2

Корень (кубический, квадратный) в степени: решения, таблицы, примеры

Оглавление:

  • Степень с натуральным показателем
  • Степень с целым показателем
  • Кубический корень
  • Корень -ной степени
  • Сравнение арифметических корней
  • Как избавиться от иррациональности в знаменателе
  • org/ListItem»> Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Степенью называется выражение вида .

Здесь  — основание степени,  — показатель степени.

к оглавлению ▴

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

.

Возвести число в куб — значит умножить его само на себя три раза.

.

Возвести число в натуральную степень  — значит умножить его само на себя раз:

к оглавлению ▴

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

.

Это верно для . Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где  — целое,  — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Определение.

Арифметический квадратный корень из числа  — это такое неотрицательное число, квадрат которого равен .

Согласно определению,

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение    для нас сейчас имеет смысл только при .

Выражение всегда неотрицательно, т.е. . Например, .

Свойства арифметического квадратного корня:

 

Запомним важное правило:

По определению, .

к оглавлению ▴

Кубический корень

Аналогично, кубический корень из  — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

, так как ;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

к оглавлению ▴

Корень -ной степени

Корень -ной степени из числа  — это такое число, при возведении которого в -ную степень получается число .

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени больше 0.

Например,

Выражение по определению равно .

При этом также выполняется условие, что больше 0.

Например,

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются;

— при делении степени на степень показатели вычитаются;

— при возведении степени в степень показатели перемножаются;

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2.

3.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
4. Найдите значение выражения при

Решение:

При получим

Ответ: -0,5.

5. Найдите значение выражения при

Решение:

При a = 12 получим

Мы воспользовались свойствами степеней.

Ответ: 144.

6. Найдите значение выражения при b = — 5.

Решение:

При b = — 5 получим:

Ответ: -125.

7. Расположите в порядке возрастания:

Решение:

Запишем выражения как степени с положительным показателем и сравним.

Так как то

Так как то

Сравним и для этого оценим их разность:

значит

Получим : поэтому

Ответ:

8. Представьте выражение в виде степени:

Решение:

Вынесем за скобку степень с меньшим показателем:

Ответ:

9. Упростите выражение:

Решение:

Приведем основания 6 и 12 к основаниям 2 и 3:

(выполним деление степеней с одинаковыми основаниями)

Ответ: 0,25.

10. Чему равно значение выражения при ?

Решение:

При получим

Ответ: 9.

к оглавлению ▴

Сравнение арифметических корней

11. Какое из чисел больше: или ?

Решение:

Возведем в квадрат оба числа (числа положительные):

Найдем разность полученных результатов:

так как

Значит, первое число больше второго.

Ответ:

к оглавлению ▴

Как избавиться от иррациональности в знаменателе

Если дана дробь вида то нужно умножить числитель и знаменатель дроби на :

Тогда знаменатель станет рациональным.

Если дана дробь вида или то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.

Сопряженные выражения — это выражения, отличающиеся только знаками. Например,

и и — сопряженные выражения.

Пример:

12. Вот несколько примеров — как избавиться от иррациональности в знаменателе:

Пример 1.

Пример 2.

Пример 3.

Пример 4.

Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.

Пример 5.

13. Сравните и

1)

2) Сравним и 14.

то и а значит,

Ответ: меньше.

к оглавлению ▴

Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Покажем несколько примеров.

14. Упростите: выражения:

Пример 5.

т.к.

Пример 6.

Пример 7.

так как

Следующие несколько задач решаются с помощью формулы:

Решение:

Получим уравнение

Ответ:

19. Вычислите значение выражения:

Решение:

Ответ: 1.

20. Вычислите значение выражения:

Решение:

Ответ: 1.

21. Вычислите значение выражения: если

Решение.

Если то следовательно

Ответ: — 1.

22. Вычислите:

Решение:

Ответ: 1.

Рассмотрим уравнение вида где

Это равенство выполняется, только если

Подробно об таких уравнениях — в статье «Показательные уравнения».

При решении уравнений такого вида мы пользуемся монотонностью показательной функции.

23. Решите уравнение:

а)

б)

в)

Решение.

23. Решите уравнение:

Решение:

тогда

Ответ: -1.

24. Решите уравнение:

Решение:

Ответ: 4.

25. Решите уравнение:

Решение:

Значит,

Ответ: -0,2.

Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими статьями.