2

Десятичный логарифм

Навигация по странице:

  • Определение
  • Калькулятор
  • Свойства
  • Примеры

Определение. Логарифмом числа b по основанию a, где a > 0, a ≠ 1, b > 0, называется показатель степени, в которую нужно возвести основание a, чтоб получить число b.

Определение. Десятичный логарифм — логарифм по основанию 10.

Другими словами, десятичный логарифм числа b является решением уравнения 10x = b.

Обозначение. Десятичный логарифм обозначается lg x или log x.

Калькулятор десятичных логарифмов

lg 2

Свойства десятичного логарифмов

Для любых x > 0 и y > 0 выполняются следующие свойства десятичных логарифмов.

  1. lg x = log10 x — так как основание десятичного логарифма равно 10.

  2. 10lg b = b.

  3. lg 1 = 0

  4. lg 10 = 1

  5. lg 10n = n

  6. lg(x · y) = lg x + lg y

  7. lg xy = lg x — lg y

  8. lg xn = n lg x

  9. График функции y = lg x

  10. (lg x)′ = 1x ln 10

  11. lg x dx = x lg x — xln 10 + C

  12. lim lg x = -∞
    x → +0

Пример 1. Найти значения десятичного логарифма от чисел 100, 1000, 0.1, 0.01, 0.001.

lg 100 = lg 102 = 2

lg 1000 = lg 103 = 3

lg 0.1 = lg 10-1 = -1

lg 0.01 = lg 10-2 = -2

lg 0.001 = lg 10-3 = -3

Пример 2.

Доказать равенство: a lg b = b lg a.

Запишем очевидное равенство:

lg b · lg a = lg a · lg ab

Возведем 10 в соответствующие степени

10lg b · lg a = 10lg a · lg b

(10lg b

)lg a = (10lg a)lg b

blg a = alg b

Равенство доказано.

Пример 3.

Зная, что lg 2 = a, lg 3 = b, lg 5 = c, выразить lg 6; lg 30; lg 16 через a, b, c.

Используем формулы логарифма произведения и степени получим:

lg 6 = lg (2·3)= lg 2 + lg 3 = a + b;

lg 30 = lg (5·2·3)= lg 5 + lg 2 + lg 3 = a + b + c;

lg 16 = lg 24= 4 · lg 2 = 4a.

Пример 4.

Вычислить log9 5 · log25 27.

Перейдем к основе 10:

log9 5 · log25

27 = lg 5lg 9 · lg 27lg 25

Используем свойство логарифма степени lg xn = n lg x:

lg 5lg 9 · lg 27lg 25 = lg 5lg 32 · lg 33lg 52 = lg 52 lg 3 · 3 lg 32 lg 5 = 34

Пример 5.