Силы Ампера и Лоренца 10 класс онлайн-подготовка на Ростелеком Лицей

Силы Ампера и Лоренца

Магнитное поле действует не только на магниты, но и на движущиеся заряды. Здесь может быть два случая:

  1. Действие на движение отдельных зарядов в свободном пространстве.
  2. Действие на движение зарядов в проводнике.

1. Действие магнитного поля на отдельный заряд

Магнитное поле не действует на неподвижные заряды – только на движущиеся. Магнитное поле действует действует на заряды не прямолинейно, а всегда вбок.

Рассмотрим заряд, движущийся с некоторой скоростью. Если магнитное поле направленно вдоль этой скорости, то никакая сила со стороны магнитного поля не действует.

Сила появляется, если магнитное поле направленно перпендикулярно скорости частицы. Эта сила перпендикулярна и вектору индукции магнитного поля B ⃗, и скорости.

Сила, действующая на отдельный заряд со стороны магнитного поля:

Когда магнитное поле перпендикулярно скорости, сила тем больше, чем сильнее магнитное поле, больше заряд и больше его скорость:

F=qυB

Если магнитное поле направленно под углом, то разложим магнитное поле на перпендикулярную и продольную составляющие. И вспомним, что продольная составляющая не действует на частицу; действует только перпендикулярная составляющая. Т.е. в выражении для силы надо вместо B написать B. Если угол между магнитным полем и скоростью alpha, то можно это выражение переписать в виде:

FL=qυBsinα

Эта сила называется силой Лоренца.

Направление этой силы можно определить с помощью правила левой руки:

1. Приложить левую руку так, чтобы скорость была направленна вдоль четырех пальцев. 

2. Повернуть руку так, чтобы магнитное поле входило в ладонь.

 3. Оттопыренный под прямым углом большой палец укажет направление силы.

 

Это работает для положительного заряда. Если заряд отрицательный, то направление силы будет противоположным.

2. Действие магнитного поля на проводник с током

Предположим, что магнитное поле перпендикулярно проводнику. Ток – это движение заряженных частиц, поэтому их скорости в среднем направленны вдоль проводника.

И на каждую из них действует магнитное поле. Поэтому на проводник будет действовать некоторая суммарная сила, называемая силой Ампера.

В общем случае выражение для силы:

FA = IBlsinα

По сути, сила Ампера – это макроскопическое проявление силы Лоренца. Поэтому полезно сравнить размерности выражений для этих сил. Если все записано правильно, они должны совпадать. Действительно, для обоих выражений мы получаем Кл⋅м/c⋅Тл.

 

Направление силы Ампера также определяется правилом левой руки. Четыре пальца направляются на этот раз по току, магнитное поле входит в ладонь, большой палец указывает направление силы.

В таблице с формулами описывающими создание поля зарядами и действие поля на заряды добавились две формулы.

Задача

Рейка с сопротивлением R, массы m и длины l может без трения скользить по двум направляющим, оставаясь при этом всегда перпендикулярным им. К направляющим подключен источник, создающий напряжение U. Система помещена в однородное магнитное поле с индукцией B, перпендикулярное плоскости рисунка. Рейку отпускают без начальной скорости. До какой скорости она разгонится, пройдя расстояние L? Сопротивлением направляющих пренебречь.

Решение

Перед нами система, которая может ускорять металлические объекты

Вспомним урок «закон сохранения энергии»

Такая система называется рельсотрон. В мирных целях, она может двигать транспорт, разгонять объекты до огромных скоростей и даже имитировать падение космических микрометеоритов.

Направление силы действующей на заряд. Сила лоренца, определение, формула, физический смысл. Сила Лоренца на проводник с током

«Физика — 11 класс»

Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?

1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X.

Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.

Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α ,
а сила тока в проводнике равна I = qnvS
где
q — заряд частиц
n — концентрация частиц (т.е. число зарядов в единице объема)

v — скорость движения частиц
S — поперечное сечение проводника.

Тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца , равная:

где α — угол между вектором скорости и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам и .

2.
Направление силы Лоренца

Направление силы Лоренца определяется с помощью того же правила левой руки , что и направление силы Ампера:

Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца F л

3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна: = эл + л где сила, с которой электрическое поле действует на заряд q, равна F эл = q.

4.
Cила Лоренца не совершает работы , т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.

5.
Движение заряженной частицы в однородном магнитном поле

Есть однородное магнитное поле , направленное перпендикулярно к начальной скорости частицы .

Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что

В однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r .

Согласно второму закону Ньютона

Тогда радиус окружности по которой движется частица, равен:

Время, за которое частица делает полный оборот (период обращения), равно:

6.
Использование действия магнитного поля на движущийся заряд.

Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

Сила Лоренца используется в циклотроне — ускорителе заряженных частиц для получения частиц с большими энергиями.

На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

Определение

Сила , действующая на движущуюся заряженную частицу в магнитном поле, равная:

называется силой Лоренца (магнитной силой) .

Исходя из определения (1) модуль рассматриваемой силы:

где – вектор скорости частицы, q – заряд частицы, – вектор магнитной индукции поля в точке нахождения заряда, – угол между векторами и . Из выражения (2) следует, что если заряд движется параллельно силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:

Направление силы Лоренца

Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости и вектору (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом, тонаправление силы Лоренца противоположно результату векторного произведения (рис.1(b)).

вектор направлен перпендикулярно плоскости рисунков на нас.

Следствия свойств силы Лоренца

Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю.

Получается, что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.

Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции. При этом радиус окружности равен:

где m – масса частицы,|q|- модуль заряда частицы, – релятивистский множитель Лоренца, c – скорость света в вакууме.

Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).

Формула силы Лоренца при наличии магнитного и электрического полей

Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и электрическое), то сила, которая действует на нее, равна:

где – вектор напряженности электрического поля в точке, в которой находится заряд. Выражение (4) было эмпирически получено Лоренцем. Сила , которая входит в формулу (4) так же называется силой Лоренца (лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую и магнитную относительно, так как связано с выбором инерциальной системы отсчета. Так, если система отсчета будет двигаться с такой же скоростью , как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.

Единицы измерения силы Лоренца

Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H

В СГС: [F]=дин

Примеры решения задач

Пример

Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?

Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на него действует сила Лоренца вида:

где q=q e – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что , следовательно, выражение для модуля силы Лоренца примет вид:

Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:

Приравняем правые части выражений (1. 2) и (1.3), имеем:

Из выражения (1.3) получим скорость:

Период обращения электрона по окружности можно найти как:

Зная период, можно найти угловую скорость как:

Ответ.

Пример

Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле напряженностью E и магнитное поле с индукцией B. Векторы и совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если ?

Сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q — заряд частицы;

V — скорость заряда;

a — угол между вектором скорости заряда и вектором магнитной индукции .

Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца:

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т. е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движетсяравномерно и прямолинейно.

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной:

и создает центростремительное ускорение равное:

В этом случае частица движется по окружности.

Согласно второму закону Ньютона : сила Лоренца равнв произведению массы частицы на центростремительное ускорение:

тогда радиус окружности:

а период обращения заряда в магнитном поле:

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Если внести проводник с током в магнитное поле (фиг.96,а), то мы увидим, что в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление магнитных линий и они, стремясь сократиться, будут выталкивать проводник вниз (фиг. 96, б).

Направление силы, действующей на проводник с током в магнитном поле, можно определить по «правилу левой руки». Если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы. Сила Ампера , действующая на элемент длины проводника, зависит: от величины магнитной индукции В, величины тока в проводнике I, от элемента длины проводника и от синуса угла а между направлением элемента длины проводника и направлением магнитного поля.

Эта зависимость может быть выражена формулой:

Для прямолинейного проводника конечной длины, помещенного перпендикулярно к направлению равномерного магнитного поля, сила, действующая на проводник, будет равна:

Из последней формулы определим размерность магнитной индукции.

Так как размерность силы:

т. е. размерность индукции такая же, какая была получена нами из закона Био и Савара.

Тесла (единица магнитной индукции)

Тесла, единица магнитной индукции Международной системы единиц, равная магнитной индукции, при которой магнитный поток сквозь поперечное сечение площадью 1 м 2 равен 1 веберу. Названа по имени Н. Тесла . Обозначения: русское тл, международное Т. 1 тл = 104 гс (гаусс ).

Магни?тный моме?нт , магни?тный дипо?льный моме?нт — основная величина, характеризующая магнитные свойства вещества. Магнитный момент измеряется в А⋅м 2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10 -3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора . В случае плоского контура с электрическим током магнитный момент вычисляется как

где — сила тока в контуре, — площадь контура, — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из:

где — радиус-вектор, проведенный из начала координат до элемента длины контура

В общем случае произвольного распределения токов в среде:

где — плотность тока в элементе объёма .

Итак, на контур с током в магнитном поле действует вращающий момент. Контур ориентируется в данной точке поля только одним способом. Примем положительное направление нормали за направление магнитного поля в данной точке. Вращающий момент прямо пропорционален величине тока I , площади контура S и синусу угла между направлением магнитного поля и нормали .

здесь М вращающий момент , или момент силы , — магнитный момент контура (аналогично — электрический момент диполя).

В неоднородном поле () формула справедлива, если размер контура достаточно мал (тогда в пределах контура поле можно считать приближенно однородным). Следовательно, контур с током по-прежнему стремится развернуться так, чтобы его магнитный момент был направлен вдоль линий вектора .

Но, кроме того, на контур действует результирующая сила (в случае однородного поля и . Эта сила действует на контур с током или на постоянный магнит с моментом и втягивает их в область более сильного магнитного поля.
Работа по перемещению контура с током в магнитном поле.

Нетрудно доказать, что работа по перемещению контура с током в магнитном поле равна , где и — магнитные потоки через площадь контура в конечном и начальном положениях. Эта формула справедлива, если ток в контуре постоянен , т.е. при перемещении контура не учитывается явление электромагнитной индукции.

Формула справедлива и для больших контуров в сильно неоднородном магнитном поле (при условии I= const).

Наконец, если контур с током не смещать, а изменять магнитное поле, т.е. изменять магнитный поток через поверхность, охватываемую контуром, от значения до то для этого надо совершить ту же работу . Эта работа называется работой изменения магнитного потока, связанного с контуром. Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, которая равна

где B n =Вcosα — проекция вектора В на направление нормали к площадке dS (α — угол между векторами n и В ), dS = dSn — вектор, у которого модуль равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosα (задается выбором положительного направления нормали n ). Поток вектора В обычно связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру нами задавалось: оно связывается с током правилом правого винта. Значит, магнитный поток, который создается контуром, через поверхность, ограниченную им самим, всегда положителен.

Поток вектора магнитной индукции Ф B через произвольную заданную поверхность S равен

Для однородного поля и плоской поверхности, которая расположена перпендикулярно вектору В , B n =B=const и

Из этой формулы задается единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, который проходит сквозь плоскую поверхность площадью 1 м 2 , который расположен перпендикулярно однородному магнитному полю и индукция которого равна 1 Тл (1 Вб=1 Тл.м 2).

Теорема Гаусса для поля В : поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:

Эта теорема является отражением факта, что магнитные заряды отсутствуют , вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Следовательно, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные формулы.

В качестве примера найдем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью μ, равна

Магнитный поток сквозь один виток соленоида площадью S равен

а полный магнитный поток, который сцеплен со всеми витками соленоида и называемый потокосцеплением ,

  • Определение силы Лоренца

    Определение силы Лоренца

    Сила Лоренца представляет собой комбинацию магнитной и электрической силы на точечном заряде, который вызван электромагнитными полями. Или другими словами, сила Лоренца – это сила, действующая на всякую заряженную частицу, которая падает в магнитном поле с определенной скоростью. Ее величина зависит от величины магнитной индукции В , электрического заряда частицы q и скорости, с которой частица падает в поле – V . О том какая формула расчета силы Лоренца, а также ее практическое значение в физике читайте далее.

    Немного истории

    Первые попытки описать электромагнитную силу были сделаны еще в XVIII веке. Ученые Генри Кавендиш и Тобиас Майер высказали предположение, что сила на магнитных полюсах и электрически заряженных объектах подчиняется закону обратных квадратов. Однако экспериментальное доказательство этого факта не было полным и убедительным. Только в 1784 году Шарль Августин де Кулон при помощи своего торсионного баланса смог окончательно доказать это предположение.

    В 1820 году физиком Эрстедом был открыт факт, что на магнитную стрелку компаса действует ток вольта, а Андре-Мари Ампер в этом же году смог разработать формулу угловой зависимости между двумя токовыми элементами. По сути, эти открытия стали фундаментом современной концепции электрических и магнитных полей. Сама же концепция получила свое дальнейшее развитие в теориях Майкла Фарадея, особенно в его представлении о силовых линиях. Лорд Кельвин и Джеймс Максвелл дополнили теории Фарадея подробным математическим описанием. В частности Максвеллом было создано так званное, «уравнение поля Максвелла» – представляющее собой систему дифференциальных и интегральных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

    Джей Джей Томпсон был первым физиком, кто попытался вывести из уравнения поля Максвелла электромагнитную силу, которые действует на движущийся заряженный объект. В 1881 году он опубликовал свою формулу F = q/2 v x B. Но из-за некоторых просчетов и неполного описания тока смещения она оказалась не совсем правильной.

    И вот, наконец, в 1895 году голландский ученый Хендрик Лоренц вывел правильную формулу, которая используется и поныне, а также носит его имя, как и та сила, что действует на летящую частицу в магнитном поле, отныне называется «силой Лоренца».

    Формула силы Лоренца

    Формула для расчета силы Лоренца выглядит следующим образом:

    Где q – электрический заряд частицы, V – ее скорость, а B – величина магнитной индукции магнитного поля.

    При этом поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направлению вектора B. Это можно проиллюстрировать на диаграмме:

    Правило левой руки позволяет физикам определять направление и возврат вектора магнитной (электродинамической) энергии. Представьте себе, что наша левая рука расположена таким образом, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (так, что они проникают внутрь руки), а все пальцы за исключением большого указывают на направление протекания положительного тока, отклоненный большой палец указывает на направление электродинамической силы, действующий на положительный заряд, помещенный в это поле.

    Вот так это будет выглядеть схематически.

    Есть также и второй способ определения направления электромагнитной силы. Он заключается в расположении большого, указательного и среднего пальцев под прямым углом. В этом случае указательный палец будет показывать направление линий магнитного поля, средний – направление движение тока и большой – направление электродинамической силы.

    Применение силы Лоренца

    Сила Лоренца и ее расчеты имеет свое практическое применение при создании как специальных научных приборов – масс-спектрометров, служащих для идентификации атомов и молекул, так и создании многих других устройств самого разнообразного применения. Среди устройств есть и электродвигатели, и громкоговорители, и рельсовые пистолеты.

  • ОПРЕДЕЛЕНИЕ

    Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

    Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

    Здесь – сила Лоренца, – заряд частицы, – модуль вектора индукции магнитного поля, – скорость частицы, – угол между вектором индукции магнитного поля и направления движения.

    Единица измерения силы – Н (ньютон) .

    Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны ().

    Направление силы Лоренца определяют по правилу левой руки:

    Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

    В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

    Примеры решения задач по теме «Сила Лоренца»

    ПРИМЕР 1

    ПРИМЕР 2

    ЗаданиеПод действием силы Лоренца частица массы m с зарядом q движется по окружности. Магнитное поле однородно, его напряжённость равна B. Найти центростремительное ускорение частицы.

    РешениеВспомним формулу силы Лоренца:

    Кроме того, по 2 закону Ньютона:

    В данном случае сила Лоренца направлена к центру окружности и ускорение, ею создаваемое, направлено туда же, то есть это и есть центростремительное ускорение. Значит:

    Сила, действующая на движущийся заряд в магнитном поле – Колледж Дугласа, физика 1207

    Глава 6 Магнетизм

    Резюме

    • Описать влияние магнитных полей на движущиеся заряды.
    • Используйте правило правой руки 1, чтобы определить скорость заряда, направление магнитного поля и направление магнитной силы, действующей на движущийся заряд.
    • Рассчитайте магнитную силу, действующую на движущийся заряд.

    Каков механизм, посредством которого один магнит воздействует на другой? Ответ связан с тем фактом, что весь магнетизм вызван током, потоком заряда. Магнитные поля воздействуют на движущиеся заряды , и поэтому они воздействуют на другие магниты, все из которых имеют движущиеся заряды.

    Магнитная сила, действующая на движущийся заряд, является одной из самых фундаментальных известных. Магнитная сила так же важна, как электростатическая или кулоновская сила. И все же магнитная сила более сложна как по количеству воздействующих на нее факторов, так и по своему направлению, чем относительно простая кулоновская сила. Величина магнитной силы   F на заряде q , движущемся со скоростью v в магнитном поле напряженностью B , равно

    F = qvB sinθ

    , где θ — угол между направлениями v и B . Эту силу часто называют силой Лоренца . Фактически именно так мы определяем напряженность магнитного поля B — через силу, действующую на заряженную частицу, движущуюся в магнитном поле. Единица СИ для напряженности магнитного поля B называется tesla (T) в честь эксцентричного, но гениального изобретателя Николы Теслы (1856–1943). Чтобы определить, как тесла относится к другим единицам СИ, мы решаем F = q v B sinθ для B .

    Поскольку s в безразмерно, тесла равен

    (обратите внимание, что C/s = A).

    Иногда используется другая меньшая единица, называемая гаусс (G), где 1 G = 10 -4 . Самые сильные постоянные магниты имеют поля около 2 Тл; сверхпроводящие электромагниты могут достигать 10 Тл и более. Магнитное поле Земли на ее поверхности всего около 5 x 10 -5 T или 0,5 G.

    Направление магнитной силы F перпендикулярно плоскости, образованной v и B , как определено правилом правой руки 1 (или RHR-1), которое показано на рисунке 1. , RHR-1 утверждает, что для определения направления магнитной силы на положительный движущийся заряд вы указываете большим пальцем правой руки в направлении  v , пальцами в направлении B , а перпендикуляр к ладони указывает направление силы F . Один из способов запомнить это состоит в том, что существует одна скорость, и поэтому ее представляет большой палец. Есть много линий поля, поэтому пальцы представляют их. Сила направлена ​​в том направлении, куда вы бы толкнули ладонью. Сила, действующая на отрицательный заряд, направлена ​​прямо противоположно силе на положительном заряде.

    Рисунок 1. Магнитные поля воздействуют на движущиеся заряды. Эта сила является одной из самых основных известных. Направление магнитной силы на движущийся заряд перпендикулярно плоскости, образованной v и B и следует правилу правой руки-1 (RHR-1), как показано. Величина силы пропорциональна q , v , B и синусу угла между v и B .

    Соединения: заряды и магниты

    На статические заряды не действует магнитная сила. Однако на движущиеся заряды действует магнитная сила. Когда заряды неподвижны, их электрические поля не действуют на магниты. Но когда заряды движутся, они создают магнитные поля, которые воздействуют на другие магниты. При относительном движении возникает связь между электрическим и магнитным полями — одно влияет на другое.

    Пример 1. Расчет магнитной силы: магнитное поле Земли на заряженном стеклянном стержне

    За исключением компасов, вы редко видите или лично испытываете силы, связанные с небольшим магнитным полем Земли. Чтобы проиллюстрировать это, предположим, что в физической лаборатории вы натираете стеклянную палочку шелком, помещая на нее положительный заряд в 20 нКл. Вычислите силу, действующую на стержень со стороны магнитного поля Земли, если бросить его с горизонтальной скоростью 10 м/с строго на запад в месте, где поле Земли направлено строго на север параллельно земле. (Направление силы определяется правилом правой руки 1, как показано на рисунке 2.)

    Рис. 2. Положительно заряженный объект, движущийся строго на запад в области, где магнитное поле Земли направлено строго на север, подвергается воздействию силы, которая направлена ​​прямо вниз, как показано. Отрицательный заряд, движущийся в том же направлении, почувствовал бы силу прямо вверх.

    Стратегия

    Нам известны заряд, его скорость, напряженность и направление магнитного поля. Таким образом, мы можем использовать уравнение F = qvB sinθ , чтобы найти силу.

    Раствор

    Магнитная сила равна

    F = qvB sinθ

    Мы видим, что sin θ = 1 , так как угол между скоростью и направлением поля составляет 90,0 градусов. Ввод других заданных величин дает

    Обсуждение

    Этой силой можно пренебречь на любом макроскопическом объекте, что согласуется с опытом. (Оно вычисляется только с точностью до одной цифры, поскольку поле Земли меняется в зависимости от местоположения и выражается только одной цифрой.) Однако магнитное поле Земли оказывает очень важное влияние, особенно на субмикроскопические частицы. Некоторые из них рассматриваются в главе 22.5 «Сила движущегося заряда в магнитном поле: примеры и приложения».

    Правило правой руки 1 (RHR-1)
    правило для определения направления магнитной силы на положительный движущийся заряд: когда большой палец правой руки указывает направление скорости заряда v , а остальные пальцы указывают направление магнитного поля B , тогда сила на заряде перпендикулярна и направлена ​​от ладони; сила на отрицательный заряд перпендикулярна и направлена ​​на ладонь
    сила Лоренца
    сила, действующая на заряд, движущийся в магнитном поле
    тесла
    Тл — единица напряженности магнитного поля в системе СИ;
    магнитная сила
    сила, действующая на заряд при его движении через магнитное поле; сила Лоренца
    гаусс
    Гс — единица напряженности магнитного поля; 1 G = 10 -4 T
    Сила

    на движущийся заряд в магнитном поле — Колледж физики: OpenStax

    Глава 22 Магнетизм

    Резюме

    • Опишите влияние магнитных полей на движущиеся заряды.
    • Используйте правило правой руки 1, чтобы определить скорость заряда, направление магнитного поля и направление магнитной силы, действующей на движущийся заряд.
    • Рассчитайте магнитную силу, действующую на движущийся заряд.

    Каков механизм, посредством которого один магнит воздействует на другой? Ответ связан с тем фактом, что весь магнетизм вызван током, потоком заряда. Магнитные поля воздействуют на движущиеся заряды , и поэтому они воздействуют на другие магниты, все из которых имеют движущиеся заряды.

    Магнитная сила, действующая на движущийся заряд, является одной из самых фундаментальных известных. Магнитная сила так же важна, как электростатическая или кулоновская сила. И все же магнитная сила более сложна как по количеству воздействующих на нее факторов, так и по своему направлению, чем относительно простая кулоновская сила. Величина магнитной силы  [латекс]\boldsymbol{F}[/латекс] на заряд [латекс]\boldsymbol{q}[/латекс], движущийся со скоростью [латекс]\boldsymbol{v}[/латекс ] в магнитном поле напряженностью [латекс]\boldsymbol{B}[/латекс] равно

    [латекс]\boldsymbol{F = qvB \;\textbf{sin} \theta},[/latex]

    , где [latex]\boldsymbol{\theta}[/latex] — угол между направлениями [latex]\textbf{v}[/latex] и [latex]\textbf{B}[/latex]. Эту силу часто называют силой Лоренца . Фактически именно так мы определяем напряженность магнитного поля [latex]\boldsymbol{B}[/latex] — через силу, действующую на заряженную частицу, движущуюся в магнитном поле. Единица СИ для напряженности магнитного поля [латекс]\boldsymbol{B}[/латекс] называется тесла (T) в честь эксцентричного, но гениального изобретателя Николы Теслы (1856–1943). Чтобы определить, как тесла относится к другим единицам СИ, мы решаем [латекс]\boldsymbol{F = qvB \;\textbf{sin} \theta}[/latex] для [латекс]\boldsymbol{B}[/латекс].

    [латекс]\boldsymbol{B =}[/латекс] [латекс]\boldsymbol{\frac{F}{qv \;\textbf{sin} \;\theta}}[/latex]

    Поскольку [латекс]\boldsymbol{\textbf{sin} \;\theta}[/latex] не имеет единиц измерения, тесла равен

    .

    [латекс]\boldsymbol{1 \;\textbf{T} =}[/latex] [латекс]\boldsymbol{\frac{1 \;\textbf{N}}{\textbf{C} \cdot \;\ textbf{м/с}}}[/латекс] [латекс]\boldsymbol{=}[/латекс] [латекс]\boldsymbol{\frac{1 \;\textbf{N}}{\textbf{A} \cdot \;\textbf{м}}}[/латекс] 9{-5} \;\textbf{T}}[/latex], или 0,5 г.

    Направление магнитной силы [латекс]\textbf{F}[/латекс] перпендикулярно плоскости, образованной [латекс]\текстбф{в}[/латекс] и [латекс]\текстбф{В}[ /латекс], как определено правилом правой руки 1 (или RHR-1), которое показано на рисунке 1. RHR-1 утверждает, что для определения направления магнитной силы на положительно движущемся заряде вы большой палец правой руки в направлении [латекс]\textbf{v}[/латекс], пальцы в направлении [латекс]\текстбф{В}[/латекс], а перпендикуляр к ладони указывает на направление [латекс]\textbf{F}[/латекс]. Один из способов запомнить это состоит в том, что существует одна скорость, и поэтому ее представляет большой палец. Есть много линий поля, поэтому пальцы представляют их. Сила направлена ​​в том направлении, куда вы бы толкнули ладонью. Сила, действующая на отрицательный заряд, направлена ​​прямо противоположно силе на положительном заряде.

    Рисунок 1. Магнитные поля воздействуют на движущиеся заряды. Эта сила является одной из самых основных известных. Направление магнитной силы на движущийся заряд перпендикулярно плоскости, образованной v и B , и следует правилу правой руки-1 (RHR-1), как показано. Величина силы пропорциональна q , v , B и синусу угла между v и B .

    Соединения: заряды и магниты

    На статические заряды не действует магнитная сила. Однако на движущиеся заряды действует магнитная сила. Когда заряды неподвижны, их электрические поля не действуют на магниты. Но когда заряды движутся, они создают магнитные поля, которые воздействуют на другие магниты. При относительном движении возникает связь между электрическим и магнитным полями — одно влияет на другое.

    Пример 1. Расчет магнитной силы: магнитное поле Земли на заряженном стеклянном стержне

    За исключением компасов, вы редко видите или лично испытываете силы, связанные с небольшим магнитным полем Земли. Чтобы проиллюстрировать это, предположим, что в физической лаборатории вы натираете стеклянную палочку шелком, помещая на нее положительный заряд в 20 нКл. Вычислите силу, действующую на стержень со стороны магнитного поля Земли, если бросить его с горизонтальной скоростью 10 м/с строго на запад в месте, где поле Земли направлено строго на север параллельно земле. (Направление силы определяется правилом правой руки 1, как показано на рисунке 2.)

    Рис. 2. Положительно заряженный объект, движущийся строго на запад в области, где магнитное поле Земли направлено строго на север, подвергается воздействию силы, которая направлена ​​прямо вниз, как показано. Отрицательный заряд, движущийся в том же направлении, почувствовал бы силу прямо вверх.

    Стратегия

    Нам известны заряд, его скорость, напряженность и направление магнитного поля. Таким образом, мы можем использовать уравнение [латекс]\boldsymbol{F = qvB \;\textbf{sin} \;\theta}[/latex] для нахождения силы.

    9{-11} \;\textbf{N}} \end{array}.[/latex]

    Обсуждение

    Этой силой можно пренебречь на любом макроскопическом объекте, что согласуется с опытом. (Оно вычисляется только с точностью до одной цифры, поскольку поле Земли меняется в зависимости от местоположения и выражается только одной цифрой.) Однако магнитное поле Земли оказывает очень важное влияние, особенно на субмикроскопические частицы. Некоторые из них рассматриваются в главе 22.5 «Сила движущегося заряда в магнитном поле: примеры и приложения».

    • Магнитные поля воздействуют на движущийся заряд силой q , величина которой равна

      [латекс]\boldsymbol{F = qvB \;\textbf{sin} \;\theta},[/latex]

      , где [latex]\boldsymbol{\theta}[/latex] — угол между направлениями [latex]\textbf{v}[/latex] и [latex]\textbf{B}[/latex].

    • Единицей СИ для напряженности магнитного поля [латекс]\textbf{B}[/латекс] является тесла (Т), которая связана с другими единицами соотношения

      [латекс]\boldsymbol{1 \;\textbf{T} =}[/latex] [латекс]\boldsymbol{\frac{1 \;\textbf{N}}{\textbf{C} \cdot \;\ textbf{м/с}}}[/латекс] [латекс]\boldsymbol{=}[/латекс] [латекс]\boldsymbol{\frac{1 \;\textbf{N}}{\textbf{A} \cdot \;\textbf{м}}}[/латекс]

    • Направление силы, действующей на движущийся заряд, задается правилом правой руки 1 (RHR-1): Направьте большой палец правой руки в направлении [латекс]\boldsymbol{v}[/latex], пальцы в направлении [латекс]\boldsymbol{B}[/латекс], а перпендикуляр к ладони указывает в направлении [латекс]\boldsymbol{F}[/латекс].
    • Сила перпендикулярна плоскости, образованной [латексом]\textbf{v}[/латексом] и [латексом]\текстбф{В}[/латексом]. Поскольку сила равна нулю, если [латекс]\textbf{v}[/латекс] параллелен [латексу]\текстбф{В}[/латексу], заряженные частицы часто следуют за силовыми линиями магнитного поля, а не пересекают их.

    Задачи и упражнения

    1: Каково направление магнитной силы на положительный заряд, который движется, как показано в каждом из шести случаев, показанных на рисунке 3?

    Рисунок 3.

    2: Повторите главу 22.4 Задачи и упражнения 1 для отрицательного заряда.

    3: Каково направление скорости отрицательного заряда, на который действует магнитная сила, показанная в каждом из трех случаев на рисунке 4, если предположить, что он движется перпендикулярно [латексу]\boldsymbol{B}[/latex] ?

    Рисунок 4.

    4: Повторите главу 22. 4 Задачи и упражнения 3 для положительного заряда.

    5: Каково направление магнитного поля, которое создает магнитную силу на положительном заряде, как показано в каждом из трех случаев на рисунке ниже, при условии, что [latex]\textbf{B}[/latex] перпендикулярно [латексу]\textbf{v}[/латексу]?

    Рисунок 5.

    6: Повторите главу 22.4 Задачи и упражнения 5 для отрицательного заряда.

    7: Какая максимальная сила действует на алюминиевый стержень с [латексным]\boldsymbol{0,100- \mu \textbf{C}}[/latex] зарядом, который вы пропускаете между полюсами 1,50-Тл постоянного магнит со скоростью 5,00 м/с? В каком направлении сила?

    8: (a) Самолеты иногда приобретают небольшие статические заряды. Предположим, что сверхзвуковая струя имеет заряд [латекс]\boldsymbol{0,500- \mu \textbf{C}}[/латекс] и летит строго на запад со скоростью 660 м/с над южным магнитным полюсом Земли, где [латекс ]\boldsymbol{8.