Окружность, вписанная в правильный треугольник

Определение и формулы окружности, вписанной в правильный треугольник

Окружность, касающаяся всех трех сторон треугольника, называется его вписанной окружностью.

Центр вписанной окружности лежит на пересечении биссектрис углов треугольника.

В любой треугольник можно вписать окружность, причем, только одну.

Если окружность вписана в правильный треугольник (в тот, у которого все стороны равны между собой), то ее радиус вычисляется по формуле

   

где – площадь треугольника, а – его полупериметр; или его можно выразить через сторону следующим образом:

   

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Вписанный и описанный треугольник — материалы для подготовки к ЕГЭ по Математике

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным

вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Вписанные и описанные треугольники

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

,

где — полупериметр,

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Теорема синусов

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Рисунок к задаче 1

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Рисунок к задаче 2

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

Ответ: .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Рисунок к задаче 3

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Правильный (равносторонний) треугольник. Определение, свойства

л

 

Равносторонний  (правильный) треугольник – треугольник, у которого все стороны равны.

Свойства


 

1. Все углы правильного треугольника равны между собой и равны 60˚.

,l2. Связь между радиусом r вписанной окружности правильного треугольника и его стороной a: r=\frac{\sqrt3a}{6}

.

3. Связь между радиусом r описанной окружности около правильного треугольника и его стороной a: R=\frac{\sqrt3a}{3}.

4. Радиусы вписанной r

и описанной R  окружностей связаны следующим образом:  R=2r.

5. Высота h

, биссектриса l и медиана m выражаются через сторону треугольника a следующим образом: h=l=m=\frac{\sqrt3a}{2}
.

6. ПлощадьS правильного треугольника со стороной a вычисляется по формуле: S=\frac{a^2\sqrt3}{4}.

 

Думаю, вам будет полезна  таблица формул для треугольника.

Построение правильных многоугольников — Техническое черчение

Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 —6, 4—3, 4—5 и 7—2, после чего прово­дим стороны 5—6 и 3—2.

Построение вписанного в окружность равностороннего треуголь­ника. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0—1—2 равен 30°, то для нахождения стороны

1—2 достаточно построить по точке 1 и стороне 0—1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1—2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2—3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вер­шины через одну, то получится равносторонний треугольник.

Для построения треугольника (фиг. 61, б) намечаем на диаметре вершину—точку 1 и проводим диаметральную линию 1—4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окруж­ностью в точках 3 и 2. Полученные точки будут двумя другими вер­шинами искомого треугольника.

Построение квадрата, вписанного в окружность. Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пере­секаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные сто­роны квадрата 4—1 и 3—2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1—2 и 4—3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра (фиг. 62, б). Намечаем на концах двух взаимно перпендикулярных диа­метров точки А, В и С и из них радиусом у описываем дуги до вза­имного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные пря­мые, отмеченные на фигуре сплошными линиями. Точки их пересече­ния с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник (фиг. 63), про­изводим следующие построения.

Намечаем на окружности точку 1 и принимаем её за одну из вер­шин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точ­ках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вер­шины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую.

Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB.

Получим точку 1—вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведён­ными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиу­сом, равным диаметру окружности D, описываем дугу до пересечения с про­должением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, прово­дим из полюса F через чётные деления вертикального диаметра лучи, пересече­ние которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем после­довательно между собой. Семиугольник может быть построен путём проведе­ния лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоуголь­ников с любым числом сторон.

Деление окружности на любое число равных частей можно произ­водить также, пользуясь данными табл. 2, в которой приведены коэф­фициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй—коэффициенты.

Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

Треугольник. Формулы и свойства треугольников.

Определение. Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Типы треугольников

По величине углов

  1. Остроугольный треугольник Остроугольный треугольник — все углы треугольника острые.
  2. Тупоугольный треугольник Тупоугольный треугольник — один из углов треугольника тупой (больше 90°).
  3. Прямоугольный треугольник Прямоугольный треугольник — один из углов треугольника прямой (равен 90°).

По числу равных сторон

  1. Остроугольный треугольник Разносторонний треугольник — все три стороны не равны.
  2. равнобедренный треугольник Равнобедренный треугольник — две стороны равны.
  3. правильный треугольник Равносторонним треугольник или правильный треугольник — все три стороны равны.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Вершины и углы треугольника

Сумма углов треугольника равна 180°:

α + β + γ = 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β, тогда a > b

если α = β, тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a2 = b2 + c2 — 2bc·cos α

b2 = a2 + c2 — 2ac·cos β

c2 = a2 + b2 — 2ab·cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 23√2(mb2 + mc2) — ma2

b = 23√2(ma2 + mc2) — mb2

c = 23√2(ma2 + mb2) — mc2


Медианы треугольника

Медианы треугольника

Определение. Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Свойства медиан треугольника:

  1. Медианы треугольника пересекаются в одной точке. (Точка пересечения медиан называется центроидом)

  2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

    AOOD = BOOE = COOF = 21

  3. Медиана треугольника делит треугольник на две равновеликие части

    S∆ABD = S∆ACD

    S∆BEA = S∆BEC

    S∆CBF = S∆CAF

  4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

    S∆AOF = S∆AOE = S∆BOF = S∆BOD = S∆COD = S∆COE

  5. Из векторов, образующих медианы, можно составить треугольник.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 12√2b2+2c2-a2

mb = 12√2a2+2c2-b2

mc = 12√2a2+2b2-c2


Биссектрисы треугольника

Биссектрисы треугольника

Определение. Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

Свойства биссектрис треугольника:

  1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, —

    центре вписанной окружности.

  2. Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

    AEAB = ECBC

  3. Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

    Угол между lc и lc‘ = 90°

  4. Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√bcp(p — a)b + c

lb = 2√acp(p — b)a + c

lc = 2√abp(p — c)a + b

где p = a + b + c2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2bc cos α2b + c

lb = 2ac cos β2a + c

lc = 2ab cos γ2a + b


Высоты треугольника

Высоты треугольника

Определение. Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

В зависимости от типа треугольника высота может содержаться
  • внутри треугольника — для остроугольного треугольника;
  • совпадать с его стороной — для катета прямоугольного треугольника;
  • проходить вне треугольника — для острых углов тупоугольного треугольника.

Свойства высот треугольника

Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.

Если в треугольнике две высоты равны, то треугольник — равнобедренный.

ha:hb:hc = 1a:1b:1c = (bc):(ac):(ab)

Формулы высот треугольника

Формулы высот треугольника через сторону и угол:

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Формулы высот треугольника через сторону и площадь:

ha = 2Sa

hb = 2Sb

hc = 2Sc

Формулы высот треугольника через две стороны и радиус описанной окружности:

ha = bc2R

hb = ac2R

hc = ab2R


Окружность вписанная в треугольник

Окружность вписанная в треугольник

Определение. Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

Свойства окружности вписанной в треугольник

Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.

В любой треугольник можно вписать окружность, и только одну.

Формулы радиуса окружности вписанной в треугольник

Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру: Радиус вписанной в треугольник окружности через три стороны:

r = (a + b — c)(b + c — a)(c + a — b)4(a + b + c)

Радиус вписанной в треугольник окружности через три высоты:

Окружность описанная вокруг треугольника

Окружность описанная вокруг треугольника

Определение. Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

Свойства окружности описанной вокруг треугольника

Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.

Вокруг любого треугольника можно описать окружность, и только одну.

Свойства углов

Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

Формулы радиуса окружности описанной вокруг треугольника

Радиус описанной окружности через три стороны и площадь: Радиус описанной окружности через площадь и три угла:

R = S2 sin α sin β sin γ

Радиус описанной окружности через сторону и противоположный угол (теорема синусов):

R = a2 sin α = b2 sin β = c2 sin γ


Связь между вписанной и описанной окружностями треугольника

Если d — расстояние между центрами вписанной и описанной окружностей, то.

rR = 4 sinα2 sinβ2 sinγ2 = cos α + cos β + cos γ — 1


Средняя линия треугольника

Определение. Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

Свойства средней линии треугольника

1. Любой треугольник имеет три средних линии

2. Средняя линия Средняя линия треугольника параллельна основанию и равна его половине.

MN = 12AC     KN = 12AB     KM = 12BC

MN || AC     KN || AB     KM || BC

3. Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника

S∆MBN = 14 S∆ABC

S∆MAK = 14 S∆ABC

S∆NCK = 14 S∆ABC

4. При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.

∆MBN ∼ ∆ABC

∆AMK ∼ ∆ABC

∆KNC ∼ ∆ABC

∆NKM ∼ ∆ABC

Признаки. Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.


Периметр треугольника

Периметр треугольника

Периметр треугольника ∆ABC равен сумме длин его сторон

P = a + b + c


Формулы площади треугольника

площадь треугольника
  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

    S = 12a · ha
    S = 12b · hb
    S = 12c · hc

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p — a)(p — b)(p — c)

    где p = a + b + c2 — полупериметр треугльника.
  3. Формула площади треугольника по двум сторонам и углу между ними
    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S = 12a · b · sin γ
    S = 12b · c · sin α
    S = 12a · c · sin β

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

Равенство треугольников

Определение. Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

Свойства. У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны)

Признаки равенства треугольников

Теорема 1.

Первый признак равенства треугольников — по двум сторонам и углу между ними

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Теорема 2.

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Теорема 3.

Третий признак равенства треугольников — по трем сторонам

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.


Подобие треугольников

Подобие треугольников Определение. Подобные треугольники — треугольники соответствующие углы которых равны, а сходственные стороны пропорциональны.

∆АВС ~ ∆MNK => α = α1, β = β1, γ = γ1 и ABMN = BCNK = ACMK = k,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Второй признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Третий признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

Свойства. Площади подобных треугольников относятся как квадрат коэффициента подобия:

S∆АВСS∆MNK = k2


Задачи на комбинацию окружности и треугольника

цПродолжаем решать простейшие геометрические задачки.

Разбираем Задачи №6  ЕГЭ по математике.

Сегодня работаем с окружностью, вписанной в треугольник и описанной около треугольника. 

Вы можете пройти автотренинг «Планиметрия»

В категорию «Задачи №6» входят  также задачи следующих типов + показать


 
 

Окружность, вписанная в треугольник

Задача 1.

Площадь треугольника равна 800, а радиус вписанной окружности равен 16. Найдите периметр этого треугольника.

oi

Решение: + показать

Задача 2.

Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 66.

ег

Решение: + показать

Радиус вписанной окружности в правильный треугольник OH – есть \frac{1}{3} высоты (BH), так в правильном треугольнике высоты совпадают с медианами, а медианы в точке пересечения делятся в отношении 2:1, считая от вершины.

Итак, r=\frac{66}{3}=22;

Ответ: 22. 

Задача 3.

Сторона правильного треугольника равна 38\sqrt3. Найдите радиус окружности, вписанной в этот треугольник.

ег

Решение: + показать

Задача 4.

В треугольнике ABC  AC=6,\;BC=2,5,\;\angle C=90^{\circ}. Найдите радиус вписанной окружности.

4e

Решение: + показать

Найдем гипотенузу по т. Пифагора:

AB=\sqrt{BC^2+AC^2};

AB=\sqrt{36+6,25}=6,5;

Найдем площадь и периметр треугольника, чтобы воспользоваться затем формулой S=pr:

S=\frac{1}{2}\cdot6\cdot2,5=7,5;

p=\frac{6+2,5+6,5}{2}=7,5;

Тогда 7,5=7,5\cdot r;

r=1;

Ответ: 1. 

Задача 5.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 11. Найдите гипотенузу c этого треугольника. В ответе укажите c(\sqrt2-1).

u

Решение: + показать

Задача 6.

Боковые стороны равнобедренного треугольника равны 181, основание равно 38. Найдите радиус вписанной окружности.

а

Решение: + показать

Задача 7.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 13 и 5, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

0o

Решение: + показать

Задача 8.

К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 10, 18, 33. Найдите периметр данного треугольника.

л

Решение: + показать

Окружность, описанная около треугольника

 

Задача 1.

Найдите радиус окружности, описанной около прямоугольного треугольника ABC, если стороны квадратных клеток равны 1.

o

Решение: + показать

Задача 2.

Боковые стороны равнобедренного треугольника равны 50, основание равно 60. Найдите радиус описанной окружности этого треугольника.

вс

Решение: + показать

Воспользуемся следующей формулой: R=\frac{abc}{4S};

Площадь будем искать по формуле Герона: S=\sqrt{p(p-a)(p-b)(p-c)};

S=\sqrt{80(80-50)^2(80-60)}=1200;

Тогда  R=\frac{60\cdot 50\cdot 50}{4\cdot 1200}=31,25;

Ответ: 31,25. 

Задача 3.

Сторона AB треугольника ABC равна 28. Противолежащий ей угол C равен 150˚. Найдите радиус окружности, описанной около этого треугольника.

oij

Решение: + показать

Согласно т. Синусов \frac{AB}{sinC}=2R;

\frac{28}{sin150^{\circ}}=2R;

\frac{28}{\frac{1}{2}}=2R;

R=28;

Ответ: 28. 

Задача 4.

Угол C треугольника ABC, вписанного в окружность радиуса 47, равен 30˚. Найдите сторону AB этого треугольника.
lk

 

Решение: + показать

Задача 5.

В треугольнике ABC BC=5\sqrt{13}, угол C равен 90°. Радиус описанной окружности этого треугольника равен 17,5. Найдите AC.

kjh

Решение: + показать

В прямоугольном треугольнике гипотенуза – диаметр описанной окружности.

Значит, AB=2R=35;

По теореме Пифагора AC=\sqrt{AB^2-BC^2}=\sqrt{35^2-(5\sqrt{13})^2}=30;

Ответ: 30. 

Задача 6.

Радиус окружности, описанной около правильного треугольника, равен 17\sqrt{3}. Найдите сторону этого треугольника.

sxc

Решение: + показать

Задача 7.

Точки ABC, расположенные на окружности, делят ее на три дуги, градусные величины которых относятся как 1:6:11. Найдите больший угол треугольника ABC. Ответ дайте в градусах.

р

Решение: + показать

Объемный раздел получился… Отдохнем немножко? –>+ показать

kjn

тест

Вы может пройти тест «Окружность, описанная около треугольника. Окружность, вписанная в треугольник»

Как в окружность вписать правильный треугольник

Построение правильных многоугольников — Техническое черчение

Источник: http://www.nacherchy.ru/postroenie_pravilnich_mnogougolnikov.html

Окружность, вписанная в правильный треугольник

Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.

1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.

Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.

Например, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр вписанной окружности.

AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.

2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:

Таким образом, формула для радиуса вписанной в правильный треугольник окружности

Обратно, сторона равностороннего треугольника через радиус вписанной окружности:

3) Так как формула для нахождения площади равностороннего треугольника через сторону

можем найти площадь через r:

Таким образом, формула площади правильного треугольника через радиус вписанной окружности —

3) Все отрезки, на которые стороны равностороннего треугольника делятся точками касания вписанной окружности, равны половине его стороны:

4) Центр вписанной в правильный треугольник окружности является также центром описанной около него окружности.

5) Радиус вписанной в равносторонний треугольник окружности в два раза меньше радиуса описанной окружности:

Источник: http://www.treugolniki.ru/okruzhnost-vpisannaya-v-pravilnyj-treugolnik/

Как вписать окружность в треугольник?

Для начала разберемся с том, какую окружность можно назвать вписанной в треугольник. Это вам не просто взять и нарисовать в треугольнике фигуру. Ту окружность можно назвать вписанной в треугольник, у которой есть три точки на дуге, соприкасающихся с тремя гранями треугольника.

Из этого определения следует, что в каждый треугольник можно вписать лишь одну единственную возможную окружность, центр которой находится на пересечении трех биссектрис внутренних углов данного треугольника.

Теперь подробнее о том, как вписать окружность в треугольник:

  1. Находим вершины треугольника, как помним, их три.
  2. Из каждой вершины необходимо с помощью циркуля провести окружности, можно произвольного радиуса.
  3. Теперь найдите точку пересечения двух окружностей (эта точка должна находиться на стороне треугольника, которая противоположна делимому углу) и соединяем с делимым углом.
  4. Такую операцию необходимо провести с каждым из трех углов. У вас получатся в результате три пересекающиеся биссектрисы.
  5. Центр окружности вписанной в треугольник будет находиться в точки пересечения его биссектрис.
  6.  Далее при помощи циркуля рисуем окружность с центром в полученной точке.

Как вписать треугольник в окружность

Вписанным в окружность треугольником называют  треугольник, у которого три вершины соприкасаются с окружностью. Тогда окружность называют описанной вокруг треугольника.

Из этого следует, что радиус этой окружности — это отрезок, соединяющий центр описанной окружности и вершину треугольника. Поэтому для того, чтобы вписать треугольник в окружность необходимо обозначить три точки на окружности и соединить их отрезками.

Источник: https://elhow.ru/ucheba/geometrija/planimetrija/kak-vpisat-okruzhnost-v-treugolnik

Как построить окружность, вписанную в треугольник

окружность называется вписанной в треугольник, если три точки на ее дуге касаются трех граней треугольника. В геометрии имеется большое количество задач, которые решаются именно благодаря вписыванию окружности в треугольник. Поэтому знание о том, как вписать окружность в треугольник являются обязательными.

Подробнее: poluchisovet.ru

Коротко о главном Начальный уровень Равносторонний треугольник. Начальный уровень. Равносторонний треугольник — треугольник, у которого все стороны равны.Какие же особенные свойства присущи равностороннему треугольнику? Прежде чем говорить о свойствах напомним, что у нас ты можешь сдать пробный ЕГЭ в онлайне и получить результаты немедленно.

В этой статье Вы сможете найти свойства вписанной в треугольник окружности, а также их доказательства.

Вписанная в треугольник окружность — это такая окружность, которая находится внутри треугольника и при этом касается всех его сторон (то есть все стороны треугольника являются касательными к окружности).

Стоит отметить, что в этом случае сам треугольник является описанным вокруг данной окружности.

Окружность называется вписанной в многоугольник, если она полностью размещается внутри этого многоугольника. Каждая сторона описанной фигуры имеет с окружностью общую точку. Вам понадобится-циркуль-карандаш-линейка-лист бумагиИнструкция 1Для… Как найти площадь вписанной окружности

Площадь окружности, вписанной в многоугольник, можно вычислить не только через параметры самой окружности, но через различные элементы описанной фигуры — стороны, высоту, диагонали, периметр. Инструкция 1Окружность называется вписанной в…

Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

Подробнее: megavkusno-saratov.ru

      Определение 1. Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).       Теорема 1. Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

2 слайд Описание слайда: Окружность называется вписанной в треугольник, если все стороны треугольника касаются окружности. A B C O 3 слайд

Описание слайда:
A B C D F E M N O K r r r Как вписать в окружность треугольник В треугольник можно вписать окружность, и притом только одну. Её центр – точка пересечения биссектрис треугольника. Проведём биссектрисы треугольника: АK, ВM, СN. Построим перпендикуляры ОD, OE, OF, которые равны между собой, т.к. равны соответствующие треугольники. Получаем ОD= OE= OF=r.

Окружность можно вписать в любой треугольник, независимо от длины его сторон и величины углов. Алгоритм построения такой окружности очень прост и включает в себя всего два этапа. Спонсор размещения P&G Статьи по теме «Как построить окружность, вписанную в треугольник» Как вписать треугольник в окружность Как построить описанную окружность? Как найти s треугольника

  Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения достаточно разделить окружность на шесть равных частей и соединить найденные точки между собой.

  Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°.

Для выполнения этого построения принимаем горизонтальный
диаметр окружности за биссектрису углов 1 и 4, строим стороны 1 — 6, 4 — 3, 4 — 5 и 7 — 2, после чего проводим стороны 5 — 6 и 3 — 2.

Разделим радиус OD пополам и точки пересечения М и N линии деления с окружностью соединим хордами с точкой Е, в результате чего получается равносторонний треугольник EMN . Делим пополам два угла равностороннего (правильного) треугольника, скажем,

Источник: http://www.chsvu.ru/kak-postroit-okruzhnost-vpisannuyu-v-treugolnik/

Формула площади и радиуса: свойства треугольника, вписанного в окружность

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние.

Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое.

При их изготовлении применяются не только высокотехнологичные приспособления,Но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра.

Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной.

Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности.

Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя углами?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр описанной окружности для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой описанной окр-сти равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:
  3. Зная радиус описанной окружности и значения углов, можно найти значение площади, не прибегая к использованию длин сторон, по следующей формуле:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке. Это удобно при построении фигур.

Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым натуральным числом, скорее наоборот.

Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника:

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений.

Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует.

В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

Источник: https://uchim.guru/matematika/svojstva-treugolnika-vpisannogo-v-okruzhnost.html

Как вписать равносторонний треугольник в окружность?

Равносторонний треугольник вписывается в окружность очень легко.

Вписать в окружность равносторонний треугольник, впрочем, как и любую другую правильную геометрическую фигуру достаточно легко.

Для того, чтобы вписать в окружность равносторонний треугольник, нам понадобится циркуль, линейка и карандаш.

Сначала необходимо при помощи циркуля начертить окружность нужного нам диаметра. Когда окружность будет вычерчена, через центр окружности, при помощи линейки и карандаша, прочертим линию диаметра нашей окружности.

После этого, не изменяя раствора циркуля, из точки пересечения одного конца диаметра с окружностью, сделаем две засечки по обе стороны от диаметра. Это и будут две вершины нашего треугольника. Третьей вершиной будет точка пересечения второго конца диаметра.

Соединив при помощи линейки и карандаша эти три точки, мы получим вписаный в окружность правильный треугольник.

Если ставится обратная задача, то есть требуется готовый треугольник вписать в окружность, то надо поступить следующим образом.

Из двух вершин нашего треугольника опустим высоты на противолежащие стороны, то есть опустим на них перпендикуляры. точка пересечения двух высот и будет центром окружности, описывающей треугольник. Теперь установим ножку циркуля в эту точку, а вторую ножку циркуля установим на любую вершину треугольника и этим размером проведем окружность. Она опишет наш треугольник.

Видите, все очень просто!

Источник: http://qalib.ru/a/kak-vpisat-ravnostoronniy-treugolnik-v-okruzhnost

Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 —6, 4—3, 4—5 и 7—2, после чего прово­дим стороны 5—6 и 3—2.

Построение вписанного в окружность равностороннего треуголь­ника. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0—1—2 равен 30°, то для нахождения стороны

1—2 достаточно построить по точке 1 и стороне 0—1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1—2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2—3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вер­шины через одну, то получится равносторонний треугольник.

Для построения треугольника (фиг. 61, б) намечаем на диаметре вершину—точку 1 и проводим диаметральную линию 1—4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окруж­ностью в точках 3 и 2. Полученные точки будут двумя другими вер­шинами искомого треугольника.

Построение квадрата, вписанного в окружность. Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пере­секаются в центре описанного круга и наклонены к его осям под углом 45°.

Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные сто­роны квадрата 4—1 и 3—2.

Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1—2 и 4—3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра (фиг. 62, б). Намечаем на концах двух взаимно перпендикулярных диа­метров точки А, В и С и из них радиусом у описываем дуги до вза­имного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные пря­мые, отмеченные на фигуре сплошными линиями. Точки их пересече­ния с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник (фиг. 63), про­изводим следующие построения.

Намечаем на окружности точку 1 и принимаем её за одну из вер­шин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точ­ках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1.

Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5.

Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вер­шины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую.

Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB.

Получим точку 1—вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведён­ными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей.

Из точки 7 радиу­сом, равным диаметру окружности D, описываем дугу до пересечения с про­должением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника.

Приняв точку VII за одну из вершин семиугольника, прово­дим из полюса F через чётные деления вертикального диаметра лучи, пересече­ние которых с окружностью определят вершины VI, V и IV семиугольника.

Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем после­довательно между собой. Семиугольник может быть построен путём проведе­ния лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоуголь­ников с любым числом сторон.

Деление окружности на любое число равных частей можно произ­водить также, пользуясь данными табл. 2, в которой приведены коэф­фициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй—коэффициенты.Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

Печатные инструкции по построению равностороннего треугольника, вписанного в заданный круг.

Начинаем с данного круга, центр О.

Примечание: Если вам не дали центр, вы можете найти его, используя метод, показанный на Нахождение центра круга с помощью циркуля и линейки.

Geometry construction with compass and straightedge or ruler or ruler
1. Отметьте точку в любом месте окружности. Geometry construction with compass and straightedge or ruler or ruler
2. Установите циркуль в эту точку и установите ширину циркуля в центр круга. Компасы теперь установлены на радиус окружности Geometry construction with compass and straightedge or ruler or ruler
3. Сделайте дугу поперек окружности. Geometry construction with compass and straightedge or ruler or ruler
4. Переместите циркуль в эту новую точку и нарисуйте еще одну дугу. Geometry construction with compass and straightedge or ruler or ruler
5. Продолжайте таким же образом, пока не наберете в сумме шесть очков. Geometry construction with compass and straightedge or ruler or ruler
6. Обозначьте все остальные точки B, D и F Geometry construction with compass and straightedge or ruler or ruler
7. Проведите линии BD, DF, FB Geometry construction with compass and straightedge or ruler or ruler
8. Готово. Прямые BD, DF, FB образуют равносторонний треугольник, вписанный в данную окружность.
.

Как построить круг через 3 вершины треугольника с помощью циркуля и линейки или линейки

окружность треугольника — это круг, проходящий через все три вершины треугольника. Конструкция сначала устанавливает центр описанной окружности, а затем рисует круг. Окружность треугольника — это точка, в которой перпендикулярные биссектрисы сторон пересекаются. На этой странице показано, как построить (нарисовать) описанную окружность треугольника с помощью циркуля и линейки или линейки.Эта конструкция предполагает, что вы уже знакомы с Построением серединного перпендикуляра отрезка линии.

Пошаговые инструкции для печати

Вышеупомянутая анимация доступна как распечатываемый лист с пошаговыми инструкциями, который можно использовать для изготовления раздаточных материалов или когда компьютер недоступен.

Проба

Изображение ниже — это последний рисунок выше с добавленными красными метками.

Примечание: это доказательство почти идентично доказательству в Построение центра описанной окружности треугольника.

Аргумент Причина
1 JK — это серединный перпендикуляр AB. По конструкции. Для доказательства см. Построение серединного перпендикуляра отрезка
2 Существуют круги, центр которых лежит на прямой JK, а AB является аккорд. (* см. примечание ниже) Серединный перпендикуляр к аккорд всегда проходит через центр круга.
3 LM — это серединный перпендикуляр BC. По конструкции. Для доказательства см. Построение серединного перпендикуляра отрезка
4 Существуют круги, центр которых лежит на прямой LM, а BC является хордой. (* см. примечание ниже) Серединный перпендикуляр к аккорд всегда проходит через центр круга.
5 Точка O — это центр описанной окружности треугольника ABC, центр единственной окружности, проходящей через A, B, C. O — единственная точка, которая лежит как на JK, так и на LM, и поэтому удовлетворяет как 2, так и 4 выше.
5 Окружность O является описанной окружностью треугольника ABC. Окружность проходит через все три вершины A, B, C

— Q.E.D

* Примечание
В зависимости от того, где находится центральная точка на биссектрисе, существует бесконечное количество окружностей, которые могут удовлетворить это требование. Два из них показаны ниже.Шаги 2 и 4 работают вместе, чтобы уменьшить возможное количество до одного.

Попробуйте сами

Щелкните здесь, чтобы распечатать рабочий лист, содержащий две задачи с описанной окружностью треугольника. Когда вы перейдете на страницу, используйте команду печати браузера, чтобы распечатать столько, сколько хотите. Печатные материалы не защищены авторским правом

Другие конструкции, страницы на сайте

Строки

Уголки

Треугольники

Правые треугольники

Центры треугольника

Окружности, дуги и эллипсы

Полигоны

Неевклидовы конструкции

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

,

Как построить (начертить) окружность треугольника с помощью циркуля и линейки или линейки

Как видно на Центр треугольника, три биссектриса угла любого треугольника всегда проходят через его центр. В этой конструкции мы используем только два, так как этого достаточно, чтобы определить точку, в которой они пересекаются. Мы делим два угла пополам, используя метод, описанный в Деление угла пополам. Точка пересечения биссектрис — это инцентр. Затем мы рисуем круг, который только касается сторон треугольников.

Пошаговые инструкции для печати

Вышеупомянутая анимация доступна как распечатываемый лист с пошаговыми инструкциями, который можно использовать для изготовления раздаточных материалов или когда компьютер недоступен.

Проба

Изображение ниже — это последний рисунок из приведенной выше анимации.

Аргумент Причина
1 I — центр треугольника ABC. По конструкции.
См. Конструкция центрирующего центра треугольника для метод и доказательство.
2 IM перпендикулярно AB По конструкции.
См. Построение перпендикуляра к линии из точки для метод и доказательство.
3 IM — радиус вписанной окружности Из (2) M — точка касания
4 Центр окружности I — вписанная окружность треугольника Круг, касающийся всех трех сторон.

— Q.E.D

Попробуйте сами

Щелкните здесь, чтобы распечатать рабочий лист incircle, содержащий две проблемы, которые можно попробовать. Когда вы перейдете на страницу, используйте команду печати браузера, чтобы распечатать столько, сколько хотите. Печатные материалы не защищены авторским правом

Другие конструкции, страницы на сайте

линий

Уголки

Треугольники

Правые треугольники

Центры треугольника

Окружности, дуги и эллипсы

Полигоны

Неевклидовы конструкции

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

,

Правильные многоугольники вписаны в круг Калькулятор

[1] 2020/06/09 16:08 Мужской / 20-летний уровень / Высшая школа / Университет / Аспирант / Полезный /

Цель использования
Оценка значения of pi

[2] 2020/05/07 18:40 Мужчина / 60 лет и старше / Инженер / Очень /

Цель использования
Различные расчеты

[3] 2020/03 / 25 11:54 Мужчина / Уровень 60 и старше / Инженер / Очень /

Цель использования

Посадка круглой ореховой рощи, состоящей из концентрических круговых насаждений на расстоянии примерно 40 футов

[4] 2019 / 10/10 01:01 Мужчина / Уровень 50 лет / Офисный работник / Государственный служащий / Очень /

Назначение
построение пятиугольника со сторонами, равными длине смежного шестиугольника

[5] 2019 / 10/04 22:05 Мужской / 50-летний уровень / Self-em трудоустроенные люди / Очень /

Цель использования
Просто интересно.

[6] 2019/10/03 09:07 Мужчина / Уровень 40 лет / Инженер / Очень /

Цель использования
Измерить стальную растяжку обода — покупка б / у комплекта зимних шин

[7] 14.06.2019 01:30 Мужчина / Уровень 20 лет / Инженер / Полезно /

Цель использования
Я получил несколько точек на круге, но мне нужно было найти радиус круга на основе расстояния между точками

[8] 2019/04/27 11:20 Мужчина / Уровень 30 лет / Офисный работник / Государственный служащий / Очень /

Цель использования
Определение размеров коробки для печати на 3D-принтере с круглой печатной платформой

[9] 2019/03/12 10:49 Женский / До 20 лет / Высшая школа / ВУЗ / Аспирант / Полезное /

Цель использования
Домашнее задание

[10] 2018/12/10 02:31 Мужской / 30-летний уровень / Другое / Очень /

Цель использования
Рисование пятиконечной звезды без компаса.
Комментарий / запрос
Очень полезно! Спасибо!
.