Алюминиевые решения для нефтегазовой промышленности и водородной энергетики

Выбор нефтяников и газовиков в пользу алюминия объясняется уникальным сочетанием свойств, которыми обладает металл. Об этом говорили эксперты компаний – членов Алюминиевой Ассоциации в ходе тематической сессии «Алюминиевые решения для нефтегазовой промышленности и водородной энергетики» на Международной выставке «НЕФТЕГАЗ-2022».

Решения на основе алюминия и его сплавов превосходят аналоги из других материалов по целому ряду параметров. Они существенно легче и дешевле, более устойчивы к воздействию агрессивных сред и высоких нагрузок, лучше переносят экстремально низкие температуры.

«Алюминиевый Вестник» рассматривает на примерах, в каких видах продукции для нефтегазовой отрасли эти важные характеристики алюминия проявляются наиболее ярко.

ГНЕТСЯ – НЕ ЛОМАЕТСЯ

Обеспечить надежное энергоснабжение техники и оборудования на нефтяных и газовых месторождениях помогают кабели с алюминиевой жилой. Один из таких кабелей – ELKAFLEX, производство которого впервые в России запустили на Богословском кабельном заводе (БКЗ). Кабель предназначен для присоединения экскаваторов, а также других передвижных механизмов или электроустановок к электрическим сетям с изолированной нейтралью на номинальное переменное напряжение основных жил 6000 В, вспомогательной – до 380 В номинальной частоты 50 Гц. По словам генерального директора предприятия Владимира Савченко, кабель обладает исключительной гибкостью, в том числе при отрицательных температурах, его можно без труда согнуть в разных направлениях без потери качественных характеристик.

В зависимости от конструкции ELKAFLEX на 45% дешевле аналогов, он отличается повышенной износостойкостью и небольшим весом – 32 кг. Кабель успешно выдержал опытно-промышленные испытания практически на всех крупных добывающих нефтегазовых комплексах.

Еще одна модель – нефтепогружной кабель ELKAOIL – предназначена для подачи электрической энергии к электродвигателям установки добычи нефти на номинальное напряжение 3,3 кВ и 4 кВ с диапазоном рабочих частот 35-200Гц. В ELKAOIL использован специальный термо- и коррозионностойкий алюминиевый сплав. Кабель имеет повышенную стойкость к растворенному в скважинной жидкости сероводороду и СО2.

Для стационарной прокладки используется силовой кабель ELKAPOWER с гибкими токопроводящими жилами. Он представляет собой более дешевый аналог медного кабеля КГВВ (в данном случае это АсКГВВ).

На БКЗ также изготавливаются полуфабрикаты для кабелей среднего напряжения 10 Кв. Они применяются для питания электроустановок – подвижных, мобильных, работающих в условиях Крайнего Севера и агрессивных сред. Экран кабеля выполнен из алюминиевых гибких стренг, что повышает его укрывистость и позволяет избежать ломкости.

Основные проблемы, с которыми сталкиваются специалисты при работе на объектах нефтегазового сектора, – низкие температуры, охрупчивание наружных покровов, что вызывает преждевременный выход из строя кабельных линий.

Как рассказал директор по проектным продажам ГК «Москабельмет» Дмитрий Чудных, специалисты компании нашли решение: в 2018 году был разработан кабель марки КРИОСИЛ, который выдерживает воздействие экстремально низких и высоких температур – от -85 до +85°C. В этих температурных условиях изоляция не теряет прочности и сохраняет пластичность, а эксплуатационные характеристики не снижаются. Внешняя оболочка кабеля также обладает улучшенными механическими характеристикам и свойствами, препятствующими распространению горения. Кроме того, КРИОСИЛ устойчив к воздействию нефтехимических продуктов.

Кабели КГБЭ для систем верхнего привода используются для управления передвижными буровыми установками. Стоит отметить, что КГБЭ – первый отечественный кабель, применяемый в составе шлейфа системы верхнего привода в буровой установке. Он является аналогом импортной продукции – немецким TSUBAKI Kabel Schlepp и OLFLEX PETRO Lapp Kabel, но стоимость его при этом на 30% ниже.

С задачей импортозамещения успешно справляется и кабель с термостабилизированной изоляцией ТЭВОКС – он полностью состоит из отечественных компонентов. В его конструкции применен алюминиевый сплав 8ххх серии, что позволяет добиться повышенной стойкости кабеля к механическим и термическим воздействиям. ТЭВОКС используется для прокладки, замены и реконструкции кабельных линий в сетях с изолированной нейтралью.

В 2020 году на предприятии «Завод Москабель» (входит в ГК «Москабельмет») освоили производство силовых кабелей с броней из бесшовной гофрированной алюминиевой трубки. Конструкция таких кабелей обладает повышенной радиальной жесткостью – при изгибах не происходит повреждение сердечника, а также стойкостью к продольным растягивающим усилиям. Бронированный кабель подходит для прокладки в регионах вечной мерзлоты, в скалистой и болотистой местности, для подводной прокладки и речных переходов.

И, конечно, нельзя не упомянуть о том, что применение кабельной продукции с жилами из алюминиевого сплава позволяет до 50% сократить стоимость проектов. Это особенно актуально в текущих реалиях – алюминий в отличие от меди в меньшей степени подвержен ценовым колебаниям.

НЕФТЕГАЗ В ПРОФИЛЬ

Алюминиевые решения находят применение и при строительстве объектов нефтегазового сектора экономики. Речь идет об ультрасовременных сооружениях, таких как научно-технические центры, на базе которых будут осуществляться научные и инновационные разработки для нефтегазовой промышленности.

Руководитель отдела маркетинга «Урало-Сибирской профильной компании» (УСПК) Алексей Коноплев рассказал об архитектурных алюминиевых системах INICIAL. Строительный профиль производства УСПК применялся при создании научно-технического центра «НОВАТЭК» и Центра исследования пластовых систем «Геосфера» в Тюмени, а также Центра индустриальной интеграции «Газпромнефть – Технологические партнерства» в Ханты-Мансийске.

В числе инноваций, которые экструзионный завод может предложить нефтегазовой отрасли, Алексей Коноплев называет алюминиевые керноприемные трубы. Это оборудование используются в скважинах с температурой, превышающей предел для фибергласса, и в скважинах с сероводородным заражением. По заказу компании OIL ENERGY предприятие делает прутки из магниево-алюминиевого сплава – для производства растворимых шаров, которые используются для активации скважинного оборудования. Это решение позволяет снизить затраты на строительство скважин.

МАРШ БУРОВЫХ КОЛОНН

В нефтегазовой отрасли все начинается с добычи углеводородов, а значит, с бурильного оборудования. Наибольшим спросом в сфере российского ТЭК пользуются трубы OCTG – трубы нефтепромыслового сортамента для обустройства нефтяных и газовых скважин. Как отмечает Ян Глумов, руководитель проектов в нефтегазовой отрасли Алюминиевой Ассоциации, алюминиевые трубы обладают целым рядом преимуществ перед аналогами из других материалов. В первую очередь, это низкий вес, что позволяет буровым колоннам работать более эффективно и с оптимальным уровнем нагрузки. Благодаря меньшему радиусу изгиба алюминиевых бурильных труб они используются для горизонтального бурения, объемы которого в стране неуклонно растут.

Трубы OCTG изготавливаются из сплавов Д16 и 1953. С учетом потребностей клиентов был разработан принципиально новый алюминиевый сплав, главным преимуществом которого является высокая коррозионная стойкость. По информации Яна Глумова, сплав запустят в производство в этом году. При этом буровые и нефтегазовые компании смогут бесплатно протестировать новый продукт.

Еще один проект – алюминиевые купольные крыши вертикальных резервуаров для хранения нефти и нефтепродуктов. Основные их преимущества – это опять-таки низкий вес (в 6-10 раз легче по сравнению со стальными аналогами) и отсутствие сероводородной коррозии кровли. К слову, алюминиевой купольной крыше не потребуются ремонт и техобслуживание на протяжении всего периода ее эксплуатации.

Другие проекты связаны с автомобильной промышленностью – алюминиевый композитный баллон для компримированного (сжатого) природного газа. По мере увеличения численности транспорта на газомоторном топливе и ввода дополнительной газозаправочной инфраструктуры востребованность этого продукта будет возрастать. Алюминиевый баллон прочный и легкий, что позволяет экономить энергию при движении автомобиля на газе.

ТЕПЛО АЛЮМИНИЯ

Коль скоро зашла речь о заправке транспорта, уместно обратиться к теме АЗС с автономным модулем получения высокочистого «зеленого» водорода. О принципах работы этой системы рассказали на НФТЕГАЗ-2022 Алексей Борейшо и Владимир Рыжкин из компании «Лазерные Системы».

Автономный энергетический модуль предназначен для снабжения высокочистым водородом стационарных и транспортных объектов, оснащенных водородными топливными элементами. Использование автономного модуля обеспечивает безопасную эксплуатацию объектов, позволяя управлять ими в автоматизированном или дистанционном режиме.

Кроме того, снижаются капитальные и эксплуатационные расходы, увеличивается срок службы оборудования. Получение водорода основано на реакции гидротермального окисления порошкообразного алюминия водой. В результате образуется гидроксид алюминия и водород, а также выделяется определенное количество тепла. Помимо высокочистого водорода, образуется коммерчески ценная мелкодисперсная оксигидроокись алюминия – бемит, являющаяся экологически безопасным продуктом. Бемит можно перерабатывать или использовать в исходном виде в качестве сорбента и катализатора для нефтехимии, компонента производства керамики, абразивного порошка для обработки или наполнителя для лакокрасочной промышленности.

Реакция осуществляется при повышенной температуре и давлении в гидротермальном реакторе путем непрерывной подачи в него водной суспензии порошка алюминия и непрерывного вывода продуктов реакции: водорода, бемита и остаточной воды в виде пара.

Тепловой эффект реакции в расчете на единицу массы алюминия (Q = 15,32 МДж/кг) может быть использован для создания когенерационных установок, обеспечивающих станции электрической и тепловой энергией. Уже создана и удачно испытана экспериментальная установка непрерывного получения водорода производительностью до 100 нм3/час.

Как же использовать тепло? Например, в генерационных установках, для получения горячего водоснабжения или выработки электроэнергии с помощью турбины – такой вариант позволяет создать автономную систему, которая не требует подвода электричества.

У станции производства водорода целый ряд преимуществ: энергонезависимость и мобильность, масштабируемость технологии, отсутствие углеродного следа и возможность получения высокочистого водорода, пригодного для топливных элементов.

ГЛАДКО СТЕЛЕТ

Руководитель группы проектов в прокате ОК РУСАЛ Елена Котельникова познакомила участников сессии с быстровозводимой алюминиевой инфраструктурой для труднодоступных регионов. Алюминиевые дороги и сборно-разборные покрытия призваны обеспечить транспортную доступность даже самых отдаленных уголков.

Мобильные конструкции из алюминиевых материалов незаменимы при создании местной и региональной авиационной инфраструктуры, а также в ходе эксплуатации газовых и нефтяных месторождений в условиях Крайнего Севера.

Так, многоцелевой механизированный комплекс оперативного развертывания (ММК) обеспечивает быстрый подъезд и доставку техники на строительные объекты в условиях бездорожья, даже в сильно заболоченной местности. Комплекс может использоваться при ликвидации чрезвычайных ситуаций – там, где необходимо быстро преодолеть какие-либо преграды. Покрытие подойдет для сооружения мигрирующих взлетных полос для легкой авиации и организации подъездных путей к речным берегам. Повышенная прочность и гибкость полотна позволяет создать временный настил на неустойчивой почве, при этом не нанося вред ее верхнему слою. В РУСАЛе разработали концепцию съемного навесного оборудования для размещения алюминиевого дорожного полотна на стандартной строительной технике. Благодаря высокой подвижности и гибкости конструкции алюминиевую «дорогу» можно сворачивать в единый рулон.

Из мобильных сборно-разборных конструкций можно оперативно создавать взлетно-посадочные полосы и вертолетные площадки в труднодоступных и отдаленных районах. Они значительно легче аналогов из бетона, перевозятся в контейнерах, собираются вручную без какой-либо специальной техники. Алюминиевые сборно-разборные покрытия используются для всех типов пассажирских вертолетов, в том числе тяжелых, санавиации, сельхозавиации, спортивной авиации и беспилотников. Эти конструкции могут быть преобразованы в рулежные дорожки, перроны, места стоянки техники, концевые полосы торможения, взлетно-посадочные полосы, а также временные дороги, площадки под оборудование и технические полы.

Конечно же, перечисленные примеры представляют собой далеко не полный перечень алюминиевых решений для нефтегазового сектора российской промышленности. Каждый год появляются новые сплавы, технологии и продукты, позволяющие сделать нефте- и газодобычу во всех отношениях более эффективной.

Плотность вещества — как определить и чему равна?

Покажем, как применять знание физики в жизни

Начать учиться

Есть такая детская загадка: что тяжелее килограмм ваты или килограмм гвоздей? Кажется, что гвозди тяжелее, а потом понимаешь, что килограмм — он и в Африке килограмм. Но почему же создается такая иллюзия?

Масса

Начнем с самого сложного — с массы. Казалось бы, это понятие мы слышим с самого детства, примерно знаем, сколько в нас килограмм, и ничего сложного здесь быть не может. На самом деле, все сложнее.

До недавнего времени в Международном бюро мер и весов в Париже хранился цилиндр массой один килограмм. Цилиндр был изготовлен из сплава иридия и платины и служил для всего мира эталоном килограмма. Правда, со временем его масса изменилась, и пришлось придумать новый эталон — электромагнитные весы.


Высота этого цилиндра была приблизительно равна 4 см, но чтобы его поднять, нужно было приложить немалую силу. Необходимость эту силу прикладывать обуславливается инерцией тел и математически записывается через второй закон Ньютона.

Второй закон Ньютона

F = ma

F — сила [Н]

m — масса [кг]

a — ускорение [м/с2]

В этом законе массу можно считать неким коэффициентом, который связывает ускорение и силу. Также масса важна при расчете силы тяготения. Она является мерой гравитации: именно благодаря ей тела притягиваются друг к другу.

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10−11м3 · кг−1 · с−2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз. Когда думаешь об этом, хочется взвешиваться исключительно на Луне. 🙃

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Откуда берется масса

Физики убеждены, что у элементарных частиц должна быть масса. Доказано, что у электрона, например, масса есть. В противном случае они не могли бы образовать атомы и всю видимую материю.

Вселенная без массы представляла бы собой хаос из различных излучений, двигающихся со скоростью света. Не существовало бы ни галактик, ни звезд, ни планет. Здорово, что это не так, и у элементарных частиц есть масса. Только вот пока непонятно, откуда эта масса у них берется.

Мужчину на этой фотографии зовут Питер Хиггс. Ему мы обязаны за предположение, экспериментально доказанное в 2012 году, что массу всех частиц создает некий бозон.


Источник: Википедия

Бозон Хиггса невозможно представить. Это точно не частица в форме шарика, как обычно рисуют электрон в учебнике. Представьте, что вы бежите по песку. Бежать ощутимо сложно, как будто бы увеличилась масса. Частицы пробираются в поле Хиггса и получают таким образом массу.

Объем тела

Объем — это физическая величина, которая показывает, сколько пространства занимает тело. Это важный навык — уметь объемы соотносить. Например, чтобы посчитать, сколько пластиковых шариков помещается в гигантский бассейн.


Скажем, чтобы рассчитать объем прямоугольного параллелепипеда, нам нужно перемножить три его параметра.

Формула объема параллелепипеда

V = abc

V — объем [м3]

a — длина [м]

b — ширина [м]

c — высота [м]


А для цилиндра будет справедлива такая формула:

Формула объема цилиндра

V = Sh

V — объем [м3]

S — площадь основания [м2]

h — высота [м]

Плотность вещества

Плотность — скалярная физическая величина. Определяется как отношение массы тела к занимаемому этим телом объему.

Формула плотности вещества

р = m/V

р — плотность вещества [кг/м3

]

m — масса вещества [кг]

V — объем вещества [м3]

Плотность зависит от температуры, агрегатного состояния вещества и внешнего давления. Обычно если давление увеличивается, то молекулы вещества утрамбовываются плотнее — следовательно, плотность больше. А рост температуры, как правило, приводит к увеличению расстояний между молекулами вещества — плотность понижается.

Маленькое исключение

Исключение составляет вода.

Так, плотность воды меньше плотности льда. Объяснение кроется в молекулярной структуре льда. Когда вода переходит из жидкого состояния в твердое, она изменяет молекулярную структуру так, что расстояние между молекулами увеличивается. Соответственно, плотность льда меньше плотности воды.

Ниже представлены значения плотностей для разных веществ. В дальнейшем это поможет при решении задач.

Твердое вещество

кг/м3

г/см3

Платина

21500

21,5

Золото

19300

19,3

Вольфрам

19000

19,0

Свинец

11400

11,4

Серебро

10500

10,5

Медь

8900

8,9

Никель

8800

8,8

Латунь

8500

8,5

Сталь, железо

7900

7,9

Олово

7300

7,3

Цинк

7100

7,1

Чугун

7000

7,0

Алмаз

3500

3,5

Алюминий

2700

2,7

Мрамор

2700

2,7

Гранит

2600

2,6

Стекло

2600

2,6

Бетон

2200

2,2

Графит

2200

2,2

Лёд

900

0,9

Парафин

900

0,9

Дуб (сухой)

700

0,7

Берёза (сухая)

650

0,65

Пробка

200

0,2

Платиноиридиевый сплав

21500

21,5

Жидкость

кг/м3

г/см3

Ртуть

13600

13,6

Мёд

1300

1,3

Глицерин

1260

1,26

Молоко

1036

1,036

Морская вода

1030

1,03

Вода

1000

1

Подсолнечное масло

920

0,92

Нефть

820

0,82

Спирт

800

0,8

Бензин

700

0,7

Газ

кг/м3

Хлор

3,22

Озон

2,14

Пропан

2,02

Диоксид углерода

1,98

Кислород

1,43

Воздух

1,29

Азот

1,25

Гелий

0,18

Водород

0,09

Где самая большая плотность?

Самая большая плотность во Вселенной — в черной дыре. Плотность черной дыры составляет около 1014 кг/м3.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Средняя плотность

В школьном курсе чаще всего говорят о средней плотности тела. Дело в том, что если мы рассмотрим какое-нибудь неоднородное тело, то в одной его части будет, например, большая плотность, а в другой — меньшая.

Если вы когда-то делали ремонт, то знакомы с такой вещью, как цемент. Он состоит из двух веществ: клинкера и гипса. Значит нам нужно отдельно найти плотность гипса, плотность клинкера по формуле, указанной выше, а потом найти среднее арифметическое двух плотностей. Можно сделать так.

А можно просто массу цемента разделить на объем цемента и мы получим ровно то же самое. Просто в данном случае мы берем не массу и объем вещества, а массу и объем тела.

Формула плотности тела

р = m/V

р — плотность тела [кг/м3]

m — масса тела [кг]

V — объем тела [м3]

Решение задач: плотность вещества

А теперь давайте тренироваться!

Задача 1

Цилиндр 1 поочерёдно взвешивают с цилиндром 2 такого же объёма, а затем с цилиндром 3, объем которого меньше (как показано на рисунке).


Какой цилиндр имеет максимальную среднюю плотность?

Решение:

Плотность тел прямо пропорциональна массе и обратно пропорциональна объему:

р = m/V

Исходя из проведенных опытов можно сделать следующие выводы:

1) масса первого цилиндра больше массы второго цилиндра при одинаковом объеме. Значит плотность первого цилиндра выше плотности второго.

2) масса первого цилиндра равна массе третьего цилиндра, объем которого меньше. Следовательно, плотность третьего цилиндра больше плотности первого цилиндра.

Таким образом, средние плотности цилиндров:

р2 < р1 < р3

Ответ: 3.

Задача 2

Шар 1 последовательно взвешивают на рычажных весах с шаром 2 и шаром 3 (как показано на рисунке). Для объёмов шаров справедливо соотношение V1 = V3 < V2.


Какой шар имеет максимальную среднюю плотность?

Решение:

Из рисунка ясно, что масса шаров 1 и 2 равна — следовательно, плотность второго шара меньше, чем первого. Третий шар тяжелее, чем первый при одинаковом объёме, поэтому плотность третьего шара больше плотности первого. Таким образом, максимальную среднюю плотность имеет шар 3.

Ответ: 3

Задача 3

Найти плотность шара объемом 0,5 м3 и массой 1,5 кг.

Решение:

Возьмем формулу плотности и подставим в нее данные нам значения.

р = m/V

р = 1,5/0,5 = 3 кг/м3

Ответ: р = 3 кг/м3

Плавание тел

Почему шарик с гелием взлетает? Или мяч при игре в водное поло не тонет?

Жидкости и газы действуют на погруженные тела с выталкивающей силой. Подробно это явление рассматривают в теме «‎Сила Архимеда»‎. Если говорить простым языком: если плотность тела, погруженного в жидкость, больше плотности жидкости — тело пойдет ко дну. Если меньше – оно всплывет на поверхность.

Задача 1

Стальной шарик в воде падает медленнее, чем в воздухе. Чем это объясняется?

Решение:

Плотность воды значительно выше, чем воздуха, поэтому стальной шарик в воде падает медленнее

Задача 2

В таблице даны плотности некоторых твердых веществ. Если вырезать из этих веществ кубики, то какие кубики смогут плавать в воде? Плотность воды — 1000 кг/м3.

Название вещества

Плотность вещества, кг/м3

Алюминий

2700

Парафин

900

Плексиглас

1200

Фарфор

2300

Сосна

400

Решение:

Плавать будут кубики, плотность которых меньше плотности воды, то есть сделанные из парафина или сосны.

Карина Хачатурян

К предыдущей статье

Длина волны

К следующей статье

139.1K

Основные агрегатные состояния вещества

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Алюминиевые чашки — Шарик

Холоднее. Сильнее.

Перерабатываемый.

Наслаждайтесь гладкими металлическими чашками, которые сохранят ваш напиток холодным. Шаровая алюминиевая чашка затмевает пластик примерно по той же цене. Он на 100 процентов подлежит вторичной переработке. И разработан, чтобы держать все немного прохладнее.

Изучите функции Кубков

Выберите экологичность, это тоже весело.

Ваши решения складываются, и планета поблагодарит вас за то, что вы выбрали Ball Cup. Алюминий — отличный выбор для планеты. В отличие от пластика, алюминий можно перерабатывать снова и снова без потери качества или ценности. Сделайте правильный выбор для планеты.

Почему цикличность имеет значение

«Я взял домой несколько штук из игры Avalanche и сразу же купил пачку!» №

Алюминиевый стаканчик Ball — хит во дворах и на стадионах.

Кубок – горячая тема

Продавайте чашки в своем магазине.

Присоединяйтесь к вечеринке по защите окружающей среды. Привлеките внимание покупателей яркими витринами. Мы поможем заполнить ваши полки – вам это понадобится.

Посмотреть ваши варианты

Будущее освежения уже здесь.

Клиенты заботятся о планете и ожидают, что рестораны и спортивные площадки сделают свою работу. Также продемонстрируйте свою приверженность устойчивому развитию. Закажите алюминиевый кубок Ball для вашего бизнеса или мероприятия.

Доступны индивидуальные чашки

Чашки начались с банок

Эволюция алюминиевых чашек Ball началась с наших инновационных банок.

Упаковка для мячей Discover

Стремление к устойчивому развитию

К 2030 году мы сократим выбросы, переработаем 90 процентов используемого нами алюминия и будем покупать только экологичные материалы.

Экологические цели

Работа на балу

Каждый день мы смело разрабатываем решения для самых сложных задач наших клиентов. Присоединяйтесь к нам.

Найди свою форму

Особенности — Мяч

ИННОВАЦИОННЫЕ ФУНКЦИИ ОСВЕЖАЮТ РАЗНИЦУ

НАСЛАЖДАЙТЕСЬ! ПОПОЛНЕНИЕ! ПЕРЕРАБАТЫВАТЬ!
Заполните, чтобы насладиться лучшим освежающим холодным напитком. Постирайте вручную и наполните несколько раз, чтобы убедиться в ценности прочной конструкции. Утилизируйте, как алюминиевую банку, чтобы ваши усилия по переработке были оценены.

ПРЕВОСХОДНЫЕ ХОЛОДНЫЕ НАПИТКИ
Прохладное прикосновение пробуждает холод в каждом ледяном глотке.

НЕПРЕВЗОЙДЕННАЯ ПРОЧНОСТЬ
Легкие, но более прочные, чем одноразовые пластиковые стаканчики, так что вы можете наслаждаться ими, наполнять и перерабатывать.

БЕСКОНЕЧНАЯ ПЕРЕРАБОТКА
В отличие от пластика, алюминий перерабатывается снова и снова без потери качества.

Будьте хозяином, делайте все возможное

Узнайте, как новая алюминиевая чашка Ball® обеспечивает приятное ощущение прохлады, вызывая холодок в каждом ледяном глотке. Просто налейте свой любимый холодный напиток в алюминиевую чашку, чтобы насладиться освежающим вкусом.

Алюминиевый стакан Ball сохраняет напитки холодными, упрощает очистку и приносит пользу окружающей среде. Они долговечны и доступны по цене.

 

Звезда афтепати

Когда гости уйдут, вы можете убраться прямо в мусорную корзину, чтобы не было головной боли ни для вас, ни для планеты.

Мяч стремится к округлости

Доступно теперь везде

Алюминиевые стаканчики с шариками можно найти в этих розничных магазинах США и на Amazon.

Покупайте чашки у наших розничных партнеров

Связаться с нами

Задайте нам вопрос или зарегистрируйтесь, чтобы получать эксклюзивные новости и предложения по The Ball Aluminium Cup®.