношению заряда ​\( q \)​, проходящего через поперечное сечение проводника за промежуток времени ​\( t \)​, к этому промежутку времени: ​\( I=q/t \)​.

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2·10-7 Н.

Эта единица называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1 А · 1 с.

5. Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить (рис. 82), и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «-», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному полюсу источника тока, а клемма со знаком «-» к отрицательному полюсу источника тока.

6. Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда, равного 1 Кл.

Напряжением ​\( U \)​ называют физическую величину, равную отношению работы ​\( (A) \)​ электрического поля по перемещению электрического заряда к заряду ​\( (q) \)​: ​\( U=A/q \)​.

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда ​\( (t) \)​, то получим: ​\( U=At/qt \)​. В числителе этой дроби стоит мощность тока ​\( (P) \)​, а в знаменателе — сила тока ​\( (I) \)​: ​\( U=P/I \)​, т.е. напряжение — физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: ​\( [U]=[A]/[q] \)​; ​\( [U] \)​ = 1 Дж/1 Кл = 1 В (один вольт).

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят измерить (рис. 83). Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «-», при включении вольтметра в цепь клемма со знаком «+» присоединяется к положительному полюсу источника тока, а клемма со знаком «-» к отрицательному полюсу источника тока.

7. Собрав электрическую цепь, состоящую из источника тока, резистора, амперметра, вольтметра, ключа (рис. 83), можно показать, что сила тока ​\( (I) \)​, протекающего через резистор, прямо пропорциональна напряжению ​\( (U) \)​ на его концах: ​\( I\sim U \)​. Отношение напряжения к силе тока ​\( U/I \)​ — есть величина постоянная. Если заменить резистор, включённый в цепь, другим резистором и повторить опыт, получим тот же результат: сила тока в резисторе прямо пропорциональна напряжению на его концах, а отношение напряжения к силе тока есть величина постоянная. Только в этом случае значение отношения напряжения к силе тока будет отличаться от отношения этих величин в первом опыте. Причиной этого является то, что в цепь включались разные резисторы. Следовательно, существует физическая величина, характеризующая свойства проводника (резистора), по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника, или просто сопротивлением. Обозначается сопротивление буквой ​\( R \)​.

Сопротивлением проводника ​\( (R) \)​ называют физическую величину, равную отношению напряжения ​\( (U) \)​ на концах проводника к силе тока ​\( (I) \)​ в нём. ​\( R=U/I \)​.

За единицу сопротивления принимают Ом (1 Ом).

Один Ом — сопротивление такого проводника, в котором сила тока равна 1 А при напряжении на его концах 1 В: 1 Ом = 1 В/1 А.

Причина того, что проводник обладает сопротивлением, заключается в том, что направленному движению электрических зарядов в нём препятствуют ионы кристаллической решетки, совершающие беспорядочное движение. Соответственно, скорость направленного движения зарядов уменьшается.

8. Электрическое сопротивление ​\( R \)​ прямо пропорционально длине проводника ​\( (l) \)​, обратно пропорционально площади его поперечного сечения ​\( (S) \)​ и зависит от материала проводника. Эта зависимость выражается формулой: ​\( R=\rho\frac{l}{S} \)​. ​\( \rho \)​ — величина, характеризующая материал, из которого сделан проводник. Эта величина называется удельным сопротивлением проводника, её значение равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м2.

Единицей удельного сопротивления проводника служит: ​\( [\rho]=\frac{[R][S]}{[l]} \)​; ​\( [\rho]=\frac{1Ом\cdot1м^2}{1м} \)​. Часто площадь поперечного сечения измеряют в мм2, поэтому в справочниках значения удельного сопротивления проводника приводятся как в Ом·м, так и в ​\( \frac{Ом\cdotмм^2}{м} \)​.

Изменяя длину проводника, а следовательно его сопротивление, можно регулировать силу тока в цепи. Прибор, с помощью которого это можно сделать, называется реостатом (рис. 84).

9. Как показано выше, сила тока в проводнике зависит от напряжения на его концах. Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: ​\( I=\frac{U}{R} \)​. Этот закон, установленный экспериментально, называется законом Ома (для участка цепи): сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке приведена схема электрической цепи, состоящей из источника тока, ключа и двух параллельно соединённых резисторов. Для измерения напряжения на резисторе ​\( R_2 \)​ вольтметр можно включить между точками

1) только Б и В
2) только А и В
3) Б и Г или Б и В
4) А и Г или А и В

2. На рисунке представлена электрическая цепь, состоящая из источника тока, резистора и двух амперметров. Сила тока, показываемая амперметром А1, равна 0,5 А. Амперметр А2 покажет силу тока

1) меньше 0,5 А
2) больше 0,5 А
3) 0,5 А
4) 0 А

3. Ученик исследовал зависимость силы тока в электроплитке от приложенного напряжения и получил следующие данные.

Проанализировав полученные значения, он высказал предположения:

А. Закон Ома справедлив для первых трёх измерений.
Б. Закон Ома справедлив для последних трёх измерений.

Какая(-ие) из высказанных учеником гипотез верна(-ы)?

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

4. На рисунке изображён график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 4 Ом
4) 8 Ом

5. На диаграммах изображены значения силы тока и напряжения на концах двух проводников. Сравните сопротивления этих проводников.

1) ​\( R_1=R_2 \)​
2) \( R_1=2R_2 \)​
3) \( R_1=4R_2 \)​
4) \( 4R_1=R_2 \)​

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения мощности тока для двух проводников (1) и (2) одинакового сопротивления. Сравните значения напряжения ​\( U_1 \)​ и ​\( U_2 \)​ на концах этих проводников.

1) ​\( U_2=\sqrt{3}U_1 \)​
2) \( U_1=3U_2 \)
3) \( U_2=9U_1 \)
4) \( U_2=3U_1 \)

7. Необходимо экспериментально обнаружить зависимость электрического сопротивления круглого угольного стержня от его длины. Какую из указанных пар стержней можно использовать для этой цели?

1) А и Г
2) Б и В
3) Б и Г
4) В и Г

8. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм2, а второго проводника 4 мм2. Сопротивление какого из проводников больше и во сколько раз?

1) Сопротивление первого проводника в 64 раза больше, чем второго.
2) Сопротивление первого проводника в 8 раз больше, чем второго.
3) Сопротивление второго проводника в 64 раза больше, чем первого.
4) Сопротивление второго проводника в 8 раз больше, чем первого.

9. В течение 600 с через потребитель электрического тока проходит заряд 12 Кл. Чему равна сила тока в потребителе?

1) 0,02 А
2) 0,2 А
3) 5 А
4) 50 А

10. В таблице приведены результаты экспериментальных измерений площади поперечного сечения ​\( S \)​, длины ​\( L \)​ и электрического сопротивления ​\( R \)​ для трёх проводников, изготовленных из железа или никелина.

На основании проведённых измерений можно утверждать, что электрическое сопротивление проводника

1) зависит от материала проводника
2) не зависит от материала проводника
3) увеличивается при увеличении его длины
4) уменьшается при увеличении его площади поперечного сечения

11. Для изготовления резисторов использовался рулон нихромовой проволоки. Поочередно в цепь (см. рисунок) включали отрезки проволоки длиной 4 м, 8 м и 12 м. Для каждого случая измерялись напряжение и сила тока (см. таблицу).

Какой вывод можно сделать на основании проведённых исследований?

1) сопротивление проводника обратно пропорционально площади его поперечного сечения
2) сопротивление проводника прямо пропорционально его длине
3) сопротивление проводника зависит от силы тока в проводнике
4) сопротивление проводника зависит от напряжения на концах проводника
5) сила тока в проводнике обратно пропорциональна его сопротивлению

12. В справочнике физических свойств различных материалов представлена следующая таблица.

Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При равных размерах проводник из алюминия будет иметь меньшую массу и большее электрическое сопротивление по сравнению с проводником из меди.
2) Проводники из нихрома и латуни при одинаковых размерах будут иметь одинаковые электрические сопротивления.
3) Проводники из константана и никелина при одинаковых размерах будут иметь разные массы.
4) При замене никелиновой спирали электроплитки на нихромовую такого же размера электрическое сопротивление спирали уменьшится.
5) При равной площади поперечного сечения проводник из константана длиной 4 м будет иметь такое же электрическое сопротивление, что и проводник из никелина длиной 5 м.

Часть 2

13. Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника длиной 5 м, ученик полученные данные измерений силы тока и напряжения записал в таблицу. Чему равна площадь поперечного сечения проводника?

Ответы

Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Закон Ома для участка электрической цепи

5 (100%) 2 votes

Как подключить фары параллельно? Параллельное подключение переключателей и лампочек

Как подключить точки освещения параллельно?

Общие бытовые цепи, используемые при установке электропроводки, параллельны (и должны быть). Чаще всего переключатели, розетки, осветительные приборы и т. Д. Подключаются параллельно для обеспечения электропитания других электрических устройств и приборов через горячий и нейтральный провод в случае выхода из строя одного из них.

В нашем сегодняшнем учебнике по основному электрическому подключению мы покажем, что , как подключить фонари параллельно ?

How To Wire Lights in Parallel? How To Wire Lights in Parallel? Как подключить фары параллельно?

На приведенном выше рисунке ясно видно, что все лампочки подключены параллельно i.е. каждая лампочка подключена через отдельный провод (, также известный как фаза ) и нейтральный провод .

В параллельной цепи добавление или удаление одной лампы из цепи не влияет на другие лампы или подключенные устройства и приборы, поскольку напряжение в параллельной цепи одинаково в каждой точке, но протекающий ток отличается. Любое количество точек освещения или нагрузки может быть добавлено (в соответствии с расчетом нагрузки схемы или подсхемы) в такой схеме, просто подключив проводники L и N к другим лампам.

Поскольку каждая лампа или лампочка подключаются между линией L и нейтралью N отдельно, в случае выхода из строя одной из лампочек остальная часть цепи будет работать плавно, как показано на рисунке ниже. Здесь вы можете видеть, что на линейном проводе, подключенном к лампе 3, есть перерез, поэтому лампа выключена, а остальная цепь работает нормально, т.е. лампы светятся.

Faults in Parallel lighting circuits Faults in Parallel lighting circuits Неисправности в параллельных цепях освещения

Кроме того, если мы будем управлять каждой лампой односторонним (SPST = Single Pole Single Through) переключателем в параллельной цепи освещения, мы сможем включать / выключать каждую лампу с помощью отдельного переключателя или если мы выключим лампочку, остальные точки освещения не будут затронуты, так как это происходит только при последовательном подключении освещения, когда вся подключенная нагрузка будет отключена, если мы замкнем выключатель.

Light Bulbs Connected in Parallel Light Bulbs Connected in Parallel Лампочки подключены параллельно

Как управлять лампочкой от одностороннего переключателя при параллельном освещении?

На рисунке ниже мы управляли тремя лампочками от трех отдельных односторонних переключателей, подключенных между линейным и нулевым проводами. Первые две лампочки светятся, поскольку переключатели находятся в положении ON, а третья лампочка выключена.

How to control each lamp separately by single way switches in parallel lighting circuits How to control each lamp separately by single way switches in parallel lighting circuits Как управлять каждой лампой отдельно с помощью односторонних переключателей в параллельных цепях освещения

Преимущества параллельной цепи освещения:

  • Каждое подключенное электрическое устройство и прибор независимы от других.Таким образом, включение / выключение устройства не повлияет на другие устройства и их работу.
  • В случае обрыва кабеля или удаления какой-либо лампы все цепи и подключенные нагрузки не разорвутся, другими словами, другие светильники / лампы и электрические приборы по-прежнему будут работать без сбоев.
  • Если добавить больше ламп в параллельные цепи освещения, их яркость не будет уменьшаться (как это происходит только в цепях последовательного освещения). Потому что напряжение одинаково в каждой точке параллельной цепи.Короче говоря, они получают то же напряжение, что и напряжение источника.
  • Можно добавить дополнительные осветительные приборы и точки нагрузки в параллельных цепях в соответствии с будущими потребностями, если цепь не будет перегружена.
  • Добавление дополнительных устройств и компонентов не приведет к увеличению сопротивления, но уменьшит общее сопротивление цепи, особенно когда используются устройства с высоким номинальным током, такие как кондиционер и электрические нагреватели.
  • параллельная проводка более надежна, безопасна и проста в использовании.Advantage of parallel circuit connection over series circuit connection Advantage of parallel circuit connection over series circuit connection

Недостатки :

  • Кабель и провод большего размера используются в схеме параллельной разводки освещения.
  • При добавлении дополнительной лампочки в параллельную цепь требуется больше тока.
  • Батарея разряжается быстрее при установке постоянного тока.
  • Схема параллельного подключения более сложна по сравнению с последовательным подключением.

Полезно знать:

  • Переключатели и Предохранители должны быть подключены через линию , провод (под напряжением).
  • Соединение электрических устройств и приборов, таких как вентилятор, розетка, лампочки и т. Д., Предпочтительнее, чем последовательное подключение.
  • Метод параллельного или последовательно-параллельного подключения более надежен, чем последовательный.

Предупреждение:

  • Электричество — наш враг, если вы дадите ему шанс убить вас, помните, они никогда его не упустят. Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике.
  • Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
  • Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода.
  • Работать с электричеством только в присутствии тех лиц, которые имеют хорошие знания и практическую работу и опыт, которые умеют обращаться с электричеством.
  • Прочтите все инструкции и предупреждения и строго следуйте им.
  • Выполнение собственных электромонтажных работ опасно, а также незаконно в некоторых областях. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Сопутствующие руководства по установке домашней электропроводки:

.

Лампочка — Простая английская Википедия, бесплатная энциклопедия

Лампа накаливания Конструкция лампы накаливания

Лампочка производит свет от электричества. [1] В дополнение к освещению темного помещения, они могут использоваться, чтобы показать, что электронное устройство включено, для направления движения, для обогрева и для многих других целей. Миллиарды используются, некоторые даже в космосе.

Ранние люди использовали свечи и масляные лампы для освещения. Грубые лампы накаливания производились в начале и середине 19 века, но мало пригодились.В конце века благодаря усовершенствованным вакуумным насосам и улучшенным материалам они сияли дольше и ярче. Электростанции обеспечивали электроэнергией городские, а затем и сельские районы. [2] Более поздние газоразрядные лампы, в том числе люминесцентные, потребляют меньше электроэнергии, чтобы производить больше света.

Есть несколько видов лампочек:

  • лампа накаливания — самая распространенная лампочка в доме примерно до 2003-2010 гг.
    • галогенная лампа’ — более эффективная лампа накаливания
  • Газоразрядная лампа
  • — вид лампочки, включающий в себя люминесцентный свет.Компактные люминесцентные лампы (или КЛЛ) теперь заменяют лампы накаливания в доме
  • Светодиод
  • — раньше использовались только для маломощных мест, теперь их можно использовать как лампочки в доме
  • Электродуговая лампа, самый ранний вид, сейчас редкость, за исключением больших прожекторов

Лампочки преобразуют электричество в свет и тепло. За исключением тепловых ламп, тепло считается отходом. Лампа, излучающая больше света и меньше тепла, более эффективна.

Лампа накаливания [изменить | изменить источник]

] Лампа накаливания превращает электричество в свет, пропуская электрический ток через тонкий провод, называемый нитью накала. Электрические нити в основном состоят из металлического вольфрама. Сопротивление нити накаливания нагревает лампочку. В конце концов нить накала становится настолько горячей, что начинает светиться. [3]

Нить накала должна быть защищена от воздуха, поэтому она находится внутри колбы, а воздух в колбе либо удаляется (вакуум), либо, чаще, заменяется благородным газом, который ни на что не влияет, например неоном. или аргон.Только около 3% энергии, которая уходит в лампочку накаливания, на самом деле производит свет, остальное — тепло. Это одна из причин, по которой светодиоды более эффективны.

Этот тип лампочки плохо работал и мало использовался, пока Джозеф Свон и Томас Эдисон не улучшили его в 1870-х годах. Это была первая лампочка, которую можно было использовать в домах — она ​​не стоила слишком дорого и хорошо работала. Впервые людям не понадобился огонь (свечи, масляные лампы, керосиновые лампы и т. Д.) Для зажигания.Он был достаточно ярким, чтобы люди могли легко читать по ночам или работать. Его использовали для освещения магазинов и улиц, и люди могли путешествовать после наступления темноты. Это положило начало повсеместному использованию электричества в домах и на предприятиях. У них были углеродные нити, пока в 1900-х годах не были разработаны вольфрамовые. Они служат дольше и излучают более яркий свет.

Ранние устройства на электронных лампах представляли собой лампы накаливания, предназначенные для работы при более низких температурах, с добавлением электронных компонентов.

Люминесцентные лампы [изменить | изменить источник]

Люминесцентные лампы эффективны и излучают только ¼ тепла, чем лампа накаливания.Они также служат дольше, чем лампы накаливания, но до конца 20-го века были намного больше и не подходили для розеток для небольших верхних фонарей и ламп, как лампы накаливания.

Люминесцентная лампа — это стеклянная трубка, обычно заполненная газом аргоном и небольшим количеством ртути. При включении катод нагревается и испускает электроны. Они попадают в аргон и ртуть. Газ аргон создает плазму, которая позволяет электронам лучше двигаться. Когда электроны сталкиваются с атомом ртути, он переводит молекулу в состояние, в котором она имеет много энергии (запасает энергию).Энергетическое состояние длится недолго, и когда энергия высвобождается, он испускает фотон. Фотоны ртути не видимы, как некоторые другие фотоны; они ультрафиолетовые. Итак, на стенке колбы есть люминофорное покрытие. Когда фотон попадает в молекулу люминофора, он, в свою очередь, переводит эту молекулу в возбужденное состояние. Когда этот люминофор высвобождает энергию, он испускает фотон, который мы можем видеть, и возникает свет. Изменение типа люминофора может изменить цвет, который мы видим, но обычно люминесцентные лампы белее, чем лампы накаливания, которые слегка желтые.

LED [изменить | изменить источник]

Светодиод (также известный как светоизлучающий диод) выполнен как электроника. Это микросхема из полупроводникового материала. Светодиодные лампы более эффективны и служат намного дольше, чем лампы накаливания или люминесцентные лампы. В отличие от люминесцентных ламп, в светодиодах не используется ртуть, которая токсична. В течение нескольких лет светодиодные лампы были не такими яркими, как другие виды ламп, и стоили дороже.

  • Большинство лампочек подходят к розетке, обеспечивающей высокий уровень электрического напряжения.Если розетка включена, даже если лампочка не горит, существует реальная опасность поражения электрическим током.
  • Лампы накаливания при включении сильно нагреваются, и им требуется время, чтобы остыть. Прикосновение к горячей лампочке может вызвать ожоги.
  • Большинство лампочек сделаны из стекла, а это значит, что они легко ломаются. У битого стекла острые края, которые могут порезать кожу.
  • При поломке люминесцентной лампы ртуть внутри выделяет пары, которые при вдыхании могут вызвать отравление ртутью.
  • Edison Lightbulb Musée des Lettres et Manuscrits

  1. «Как работает лампочка?». 17 июня 1992 г. Дата обращения 20 мая 2012 г.
  2. «Изобретения Эдисона». about.com. Проверено 21 марта 2013.
  3. Оззи Зенер (2012). «Перспективы и ограничения светоизлучающих диодов».Проверено 20 мая 2012.
.

Электричество | Электрические токи и цепи | Как производится и транспортируется электроэнергия

Все состоит из атомов. В каждой из них частиц по три : протоны, нейтроны и электроны. Электроны вращаются вокруг центра атома . У них отрицательный заряд . Протоны, находящиеся в центре атомов, имеют положительный заряд .

Обычно в атоме столько же протонов, сколько электронов.Он стабильный или сбалансированный . Углерод , например, имеет шесть протонов и шесть электронов.

Ученые могут заставить электроны перемещаться от одного атома к другому. Атом, который теряет электроны, заряжен положительно, атом, который получает больше электронов, заряжен отрицательно.

Электричество создается, когда электроны перемещаются между атомами. Положительные атомы ищут свободные отрицательные электроны, и притягивают их , так что они могут быть сбалансированы .

Проводники и изоляторы

Электричество может проходить через одни объекты лучше, чем через другие. Проводники — это материалы, через которые электроны могут перемещаться более свободно. Медь , алюминий, сталь и другие металлы являются хорошими проводниками. Как и некоторые жидкостей , как соленая вода.

Изоляторы — это материалы, в которых электроны не могут двигаться. Они остаются на месте .Стекло, резина, пластик или сухое дерево — хорошие изоляторы. Они важны для вашей безопасности , потому что без них вы не смогли бы прикоснуться к горячей кастрюле или вилке телевизора.

Электрический ток

Когда электроны движутся по проводнику, создается электрический ток . Ток, который всегда течет в одном направлении, называется постоянным током (DC). Например, аккумулятор производит постоянный ток.Ток, который течет назад и вперед , называется переменным током (AC).

Электрические схемы

Электроны не могут свободно прыгать по воздуху к положительно заряженному атому. Им нужен контур , чтобы двигаться. Когда источник энергии, такой как батарея, подключен к лампочке , электроны могут перемещаться от батареи к лампочке и обратно. Мы называем это электрической схемой .

Иногда в электрическом устройстве есть много цепей, которые заставляют его работать. Телевизор или компьютер могут состоять из миллионов частей, которые соединены друг с другом различными способами.

Вы можете остановить протекание тока , вставив в цепь переключатель . Вы можете разомкнуть цепь и остановить движение электронов.

Кусок металла или проволока также может использоваться для выработки тепла.Когда электрический ток проходит через такой металл , он может быть замедлен сопротивлением . Это вызывает трение и нагревает проволоку. Поэтому можно поджарить хлеб в тостере или высушить волосы теплым воздухом из фена.

В некоторых случаях провода могут стать слишком горячими, если через них проходит слишком много электронов. Специальные переключатели , называемые предохранителями , защищают проводку во многих зданиях.

Виды электроэнергии

Статическое электричество
  • происходит, когда происходит накопление электронов
  • он остается на одном месте, а затем перескакивает на объект
  • не требуется замкнутый контур для потока
  • это вид электричества, который вы чувствуете, когда натираете пуловером какой-либо предмет или когда тащите ног по ковру.
  • молния представляет собой форму статического электричества

Текущая электроэнергия
  • происходит, когда электроны свободно перемещаются между объектами
  • ему нужен проводник — нечто, в чем он может течь, например, провод.
  • текущая электроэнергия требует замкнутой цепи
  • это во многих электрических приборах , в наших домах — тостеры, телевизоры, компьютеры.
  • батарея — это форма электрического тока

Как работают аккумуляторы

Аккумулятор содержит жидких или пасты , которые помогают ему производить электрических зарядов . Плоский конец батареи имеет отрицательный заряд , а конец с выступом имеет положительный заряд.

Когда вы соединяете провод между обоими концами, течет ток .Когда ток проходит через лампочку , электрическая энергия преобразуется в свет.

Химические вещества в батарее поддерживают концов заряженными и батарею в рабочем состоянии. Со временем химическое вещество становится все слабее и слабее, и батарея не может производить больше энергии.

Как производится электричество

Генераторы используются для преобразования механической энергии в электрическую.Магнит вращает внутри катушки из проволоки . Когда магнит движется, в проводе возникает электрический ток.

Большинство электростанций используют турбины для вращения генератора. Вода нагревается до пара , который толкает лопаток турбины. Для нагрева воды можно использовать газ, нефть или уголь. Некоторые страны строят электростанции на реках, где движущаяся вода толкает лопасти турбины .

Как измеряется электричество

Электричество — это , измеренное в ваттах, названо в честь Джеймса Ватта, который изобрел паровой двигатель . Чтобы получить , равное на одну лошадиную силу, потребуется около 750 Вт.

Киловатт-час — это энергия 1000 ватт, которые работают в течение одного часа. Если, например, вы используете 100-ваттную лампочку в течение 10 часов, вы израсходовали 1 киловатт электроэнергии.

Как транспортируется электроэнергия

Электроэнергия, произведенная генератором, проходит по кабелям к трансформатору , который изменяет напряжение электричества. Линии электропередач несут высоковольтную электроэнергию на очень большие расстояния. Когда он прибывает в ваш родной город, другой трансформатор понижает напряжение, а меньшие линии электропередач доставляют его в дома, офисы и фабрики.

Электробезопасность

Важно понимать, почему и как можно защитить себя от поражения электрическим током .

Удар электрическим током происходит , когда электрический ток проходит через ваше тело. Это может привести к сердечной недостаточности и может повредить другие части вашего тела. Он также может обжечь кожу и другие тела тканей .

Очень слабый электрический объект, такой как батарея, не может причинить вам никакого вреда, но внутри дома у вас есть устройств и машины, которые используют 220 вольт.

Большинство машин в вашем доме имеют устройств безопасности для вашей защиты.Что-то идет не так, специальный провод выводит электричество на землю, где ничего не может случиться.

Также существует опасность поражения электрическим током за пределами вашего дома. Деревья, которые касаются линий электропередачи , могут быть опасными. У молнии более чем достаточно электричества, чтобы убить человека. Если вы попали в грозу, держитесь подальше от открытых полей и возвышенностей. Одно из самых безопасных мест — это ваша машина, потому что молния ударит только по внешнему металлу машины.

How electricity is transported Текст и рабочие таблицы для загрузки в формате PDF

How electricity is transported Связанные темы

слов

  • прибор = электрическая машина, которую вы обычно используете в доме, например плита или стиральная машина
  • притягивать = притягивать к объекту
  • назад и вперед = идти в одном направлении, а затем в другом
  • сбалансированный = то же, что и стабильный
  • лезвие = плоская часть объекта, который отталкивается от воды
  • накопление = увеличение
  • выступ = небольшой участок, который выше остальных
  • углерод = химический материал, содержащийся в угле или бензине.В чистом виде в бриллиантах
  • заряд = электричество, которое подводится к объекту, например, к батарее, чтобы дать ему энергию
  • цепь = полный круг, по которому проходит электрический ток
  • катушка = провод, который огибает объект по кругу и излучает свет или тепло, когда электричество проходит через
  • подключить = присоединиться
  • преобразовать = изменить
  • медь = мягкий красно-коричневый металл, который легко пропускает электричество и тепло
  • шнур = кабель
  • ток = поток электричества через кусок металла
  • ток = поток электричества через кусок металла
  • уменьшить = уменьшить
  • устройство = станок или инструмент, который делает что-то особенное
  • распределительные линии = провода или кабели, по которым передается электричество
  • перетащить = тянуть
  • равно = то же, что
  • поток = переместить
  • трение = когда вы трете что-то о что-то другое, оно становится горячим
  • Предохранитель = короткий кусок провода внутри машины, который отключает электричество при слишком большой мощности
  • сердечная недостаточность = когда ваше сердце перестает биться
  • высокое напряжение = высокая электрическая сила
  • на месте = где они
  • увеличить = стать больше
  • травма = если вы поранились
  • оставить = остаться, остаться
  • лампочка = стеклянный предмет внутри лампы.Дает свет
  • молния = мощная вспышка света в небе во время грозы
  • жидкость = жидкость, водянистый объект
  • измерено = единица чего-то
  • происходит = происходит
  • противень = круглый металлический контейнер, который вы используете для готовки
  • частица = очень маленькая часть атома
  • пройти через = пройти через
  • паста = липкое вещество, похожее на клей
  • вилка = для подключения электрического объекта к электросети дома
  • линия электропередачи = большой провод, по которому электричество проходит над или под землей
  • сопротивление = материал, препятствующий прохождению электричества
  • повернуть = обойти
  • безопасность = безопасность, защита
  • средство безопасности = элементы в машинах или электрических объектах, которые защищают вас от травм
  • ученый = человек, имеющий научную подготовку
  • розетка = место в стене, где вы можете подключить электрический объект к основной электросети
  • источник = место, где вы что-то получаете от
  • spin = чтобы что-то быстро развернуть
  • пар = белый газ, который выделяется при нагревании воды
  • паровой двигатель = двигатель или мотор, работающий от пара
  • сталь = прочный металл, который можно формовать
  • переключатель = объект, который запускает или останавливает поток электричества при нажатии на него
  • ткань = материал, из которого формируются клетки животных или растений
  • преобразование = изменение
  • трансформатор = машина, которая переключает электричество с одного напряжения на другое
  • турбина = двигатель, который вращает специальное колесо вокруг
  • напряжение = электрическая сила, измеряемая в вольтах
  • провод = очень тонкий кусок металла, через который может проходить электричество
  • проводка = сеть проводов в доме или доме

.

В чем разница между последовательными и параллельными схемами | ОРЕЛ

О нет! Почему не горят рождественские огни? О, вы думали, что было бы забавно вытащить одну из лампочек, а теперь все пошло прахом! Если вы одна из тех несчастных душ, которым удалось затемнить всю свою световую установку, не расстраивайтесь, вы не одиноки. Каждый год миллионы огней по всему миру гаснут, чтобы получить один важный урок — научить вас различать между последовательными и параллельными цепями!

Во-первых, основы

Прежде чем мы углубимся в разницу между последовательными и параллельными цепями, давайте рассмотрим некоторые основные термины, которые мы будем обсуждать.

  • Текущий. У электричества есть работа, и когда электроны движутся по цепи, действует ток.
  • Схема. Если это замкнутый непрерывный путь, то по нему будет течь электричество. На этом пути электричество может творить массу удивительных вещей, например, приводить в действие ваш смартфон или отправлять людей в космос!
  • Сопротивление. Это то, с чем сталкивается электричество, когда оно течет по физическому материалу, будь то медный провод или простой старый резистор.Сопротивление ограничивает прохождение электрического тока.

Ниже вы найдете изображение простой схемы, которая включает в себя аккумулятор, выключатель и лампочку.

simple-circuit-light-bulb

Самая простая из схем питания лампочки с аккумулятором.

Сезон серии

Давайте вернемся к нашим рождественским огням, чтобы понять, как именно работает схема, соединенная последовательно. Допустим, у вас есть цепочка огней, соединенных одна за другой. Если вы посмотрите на схему, это будет выглядеть примерно так:

christmas-lights-in-series

Ваши рождественские огни последовательно, обратите внимание, что все огни подключены друг за другом.(Источник изображения)

Что будет делать ток, когда мы подключаем наш светильник к розетке? Давайте проследим за потоком:

  • Включение. Когда мы включаем рождественские гирлянды в розетку, в розетке начинает течь ток.
  • Плывёт. Затем он движется по жиле медной проволоки и сквозь наш рождественский свет, заставляя их ярко светиться.
  • Возвращаемся домой. Когда ток достигает конца нашей светящейся нити, он направляется к земле, чтобы немного отдохнуть, и цикл продолжается.

Неважно, какие компоненты вы размещаете в последовательной цепи, вы можете комбинировать конденсаторы, резисторы, светодиоды и несколько рождественских гирлянд вместе, и ток по-прежнему будет течь одинаково от одной части к другой.

Вот здесь, как правило, гаснут рождественские огни. Что произойдет, если вы выдернете одну из этих лампочек в своей цепочке огней? Если ваши фары похожи на наши, то все они выключены! Почему это? Подумайте об этом: если ток течет от света к свету, и вы нарушаете эту связь, вы перекрываете путь, по которому пытается течь электричество.Это называется обрывом цепи .

Ток и сопротивление в серии

Существует фундаментальный закон Вселенной, который следует помнить о том, как ток и сопротивление работают в последовательной цепи:

Чем больше работы (сопротивления) выполняет последовательная цепь, тем сильнее уменьшается ее ток.

Имеет смысл, правда? По мере того, как вы добавляете в цепь большее сопротивление, например, рождественские гирлянды или даже резистор, тем больше работы требуется для вашей цепи.Допустим, вы взяли схему, которую мы представили в начале этого блога, в которой была одна лампочка. Итак, что произойдет, если вы добавите еще один источник света в эту схему? Обе лампочки будут сиять так же ярко? Нет. Когда вы подключаете вторую лампочку, обе лампы станут одинаково тусклыми, потому что вы добавили больше сопротивления в свою цепь, что уменьшает ток.

simple-circuit-two-light-bulbs

Добавление еще одной лампочки последовательно уменьшает ток , потому что у нашей батареи теперь больше работы!

Но как узнать, какое сопротивление у вас в последовательной цепи? Вы просто складываете все различные значения сопротивления вместе.Например, в схеме ниже у нас есть два резистора, каждый по 10 кОм. Чтобы получить общее сопротивление в этой цепи, просто сложите все числа вместе. Это 10 кОм + 10 кОм, что составляет 20 кОм полного сопротивления.

series-circuit

Сложить наши резисторы в последовательную цепь легко, просто сложите каждый из них.

И какой у вас будет ток в этой цепи на основе такого сопротивления? Вот как в этом разобраться. ohms-triangle

  • Используя наш проверенный треугольник закона Ома, мы получаем уравнение, которое нам нужно использовать: I = V / R или ток = напряжение, деленное на сопротивление.
  • Подставляя известные нам числа, получаем I = 10V / 20k. Через нашу цепь проходит 0,5 миллиампер (мА)!
  • А что, если вынуть один из резисторов? Теперь наше уравнение I = 10 В / 10 кОм, и мы увеличили наш ток до 1 миллиампер (мА) за счет уменьшения сопротивления.

Параллельная работа

Итак, разве не было бы здорово, если бы вы вытащили одну из лампочек в своей нити рождественских гирлянд, а остальные остались включенными? Если бы все ваши рождественские огни были соединены параллельно, то они вели бы себя именно так!

В параллельной цепи представьте, что все ваши световые нити соединены вместе.Но вместо того, чтобы каждую лампочку подключать одну за другой, все они подключаются отдельно в своих цепях, как на изображении ниже. Как видите, каждая лампочка имеет свою собственную мини-схему, отдельную от другой, но все они работают вместе как часть более крупной схемы.

christmas-lights-parallel

Ваши рождественские огни теперь параллельны, обратите внимание, как каждый свет имеет свою собственную цепь. (Источник изображения)

Но как протекает ток в такой цепи? Он не следует просто по одному пути; он следует за всеми сразу! Вот почему это круто. Представьте, что вы выдергиваете одну из лампочек в такой схеме.Вместо того, чтобы останавливать всю работу рождественского светильника, остальная часть цепи будет продолжать течь, потому что каждый свет не зависит от источника света до или после него в качестве источника электричества.

Параллельный ток и сопротивление

Когда цепь подключена параллельно, ток и сопротивление начинают делать некоторые странные вещи, которых вы, возможно, и не ожидали, вот что вам нужно запомнить:

В параллельных цепях, когда вы увеличиваете сопротивление, вы также увеличиваете в параллельных цепях, но в результате ваше сопротивление уменьшается вдвое.

Подождите, что? Звучит безумно! Но подумайте об этом в отношении рождественских огней. По мере того, как вы добавляете больше разноцветных огней в свою схему, вам нужно потреблять больше тока для питания всех этих огней, верно? И поэтому начинает происходить волшебство: чем больше источников света вы добавляете, тем выше поднимается ваш ток, но этот увеличенный ток оказывает противоположное влияние на ваше сопротивление.

Это может быть немного сложно для понимания, поэтому давайте рассмотрим простой пример.Проверьте схему ниже:

parallel-circuit

Здесь у нас есть параллельная схема с двумя резисторами 10 кОм и батареей 10 В.

Здесь у нас есть батарейный источник 10 В и два резистора 10 кОм, которые подключены параллельно. Теперь, поскольку каждый резистор имеет свою собственную схему, нам нужно выяснить, какой ток каждый будет использовать:

  • Возвращаясь к нашему треугольнику закона Ома, мы знаем, что уравнение, которое нам нужно использовать, это I = V / R, или ток равен напряжению, деленному на сопротивление.
  • И подключив наши числа, мы получаем I = 10 В / 10 кОм, что составляет 1 мА.Но это только одна из двух схем резисторов; Теперь нам нужно удвоить ток, чтобы получить общее значение для всей цепи, которое составляет 2 мА.
  • Теперь, что происходит с нашим сопротивлением в два ампера? Мы можем использовать закон Ома, чтобы выяснить это с R = V / I, что составляет R = 10 В / 2 мА = 5 кОм. Поскольку мы удвоили наш ток, наши оригинальные резисторы 10 кОм теперь дают только половину сопротивления!

Да, все это довольно безумно, не так ли? Это просто один из тех законов Вселенной.

Как на самом деле работают рождественские огни

Так как же твои рождественские огни действительно работают? Вот подсказка — они не на 100% последовательны или не на 100% параллельны, они оба! Эти умные инженерные эльфы решили, что самый эффективный способ заставить ваши рождественские огни работать — это соединить несколько серий огней параллельно. Посмотрите на изображение ниже, чтобы понять, что мы имеем в виду:

christmas-lights-series-parallel

Многие из сегодняшних рождественских гирлянд соединены последовательно / параллельно.(Источник изображения)

Вот почему этот последовательный / параллельный гибрид хорош — если вы выдернете один свет, выключится только одна часть ваших фонарей, а не все. Это потому, что вы затронули только одну из последовательных цепей в вашей более крупной параллельной цепи. Но почему инженерные эльфы просто не зажгли все огни параллельно? Для этого потребуется тонна проводов, и Санта должен следить за своими производственными затратами, как и мы!

Но подождите, вы можете вспомнить тот год, когда у вас перегорела лампа, но остальные лампы продолжали работать, что там произошло? Вы можете поблагодарить этот небольшой фокус на так называемом шунте .Это маленькое устройство позволяет току продолжать движение по цепи даже после того, как лампа перегорела. Как так? Давайте подробнее рассмотрим одну из ваших рождественских гирлянд ниже:

christmas-lights-shunt

Шунтирующий провод поддерживает движение электричества даже после того, как лампочка перегорела. (Источник изображения)

Видите этот провод, который намотан на нижнюю часть фонаря? Это шунт, и на нем есть покрытие, которое предотвращает прохождение электричества через него, пока свет работает правильно.Но когда верхний провод перегорает, повышение температуры приводит к плавлению покрытия шунтирующего провода, позволяя электричеству продолжать проходить от одного вывода к другому, и ваши рождественские огни продолжают работать!

Дар дарения

Вот тебе подарок на год! Теперь у вас есть новые знания о разнице между цепями, соединенными последовательно и параллельно, и о том, как они работают вместе, чтобы ваши рождественские огни сияли ярко.

Цепи, соединенные последовательно, проще всего понять, поскольку ток течет в одном непрерывном плавном направлении.И чем больше работы у вас будет выполнять последовательная цепь, тем больше будет уменьшаться ваш ток. Параллельные схемы немного сложнее, они позволяют подключать несколько схем, работая по отдельности как часть более крупной схемы. Из-за этого интересного соединения, когда вы увеличиваете сопротивление в параллельной цепи, вы также увеличиваете ток!

Если вы все еще не можете осмыслить все это, то вот отличное видео от Bozeman Science, которое упрощает понимание:

И если вы все еще заблудились, то, возможно, вы достигли своего лимита на гоголь-моголь.Готовы разработать собственные схемы сегодня? Попробуйте Autodesk EAGLE бесплатно!

.