ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΠΠ 2019 β Π±Π°Π»Π»Ρ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ
ΠΠ΅ΡΠ΅Π²ΠΎΠ΄ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ (ΠΠΠ 9 ΠΊΠ»Π°ΡΡ) Π² ΠΎΡΠ΅Π½ΠΊΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ Π² ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΡ , ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½ΡΡ Π½Π° ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π€ΠΠΠ.
Π’Π°Π±Π»ΠΈΡΠ° ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΡΠ΅Π½ΠΊΡ
Π’Π°Π±Π»ΠΈΡΠ° 1
ΠΡΠ΅Π½ΠΊΠ° ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅ | Π‘ΡΠΌΠΌΠ°ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΉ Π±Π°Π»Π» Π·Π° ΡΠ°Π±ΠΎΡΡ Π² ΡΠ΅Π»ΠΎΠΌ |
2 | 0-7 |
3 | 8-14, Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» |
4 | 15-21, Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» |
5 | 22 β 32, Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» |
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π±Π°Π»Π»ΠΎΠ², ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΡΠ°ΡΡΠ½ΠΈΠΊ ΠΠΠ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ, β 32 Π±Π°Π»Π»Π°.
ΠΠ· Π½ΠΈΡ β Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ»Π³Π΅Π±ΡΠ°Β» β 20 Π±Π°Π»Π»ΠΎΠ², ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» β 12 Π±Π°Π»Π»ΠΎΠ².
Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌΡΠΉ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ β 8 Π±Π°Π»Π»ΠΎΠ², Π½Π°Π±ΡΠ°Π½Π½ΡΠ΅ Π² ΡΡΠΌΠΌΠ΅ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΎΠ±ΠΎΠΈΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ, ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ».
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈ ΠΏΡΠΈΠ΅ΠΌΠ΅ ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ ΡΡ Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ Π΄Π»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°ΠΌ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ.
ΠΡΠΈΠ΅Π½ΡΠΈΡΠΎΠΌ ΠΏΡΠΈ ΠΎΡΠ±ΠΎΡΠ΅ Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ (ΠΏΡΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ Π±Π°Π»Π» ΠΠΠ 2019) ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, ΠΏΡΠΈΠΌΠ΅ΡΡ Π½ΠΈΠΆΠ½ΠΈΡ Π³ΡΠ°Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌ Π±Π°Π»Π»Π°ΠΌ:
β Π΄Π»Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ: 18 Π±Π°Π»Π»ΠΎΠ², ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 6 ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ;
β Π΄Π»Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ: 18 Π±Π°Π»Π»ΠΎΠ², ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 5 ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ;
β Π΄Π»Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρβ. 19 Π±Π°Π»Π»ΠΎΠ², ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 7 ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠ°ΠΌΠΈ Π€ΠΠΠ ΡΠ°Π±Π»ΠΈΡΡ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ² Π² ΠΎΡΠΌΠ΅ΡΠΊΠΈ ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ Π½ΠΎΡΡΡ Π ΠΠΠΠΠΠΠΠΠ’ΠΠΠ¬ΠΠ«Π Π₯ΠΠ ΠΠΠ’ΠΠ . Π ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ ΠΌΠΎΠ³ΡΡ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡΡΡ Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠΎΡΠΎΠ³ΠΈ.
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
Π€ΠΎΡΠΌΠ°Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅
ΠΠΈΡΠ΅ΡΠ°ΡΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠ² Π΄Π»Ρ ΡΠ΄Π°ΡΠΈ ΠΠΠ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΡΡΠ΅Π½ΠΈΠΊΠΈ, ΠΏΠ»Π°Π½ΠΈΡΡΡΡΠΈΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π² ΠΊΠ»Π°ΡΡΠ°Ρ ΡΠΈΠ»ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ. ΠΡΠ»ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΡΡΠΎΠΉ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π² 2019 Π³ΠΎΠ΄Ρ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Π΄Π΅Π²ΡΡΡΡ ΠΊΠ»Π°ΡΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ Β«Π½Π°ΡΠΈΠ½ΠΊΠΈΒ» Π±ΠΈΠ»Π΅ΡΠΎΠ²: Π² Π½ΠΈΡ Π½Π΅Ρ ΡΠ΅ΡΡΠΎΠ² Ρ Π²Π°ΡΠΈΠ°Π½ΡΠ°ΠΌΠΈ ΠΎΡΠ²Π΅ΡΠΎΠ².
ΠΡΠΎΠ³ΠΎΠ²Π°Ρ Π°ΡΡΠ΅ΡΡΠ°ΡΠΈΡ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π΄Π»Ρ Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΎΠ² ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π½Π° Π±Π°Π·Π΅ ΡΠΊΠΎΠ»Ρ.
ΠΠΈΠ»Π΅Ρ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π΄Π»Ρ 9 ΠΊΠ»Π°ΡΡΠ° 2019 Π³ΠΎΠ΄Π° Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π±Π»ΠΎΠΊΠΈ:
Π§Π°ΡΡΡ β 1 |
|
Π§Π°ΡΡΡ β 2 |
ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΠΎΡΠΈΠ½Π΅Π½ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½Ρ ΠΈΡ ΡΠ΅ΡΡΡΡΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΡ ΡΠ΅ΠΌ. |
ΠΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΡΡΠ°ΡΠΈΠΌΡΡ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΈ ΡΠ΅ΡΡΡΠ΅ ΡΠ°ΡΠ° β 235 ΠΌΠΈΠ½ΡΡ.
ΠΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ Π·Π°Π΄Π°Π½ΠΈΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π±ΠΈΠ»Π΅ΡΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²Π°ΠΆΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ:
ΠΠ΅ΡΠ΅Π΄ Π½Π°ΡΠ°Π»ΠΎΠΌ ΡΠ°Π±ΠΎΡΡ Π½Π°Π΄ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΡΠ΅ΠΊΡΡΠ° ΡΡΠ°ΡΠ΅ΠΌΡΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡΡΡΡ Ρ Π΄Π²ΡΠΌΡ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΌΠΈ ΡΠ΅ΠΊΡΡΠΎΠ²ΡΠΌΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠ°ΠΌΠΈ ΠΈ Π²ΡΠ±ΡΠ°ΡΡ Π΄Π»Ρ ΡΠ΅Π±Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΡΠ΅ΠΊΡΡ. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΎΠ±Π° ΡΠ΅ΠΊΡΡΠ° Π½Π΅Π»ΡΠ·Ρ!
ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ΅ΠΊΡΡΠ° Π»ΡΡΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ΅ΡΠ΅Π²ΡΠ΅ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ. ΠΡΠ²Π΅Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠΌΠΊΠΈΠΌ ΠΈ ΡΠΈΡΠ°Π±Π΅Π»ΡΠ½ΡΠΌ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ½ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΡΡΠΊΠΎ ΠΎΡΠ²Π΅ΡΠ°ΡΡ Π½Π° Π²ΠΎΠΏΡΠΎΡ ΠΈ Π½Π΅ Π±ΡΡΡ ΡΠ»ΠΈΡΠΊΠΎΠΌ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΡΠΌ.
ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ Π² Π§Π°ΡΡΠΈ β 1 ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΠΉ ΠΎΠ±ΡΡΠΌ ΡΠ°Π·Π²ΡΡΠ½ΡΡΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ°:
ΠΠΎΠΌΠ΅Ρ Π·Π°Π΄Π°Π½ΠΈΡ |
ΠΠ±ΡΡΠΌ ΠΎΡΠ²Π΅ΡΠ° |
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β 1 |
|
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β 2 |
3-5 ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ |
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β 3 |
5-8 ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ |
ΠΠ»Ρ ΡΠ°Π±ΠΎΡΡ Π½Π°Π΄ ΡΠΎΡΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠ·Π°ΠΌΠ΅Π½ΡΡΡΠΈΠΌΡΡ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΏΠΎΠ»Π½ΡΠΌ ΡΠ΅ΠΊΡΡΠΎΠΌ Ρ ΡΠ΄ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ. Π‘Π²ΠΎΠΈ ΠΌΡΡΠ»ΠΈ ΠΈ ΡΠΎΡΠΊΡ Π·ΡΠ΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ, ΠΏΠΎΠ΄ΠΊΡΠ΅ΠΏΠ»ΡΡ ΡΠ»ΠΎΠ²Π° ΡΠΈΡΠ°ΡΠ°ΠΌΠΈ ΠΈΠ· Ρ ΡΠ΄ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΡΠ°. ΠΠ±ΡΡΠΌ ΡΠΎΡΠΈΠ½Π΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 150 ΡΠ»ΠΎΠ².
Π Π°ΡΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅
ΠΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΡΡΡΡ ΡΠ°ΡΡΠ΅ΠΉ: Π΄ΠΎΡΡΠΎΡΠ½ΡΠΉ, ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΎΡΠ΅Π½ΡΡ.
ΠΠΎΡΡΠΎΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ |
|
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π΄Π΅Π½Ρ 29 Π°ΠΏΡΠ΅Π»Ρ (ΠΏΠ½) |
Π Π΅Π·Π΅ΡΠ²Π½ΡΠΉ Π΄Π΅Π½Ρ 13 ΠΌΠ°Ρ (ΠΏΠ½) |
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ |
|
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π΄Π΅Π½Ρ 11 ΠΈΡΠ½Ρ (Π²Ρ) |
Π Π΅Π·Π΅ΡΠ²Π½ΡΠ΅ Π΄Π½ΠΈ 28 ΠΈΡΠ½Ρ (ΠΏΡ) 1 ΠΈΡΠ»Ρ (ΠΏΠ½) 2 ΠΈΡΠ»Ρ (Π²Ρ) |
ΠΡΠ΅Π½Π½ΡΡ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΠ° |
|
ΠΠ΅ΡΠ²Π°Ρ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΠ° 11 ΡΠ΅Π½ΡΡΠ±ΡΡ (ΡΡ) |
ΠΡΠΎΡΠ°Ρ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΠ° 19 ΡΠ΅Π½ΡΡΠ±ΡΡ (ΡΡ) 21 ΡΠ΅Π½ΡΡΠ±ΡΡ (ΡΠ±) |
ΠΠΎΡΡΠΎΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π΄Π»Ρ ΡΠ΄Π°ΡΠΈ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π² 2019 Π³ΠΎΠ΄Ρ ΠΏΡΠ΅Π΄ΡΡΠΌΠΎΡΡΠ΅Π½ Π΄Π»Ρ:
-
Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ² 2017-2018 ΡΡΠ΅Π±Π½ΠΎΠ³ΠΎ Π³ΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠΌΠΎΠ³Π»ΠΈ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅ΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΠΏΠΎ ΡΠΊΠ°Π»Π΅ Π±Π°Π»Π»ΠΎΠ² ΠΈΠ»ΠΈ ΡΠ΅ΡΠΈΠ»ΠΈ ΡΠ»ΡΡΡΠΈΡΡ ΡΠ²ΠΎΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ;
-
Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ² 2018-2019 ΡΡΠ΅Π±Π½ΠΎΠ³ΠΎ Π³ΠΎΠ΄Π° (ΠΏΡΠΎΡΡΠ±Π° ΡΡΠ°ΡΠ΅Π³ΠΎΡΡ Π² ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ΄Π°Π²Π°ΡΡ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π΄ΠΎΡΡΠΎΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΠ΅Π΄ΡΠΎΠ²Π΅ΡΠΎΠΌ ΡΡΠ΅Π±Π½ΠΎΠ³ΠΎ Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΡ).
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π΄Π»Ρ ΡΠ΄Π°ΡΠΈ ΠΠΠ ΠΏΡΠ΅Π΄ΡΡΠΌΠΎΡΡΠ΅Π½ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΠ°ΡΡΠΈ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ².
ΠΠ½ΠΈ ΠΎΡΠ΅Π½Π½Π΅ΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΠΈ ΠΏΡΠ΅Π΄ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π΄Π»Ρ ΡΡΠ°ΡΠΈΡ ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠΌΠΎΠ³Π»ΠΈ Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π° ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅ΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΎΡΠΎΠ³ Π½Π° ΡΠ΄Π°ΡΠ΅ ΠΠΠ. ΠΠ΄Π½Π°ΠΊΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΡ Π½Π΅ΡΠ΄Π°ΡΠ½ΡΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½ ΠΏΠΎΠ»ΡΡΠ°Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠ°ΡΠΈΠ΅ΡΡ Ρ Π½Π΅ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π±Π°Π»Π»Π°ΠΌΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈΠ»ΠΈ Π΄Π²ΡΠΌ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΠΌ. Π£ΡΠ΅Π½ΠΈΠΊΠ°ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠΌΠΎΠ³Π»ΠΈ ΡΠΏΡΠ°Π²ΠΈΡΡΡΡ Ρ Π±
Π Π΅Π·Π΅ΡΠ²Π½ΡΠ΅ Π΄Π½ΠΈ Π²ΡΠ΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΏΠΎΠΌΠΎΠ³ΡΡ ΡΡΠ°ΡΠΈΠΌΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠΌΠΎΠ³Π»ΠΈ ΠΏΡΠΈΡΡΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π½Π° ΡΠ΄Π°ΡΠ΅ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΏΠΎ ΡΠ²Π°ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅.
ΠΠΠ. ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°. Π£Π½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΉ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ
Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΡΠ°ΡΠΈΡ ΡΡ ΠΊ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅. ΠΠΎΡΠΎΠ±ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΉ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΏΠΎ Π²ΡΠ΅ΠΌ ΡΠ΅ΠΌΠ°ΠΌ, ΠΏΡΠΎΠ²Π΅ΡΡΠ΅ΠΌΡΠΌ ΡΠΊΠ·Π°ΠΌΠ΅Π½ΠΎΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΠ΅Π½ΠΈΡΠΎΠ²ΠΎΡΠ½ΡΠ΅ Π·Π°Π΄Π°Π½ΠΈΡ Π² ΡΠΎΡΠΌΠ΅ ΠΠΠ. Π ΠΊΠΎΠ½ΡΠ΅ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊΠ° ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΠΎΡΠ²Π΅ΡΡ. ΠΠ·Π΄Π°Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΡΡΠΈΡΠ΅Π»ΡΠΌ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΎΠ²Π°ΡΡ ΡΡΠ΅Π±Π½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΡ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ.
ΠΡΠΈΡΠ΅ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π±ΠΈΠ»Π΅ΡΡ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π½Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Π΄Π»Ρ ΠΠΠ ΡΠ΅ΡΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ, ΡΠΎ Π²ΡΠ΅ ΡΠ°Π±ΠΎΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌΠΈ. ΠΠ°ΠΊ ΠΈ Π² ΠΏΡΠΎΡΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°Ρ , ΠΎΡΠ²Π΅ΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡΡΡ Π΄Π²ΡΠΌΡ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌΠΈ. ΠΡΠ»ΠΈ ΡΠ°Π·Π½ΠΈΡΠ° Π² ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΠΈ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΏΡΠ΅Π²ΡΡΠΈΠ»Π° Π΄Π²Π° Π±Π°Π»Π»Π°, ΡΠ°Π±ΠΎΡΠ° ΠΏΡΠΎΠ²Π΅ΡΡΠ΅ΡΡΡ ΡΡΠ΅ΡΡΠΈΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌ, ΡΡΠΈΡΠ΅Π»Π΅ΠΌ. ΠΡΠ»ΠΈ ΠΆΠ΅ ΡΠ°Π·Π½ΠΈΡΠ° ΠΌΠ΅Π½Π΅Π΅ Π΄Π²ΡΡ Π±Π°Π»Π»ΠΎΠ², ΡΠΎ Π²ΡΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π²ΡΡ ΠΎΡΠ΅Π½ΠΎΠΊ.
ΠΡΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ°Π±ΠΎΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ ΠΎΠΏΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΎΡΠΎΠ±ΡΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ Π€ΠΠΠ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎ ΠΊ ΠΠΠ 2019 ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅. ΠΠ·ΡΡΠΈΠ² ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ ΠΈ Π²Π΅ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠ² ΡΠ²ΠΎΠΈ Π·Π½Π°Π½ΠΈΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠ΄Π°ΡΠΈ ΠΠΠ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅:
Π§Π°ΡΡΡ β 1. ΠΡΠΈΡΠ΅ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½ΠΈΠΉ
ΠΡΠΈΡΠ΅ΡΠΈΠΉ |
ΠΡΠ²Π΅Ρ ΡΡΠ°ΡΠ΅Π³ΠΎΡΡ |
ΠΠ°Π»Π» |
Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΎΡΠ²Π΅ΡΠ° Π·Π°Π΄Π°Π½ΠΈΡ |
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΎΠΎΡΠ½Π΅ΡΠ΅Π½ΠΎ Ρ Π·Π°Π΄Π°ΡΠ΅ΠΉ |
1 |
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΎΡΠ½Π΅ΡΠ΅Π½ΠΎ Ρ Π·Π°Π΄Π°ΡΠ΅ΠΉ |
0 |
|
ΠΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΠΊΡΡΠ° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ |
Π‘ΡΠΆΠ΄Π΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ, ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅ΠΊΡΡΠ° |
2 |
Π‘ΡΠΆΠ΄Π΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ, Π½ΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ±ΡΠΈΠ΅ ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ ΠΈΠ»ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΡΠΊΠ°Π·, ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ Π°Π½Π°Π»ΠΈΠ· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΊΡΡΠ° |
1 |
|
Π‘ΡΠΆΠ΄Π΅Π½ΠΈΡ Π½Π΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ, ΡΠ΅ΠΊΡΡ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ ΠΈΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΡΠΊΠ°ΠΆΡΠ½ |
0 |
|
Π€Π°ΠΊΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ, Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΡΠ΅ΡΠ΅Π²Π°Ρ ΡΠΎΡΠ½ΠΎΡΡΡ ΠΎΡΠ²Π΅ΡΠ° |
ΠΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ ΠΎΡΠΈΠ±ΠΊΠΈ |
2 |
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° |
1 |
|
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π΄Π²Π΅ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΡΠΈΠ±ΠΎΠΊ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° |
0 |
Π§Π°ΡΡΡ β 1. ΠΡΠΈΡΠ΅ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ
ΠΡΠΈΡΠ΅ΡΠΈΠΉ |
ΠΡΠ²Π΅Ρ ΡΡΠ°ΡΠ΅Π³ΠΎΡΡ |
ΠΠ°Π»Π» |
Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΎΡΠ²Π΅ΡΠ° Π·Π°Π΄Π°Π½ΠΈΡ |
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΎΠΎΡΠ½Π΅ΡΠ΅Π½ΠΎ Ρ Π·Π°Π΄Π°ΡΠ΅ΠΉ |
1 |
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΎΡΠ½Π΅ΡΠ΅Π½ΠΎ Ρ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΠΈΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΎ |
0 |
|
Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ |
Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π²Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, ΡΠ΅Π·ΠΈΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΊΡΡΠΎΠΌ Π΄Π²ΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ |
3 |
Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π²Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, Π½ΠΎ ΡΠ΅Π·ΠΈΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΊΡΡΠΎΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ |
2 |
|
Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π²Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, Π½ΠΎ ΡΡΠΆΠ΄Π΅Π½ΠΈΡ Π½Π΅ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΊΡΡΠΎΠΌ |
1 |
|
ΠΠ΅Ρ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Ρ ΡΠ΅ΠΊΡΡΠΎΠΌ |
0 |
|
Π€Π°ΠΊΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ, Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΡΠ΅ΡΠ΅Π²Π°Ρ ΡΠΎΡΠ½ΠΎΡΡΡ ΠΎΡΠ²Π΅ΡΠ° |
ΠΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ ΠΎΡΠΈΠ±ΠΊΠΈ |
2 |
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° |
1 |
|
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π΄Π²Π΅ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΡΠΈΠ±ΠΎΠΊ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° |
0 |
Π§Π°ΡΡΡ β 2. ΠΡΠΈΡΠ΅ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΠΎΡΠΈΠ½Π΅Π½ΠΈΡ
ΠΡΠΈΡΠ΅ΡΠΈΠΉ |
ΠΡΠ²Π΅Ρ ΡΡΠ°ΡΠ΅Π³ΠΎΡΡ |
ΠΠ°Π»Π» |
Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΠΎΡΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠ΅ |
Π‘ΠΎΡΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ΅ΠΌΠ΅ |
1 |
Π‘ΠΎΡΠΈΠ½Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΠΈΡΠ°Π½ΠΎ Π½Π΅ ΠΏΠΎ ΡΠ΅ΠΌΠ΅, ΡΠ΅ΠΌΠ° Π½Π΅ ΡΠ°ΡΠΊΡΡΡΠ° ΠΈΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ |
0 |
|
ΠΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΡΡΡ, ΠΏΡΠΈΠ²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΊΡΡΠ° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ |
Π‘ΡΠΆΠ΄Π΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ, ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅ΠΊΡΡΠ° |
2 |
Π‘ΡΠΆΠ΄Π΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ, Π½ΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ±ΡΠΈΠ΅ ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ ΠΈΠ»ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΡΠΊΠ°Π·, ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ Π°Π½Π°Π»ΠΈΠ· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΊΡΡΠ° |
1 |
|
Π‘ΡΠΆΠ΄Π΅Π½ΠΈΡ Π½Π΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ, Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΎΡΡΡΠ»ΠΎΠΊ ΠΊ ΡΠ΅ΠΊΡΡΡ |
0 |
|
ΠΠΏΠΎΡΠ° Π½Π° ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ |
Π’Π΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ, Π²ΡΡΠ²Π»Π΅Π½Π° ΡΠΎΠ»Ρ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ ΡΠ΄ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π° |
2 |
Π’Π΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ, Π½ΠΎ Π½Π΅ Π²ΡΡΠ²Π»Π΅Π½Π° ΡΠΎΠ»Ρ Ρ ΡΠ΄ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΡΠ΅Π΄ΡΡΠ² |
1 |
|
Π’Π΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ Π½Π΅ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ |
0 |
|
ΠΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ |
ΠΠ±Π»Π°Π΄Π°Π΅Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ, ΡΠΎΠ±Π»ΡΠ΄Π΅Π½Ρ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΡΠΌΠΈ |
2 |
Π§Π°ΡΡΠΈΡΠ½ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΠΉ Π·Π°ΠΌΡΡΠ΅Π», Π½ΠΎ Π΅ΡΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°ΡΡΠ΅ΠΉ |
1 |
|
ΠΠΎΡΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΠΉ Π·Π°ΠΌΡΡΠ΅Π», Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π·Π°ΡΡΡΠ΄Π½ΡΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΌΡΡΠ»Π° |
0 |
|
ΠΠΎΠ³ΠΈΡΠ½ΠΎΡΡΡ |
ΠΡΠΈΠ±ΠΊΠΈ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ |
2 |
ΠΠΎΠΏΡΡΠ΅Π½Π° ΠΎΠ΄Π½Π° ΠΎΡΠΈΠ±ΠΊΠ° |
1 |
|
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π΄Π²Π΅ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΡΠΈΠ±ΠΎΠΊ |
0 |
|
Π€Π°ΠΊΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠ½ΠΎΡΡΡ |
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ |
2 |
ΠΠΎΠΏΡΡΠ΅Π½Ρ Π΄Π²Π΅ ΠΎΡΠΈΠ±ΠΊΠΈ |
1 |
|
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ |
0 |
|
Π‘ΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π²ΡΡ Π½ΠΎΡΠΌ |
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ |
2 |
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ 3-4 ΠΎΡΠΈΠ±ΠΊΠΈ |
1 |
|
ΠΠΎΠΏΡΡΠ΅Π½ΠΎ 5 ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΡΠΈΠ±ΠΎΠΊ |
0 |
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π±Π°Π»Π»:
ΠΠ»ΠΎΠΊ |
ΠΠΎΠΌΠ΅Ρ Π·Π°Π΄Π°Π½ΠΈΡ |
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π±Π°Π»Π» |
Π§Π°ΡΡΡ β 1 |
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β 1 |
5 |
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β 2 |
5 |
|
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β 3 |
6 |
|
Π§Π°ΡΡΡ β 2 |
Π‘ΠΎΡΠΈΠ½Π΅Π½ΠΈΠ΅ |
13 |
Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π±Π°Π»Π» ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ β 2019 ΡΠ΅ΠΏΠ΅ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 29 Π±Π°Π»Π»ΠΎΠ².
Π§ΡΠΎ Π΅ΡΡ ΠΏΠΎΡΠΈΡΠ°ΡΡ?
ΠΠ°Π»Π»Ρ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΠΠ ΠΏΠΎ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π·Π°Π½ΠΎΡΠΈΡΡΡ Π² Π°ΡΡΠ΅ΡΡΠ°Ρ ΡΡΠ°ΡΠ΅Π³ΠΎΡΡ. ΠΠ»Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΡΠ΅ΡΡΠΎΠ²ΠΎΠ³ΠΎ Π±Π°Π»Π»Π° ΠΠΠ Π² ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΡΡ ΠΎΡΠΌΠ΅ΡΠΊΡ Π€ΠΠΠ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠ°Π±Π»ΠΈΡΠ΅ΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ:
ΠΡΠΌΠ΅ΡΠΊΠ° |
ΠΠ°Π»Π»Ρ |
5 |
19-29 |
4 |
14-20 |
3 |
7-13 |
2 |
0-6 |
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΄Π»Ρ ΡΠ΄Π°ΡΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΡΡΠ°ΡΠ΅ΠΌΡΡΡ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π·Π° ΡΠΊΠ·Π°ΠΌΠ΅Π½ ΠΎΡΠΌΠ΅ΡΠΊΡ Β«ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΒ», ΡΠΎ Π΅ΡΡΡ Π½Π°Π±ΡΠ°ΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ 7 ΡΠ΅ΡΡΠΎΠ²ΡΡ Π±Π°Π»Π»ΠΎΠ². ΠΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ ΡΡΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ Π² Π΄ΡΡΠ³ΠΎΠ΅ ΡΡΠ΅Π±Π½ΠΎΠ΅ Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΎΠ³ΠΎ Π±Π°Π»Π»Π° Π±ΡΠ΄Π΅Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ. Π 2019 Π³ΠΎΠ΄Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΎΡΠΎΠ³ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ Π² ΠΊΠΎΠ»Π»Π΅Π΄ΠΆ ΠΈΠ»ΠΈ ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠΉ ΠΊΠ»Π°ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ 15 ΡΠ΅ΡΡΠΎΠ²ΡΡ Π±Π°Π»Π»ΠΎΠ².
#ADVERTISING_INSERT#
ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ 2019 Π³ΠΎΠ΄
ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ 2019 Π³ΠΎΠ΄ β Π±Π°Π»Π»Ρ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ
Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π½ΡΠΆΠ½ΠΎ Π½Π°Π±ΡΠ°ΡΡ Π±Π°Π»Π»ΠΎΠ² Π½Π° ΠΠΠ Π² 2019 Π³ΠΎΠ΄Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΡΡΠΎ Π±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΡΠ΅Π½ΠΊΡ 3, 4, ΠΈΠ»ΠΈ 5 ΠΌΠΎΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ Π² ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΡ , ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½ΡΡ Π½Π° ΡΠ°ΠΉΡΠ΅ Π ΠΎΡΠΎΠ±ΡΠ½Π°Π΄Π·ΠΎΡΠ°.
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π±Π°Π»Π»ΠΎΠ², ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΡΠ°ΡΡΠ½ΠΈΠΊ ΠΠΠ 2019 Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ, β 32 Π±Π°Π»Π»Π°.
ΠΠ· Π½ΠΈΡ β Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ»Π³Π΅Π±ΡΠ°Β» β 20 Π±Π°Π»Π»ΠΎΠ², ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» β 12 Π±Π°Π»Π»ΠΎΠ².
Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌΡΠΉ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ β 8 Π±Π°Π»Π»ΠΎΠ² (ΠΎΡΠ΅Π½ΠΊΠ° 3), Π½Π°Π±ΡΠ°Π½Π½ΡΠ΅ Π² ΡΡΠΌΠΌΠ΅ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΎΠ±ΠΎΠΈΡ ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ, ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ».
Π¨ΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ΅ΡΡΠ΅ΡΠ° ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π»Π° Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΡΠΌΠ΅ΡΠΊΡ ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅
Π’Π°Π±Π»ΠΈΡΠ° 1
ΠΡΠ΅Π½ΠΊΠ° ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅ | Β«2Β» | Β«3Β» | Β«4Β» | Β«5Β» |
Π‘ΡΠΌΠΌΠ°ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΉ Π±Π°Π»Π» Π·Π° ΡΠ°Π±ΠΎΡΡ Π² ΡΠ΅Π»ΠΎΠΌ | 0-7 | 8-14, Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» | 15-21, Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» | 22 β 32, Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» |
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈ ΠΏΡΠΈΠ΅ΠΌΠ΅ ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ ΡΡ Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ Π΄Π»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°ΠΌ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ.
ΠΡΠΈΠ΅Π½ΡΠΈΡΠΎΠΌ ΠΏΡΠΈ ΠΎΡΠ±ΠΎΡΠ΅ Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ (ΠΏΡΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ Π±Π°Π»Π» ΠΠΠ 2019) ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, ΠΏΡΠΈΠΌΠ΅ΡΡ Π½ΠΈΠΆΠ½ΠΈΡ Π³ΡΠ°Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌ Π±Π°Π»Π»Π°ΠΌ:
β Π΄Π»Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ: 18 Π±Π°Π»Π»ΠΎΠ², ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 6 ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ;
β Π΄Π»Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ: 18 Π±Π°Π»Π»ΠΎΠ², ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 5 ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ;
β Π΄Π»Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρβ. 19 Π±Π°Π»Π»ΠΎΠ², ΠΈΠ· Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 7 ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠ°ΠΌΠΈ Π ΠΎΡΠΎΠ±Π½Π°Π΄Π·ΠΎΡΠ° ΡΠΊΠ°Π»Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ² Π² ΠΎΡΠΌΠ΅ΡΠΊΠΈ ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ Π½ΠΎΡΡΡ Π ΠΠΠΠΠΠΠΠΠ’ΠΠΠ¬ΠΠ«Π Π₯ΠΠ ΠΠΠ’ΠΠ . Π ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ ΠΌΠΎΠ³ΡΡ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡΡΡ Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠΎΡΠΎΠ³ΠΈ.
Π‘ΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΠΠ 2019 ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΡΠ΅Π»ΠΎΠΌ
ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°Π±ΠΎΡ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠΈΠΉ Π±Π°Π»Π».
Π ΡΠ°Π±Π»ΠΈΡΠ΅ 2 ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π±Π°Π»Π»Π°. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π±Π°Π»Π» Π·Π° ΡΠ°Π±ΠΎΡΡ Π² ΡΠ΅Π»ΠΎΠΌ β 32. ΠΠ°Π΄Π°Π½ΠΈΡ, ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΠΌΡΠ΅ 1 Π±Π°Π»Π»ΠΎΠΌ, ΡΡΠΈΡΠ°ΡΡΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠΌΠΈ Π²Π΅ΡΠ½ΠΎ, Π΅ΡΠ»ΠΈ ΡΠΊΠ°Π·Π°Π½ Π½ΠΎΠΌΠ΅Ρ Π²Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° (Π² Π·Π°Π΄Π°Π½ΠΈΡΡ Ρ Π²ΡΠ±ΠΎΡΠΎΠΌ ΠΎΡΠ²Π΅ΡΠ°), ΠΈΠ»ΠΈ Π²ΠΏΠΈΡΠ°Π½ Π²Π΅ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ (Π² Π·Π°Π΄Π°Π½ΠΈΡΡ Ρ ΠΊΡΠ°ΡΠΊΠΈΠΌ ΠΎΡΠ²Π΅ΡΠΎΠΌ), ΠΈΠ»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΡΠΎΠΎΡΠ½Π΅ΡΠ΅Π½Ρ ΠΎΠ±ΡΠ΅ΠΊΡΡ Π΄Π²ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ² ΠΈ Π·Π°ΠΏΠΈΡΠ°Π½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠΈΡΡ (Π² Π·Π°Π΄Π°Π½ΠΈΡΡ Π½Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ).
Π’Π°Π±Π»ΠΈΡΠ° 2. Π‘ΠΈΡΡΠ΅ΠΌΠ° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π±Π°Π»Π»Π°
ΠΠ°Π΄Π°Π½ΠΈΡ, ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΠΌΡΠ΅ Π² 2 Π±Π°Π»Π»Π°, ΡΡΠΈΡΠ°ΡΡΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠΌΠΈ Π²Π΅ΡΠ½ΠΎ, Π΅ΡΠ»ΠΈ ΠΎΠ±ΡΡΠ°ΡΡΠΈΠΉΡΡ Π²ΡΠ±ΡΠ°Π» ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠΉ ΠΏΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΈΠ· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°ΠΏΠΈΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ½ΡΡΠ΅Π½ Ρ ΠΎΠ΄ Π΅Π³ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½ Π²Π΅ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΅ΠΌΡ Π²ΡΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»Π½ΡΠΉ Π±Π°Π»Π», ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π΄Π°Π½Π½ΠΎΠΌΡ Π·Π°Π΄Π°Π½ΠΈΡ. ΠΡΠ»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π΄ΠΎΠΏΡΡΠ΅Π½Π° ΠΎΡΠΈΠ±ΠΊΠ°, Π½Π΅ ΠΈΠΌΠ΅ΡΡΠ°Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ° ΠΈ Π½Π΅ Π²Π»ΠΈΡΡΡΠ°Ρ Π½Π° ΠΎΠ±ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ Ρ ΠΎΠ΄Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΎ ΡΡΠ°ΡΡΠ½ΠΈΠΊΡ Π²ΡΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ 1 Π±Π°Π»Π».
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
ΠΠ΅ΡΠ΅Π²ΠΎΠ΄ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 Π² ΠΎΡΠ΅Π½ΠΊΡ
- ΠΠΠ
Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π±Π°Π»Π»ΠΎΠ² Π½ΡΠΆΠ½ΠΎ Π½Π°Π±ΡΠ°ΡΡ Π½Π° ΠΠΠ Π² 2019 Π³ΠΎΠ΄Ρ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΡΠ΅Π½ΠΊΡ 3, 4 ΠΈΠ»ΠΈ 5 ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎ Π΄Π»Ρ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ² 9 ΠΊΠ»Π°ΡΡΠΎΠ² ΠΈ Π΄Π»Ρ ΡΡΠΈΡΠ΅Π»Π΅ΠΉ.
Π ΠΎΡΠΎΠ±ΡΠ½Π°Π΄Π·ΠΎΡ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π» ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 Π² ΠΎΡΠ΅Π½ΠΊΠΈ, ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π±Π°Π»Π»Ρ ΠΠΠ, ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌΡΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π±Π°Π»Π»Ρ ΠΠΠ 2019 Π΄Π»Ρ ΠΎΡΠ±ΠΎΡΠ° Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ.
Π¨ΠΊΠ°Π»Π° ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019
(Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π±Π°Π»Π»ΠΎΠ² Π½ΡΠΆΠ½ΠΎ Π½Π°Π±ΡΠ°ΡΡ ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΡΠ΅Π½ΠΊΡ 3)
Π’Π°Π±Π»ΠΈΡΠ° 1
Π£ΡΠ΅Π±Π½ΡΠΉ ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ | ΠΠ΅ΡΠ²ΠΈΡΠ½ΡΠ΅ Π±Π°Π»Π»Ρ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π±Π°Π»Π»Ρ Β«3Β» | ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π»Π° |
Π ΡΡΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ | 15 | |
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° | 8 | Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 2 Π±Π°Π»Π»ΠΎΠ² ΠΈΠ· 8 ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» |
Π€ΠΈΠ·ΠΈΠΊΠ° | 10 | |
Π₯ΠΈΠΌΠΈΡ (ΠΌΠΎΠ΄Π΅Π»Ρ 1, ΠΌΠΎΠ΄Π΅Π»Ρ 2) | 9 | |
ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡ | 13 | |
ΠΠ΅ΠΎΠ³ΡΠ°ΡΠΈΡ | 12 | |
ΠΠ±ΡΠ΅ΡΡΠ²ΠΎΠ·Π½Π°Π½ΠΈΠ΅ | 15 | |
ΠΡΡΠΎΡΠΈΡ | 13 | |
ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ° | 12 | |
ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΊΠ° ΠΈ ΠΠΠ’ | 5 | |
ΠΠ½ΠΎΡΡΡΠ°Π½Π½ΡΠ΅ ΡΠ·ΡΠΊΠΈ (Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΈΠΉ, Π½Π΅ΠΌΠ΅ΡΠΊΠΈΠΉ, ΡΡΠ°Π½ΡΡΠ·ΡΠΊΠΈΠΉ, ΠΈΡΠΏΠ°Π½ΡΠΊΠΈΠΉ) | 29 |
ΠΠ΅ΡΠ΅Π²ΠΎΠ΄ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 Π² ΠΎΡΠ΅Π½ΠΊΠΈ
Π’Π°Π±Π»ΠΈΡΠ° 2
ΠΡΠ΅Π΄ΠΌΠ΅Ρ | Β«2Β» | Β«3Β» | Β«4Β» | Β«5Β» |
Π ΡΡΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ | 0β14 | 15β24 | 25β33 | 34β39 |
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° | 0β7 | 8β14 | 15β21 | 22β32 |
ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡ | 0β12 | 13β25 | 26β36 | 37β46 |
ΠΠ΅ΠΎΠ³ΡΠ°ΡΠΈΡ | 0β11 | 12β19 | 20β26 | 27β32 |
ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΊΠ° ΠΈ ΠΠΠ’ | 0β4 | 5β11 | 12β17 | 18β22 |
ΠΡΡΠΎΡΠΈΡ | 0β12 | 13β23 | 24β34 | 35β44 |
ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ° | 0β11 | 12β19 | 20β26 | 27β33 |
ΠΠ±ΡΠ΅ΡΡΠ²ΠΎΠ·Π½Π°Π½ΠΈΠ΅ | 0β14 | 15β24 | 25β33 | 34β39 |
Π€ΠΈΠ·ΠΈΠΊΠ° | 0β9 | 10β19 | 20β30 | 31β40 |
Π₯ΠΈΠΌΠΈΡ (Π±Π΅Π· ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°) | 0β8 | 9β17 | 18β26 | 27β34 |
Π₯ΠΈΠΌΠΈΡ (Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠΌ) | 0β8 | 9β18 | 19β28 | 29β38 |
ΠΠ½Π³Π»ΠΈΠΉΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ | 0β28 | 29β45 | 46β58 | 59β70 |
ΠΠ½ΠΎΡΡΡΠ°Π½Π½ΡΠΉ ΡΠ·ΡΠΊ | 0β28 | 29β45 | 46β58 | 59β70 |
Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΡΠ½ΠΊΡΠΎΠΌ 22 ΠΠΎΡΡΠ΄ΠΊΠ° ΠΎΡΠ³Π°Π½Ρ ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²Π»Π°ΡΡΠΈ ΡΡΠ±ΡΠ΅ΠΊΡΠΎΠ² Π ΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ Π€Π΅Π΄Π΅ΡΠ°ΡΠΈΠΈ, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡΠΈΠ΅ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΈΡΠΎΠ³ΠΎΠ²ΠΎΠΉ Π°ΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°ΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ ΡΡΠΌΠΌΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ² Π·Π° ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ°Π±ΠΎΡΡ ΠΠΠ ΠΈ ΠΠΠ Π² ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ.
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ 2019
ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½ΠΎΠ² Π² 9-ΠΌ ΠΊΠ»Π°ΡΡΠ΅. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π°Π²Π°ΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π² 10-ΠΉ ΠΊΠ»Π°ΡΡ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π°ΡΡΠ΅ΡΡΠ°ΡΠ° ΠΎΠ± ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΡΠ΅Π΄Π½Π΅ΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ. ΠΡΠ»ΠΈ Π²Ρ ΡΠΎΠ±ΠΈΡΠ°Π΅ΡΠ΅ΡΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π² ΡΠΈΠ·ΠΌΠ°ΡΠΊΠ»Π°ΡΡΠ΅, ΡΠΎ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠ΄Π°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π½Π° Π²ΡΡΠΎΠΊΠΈΠΉ Π±Π°Π»Π». Π Π΄Π°ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΠΏΠ΅ΡΠ΅ΡΠ΄Π°ΡΠ°Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠ·Π½Π°ΡΡ ΡΡΡ.
ΠΠ·Π½Π°ΠΊΠΎΠΌΠΈΠ²ΡΠΈΡΡ Ρ ΠΎΠ±ΡΠ΅ΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ΅ΠΉ ΠΎΠ± ΡΠΊΠ·Π°ΠΌΠ΅Π½Π΅, ΡΡΠ°Π·Ρ ΠΏΡΠΈΡΡΡΠΏΠ°ΠΉΡΠ΅ ΠΊ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅. ΠΠΊΠ·Π°ΠΌΠ΅Π½ Π² ΡΡΠΎΠΌ Π³ΠΎΠ΄Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΏΡΠΎΡΠ»ΡΡ Π»Π΅Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ Π³ΠΎΡΠΎΠ²ΠΈΡΡΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°ΠΌ 2017 ΠΈ 2018 Π³ΠΎΠ΄Π°. ΠΠ·ΠΌΠ΅Π½ΠΈΠ»Π°ΡΡ Π»ΠΈΡΡ ΡΡΡΡΠΊΡΡΡΠ° ΡΠ΅ΡΡΠ°: ΡΠ±ΡΠ°Π»ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ Β«Π Π΅Π°Π»ΡΠ½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°Β», Π° Π·Π°Π΄Π°Π½ΠΈΡ ΠΈΠ· Π½Π΅Π³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»ΡΠΌ Β«ΠΠ»Π³Π΅Π±ΡΠ°Β» ΠΈ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ».
Π‘ΡΡΡΠΊΡΡΡΠ° ΠΠΠ
Π Π°Π±ΠΎΡΠ° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π΄Π²ΡΡ ΡΠ°ΡΡΠ΅ΠΉ, Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ΄ΡΡ Π΄Π²Π° ΠΌΠΎΠ΄ΡΠ»Ρ β Β«ΠΠ»Π³Π΅Π±ΡΠ°Β» ΠΈ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ». Π ΡΠ°ΡΡΠΈ 1 ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π·Π°Π΄Π°Π½ΠΈΡ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ, Π·Π° ΠΊΠΎΡΠΎΡΡΠ΅ Π΄Π°ΡΡ ΠΏΠΎ 1 Π±Π°Π»Π»Ρ. ΠΡΠΎ Π»ΠΈΠ±ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ Π½Π° Π²ΡΠ±ΠΎΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° ΠΈΠ»ΠΈ Π·Π°Π΄Π°Π½ΠΈΡ, ΡΡΠ΅Π±ΡΡΡΠΈΠ΅ Π½Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΡΠ°ΡΠΊΠΈΠΉ ΠΎΡΠ²Π΅Ρ Π² Π²ΠΈΠ΄Π΅ ΡΠΈΡΡΡ, ΡΠΈΡΠ»Π° ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΡΡ.
Π§Π°ΡΡΡ 2 β Π·Π°Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Π΅ΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ, Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ 2 Π±Π°Π»Π»Π°. Π ΡΡΠΈΡ Π·Π°Π΄Π°Π½ΠΈΡΡ Π²Π°ΠΆΠ½ΠΎ Π½Π΅ ΠΏΡΠΎΡΡΠΎ Π΄Π°ΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ, Π½ΠΎ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Ρ ΠΎΠ΄ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ΄Π΅ΡΡ ΡΠΎΠΆΠ΅ ΡΠ½Π°ΡΠ°Π»Π° ΠΈΠ΄ΡΡ Π·Π°Π΄Π°Π½ΠΈΡ ΠΈΠ· ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ»Π³Π΅Π±ΡΠ°Β», Π° Π·Π°ΡΠ΅ΠΌ β Π·Π°Π΄Π°Π½ΠΈΡ ΠΈΠ· ΠΌΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ». ΠΠ°Π»ΡΡΠ΅ ΡΡΠ°Π½Π΅Ρ ΡΡΠ½Π΅Π΅:
Π§Π°ΡΡΡ 1:
- ΠΠΎΠ΄ΡΠ»Ρ Β«ΠΠ»Π³Π΅Π±ΡΠ°Β» ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 14 Π·Π°Π΄Π°Π½ΠΈΠΉ (β 1-14) β Π±Π°Π·ΠΎΠ²ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ β 1 Π±Π°Π»Π» Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅;
- ΠΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 6 Π·Π°Π΄Π°Π½ΠΈΠΉ (β 15-20) β Π±Π°Π·ΠΎΠ²ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ β 1 Π±Π°Π»Π» Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.
Π§Π°ΡΡΡ 2:
- ΠΠΎΠ΄ΡΠ»Ρ Β«ΠΠ»Π³Π΅Π±ΡΠ°Β» ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 3 Π·Π°Π΄Π°Π½ΠΈΠΉ (β 21-23) β ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΠΈ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ β 2 Π±Π°Π»Π»Π° Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅;
- ΠΠΎΠ΄ΡΠ»Ρ Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΒ» ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 3 Π·Π°Π΄Π°Π½ΠΈΠΉ (β 24-26) β ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΠΈ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ β 2 Π±Π°Π»Π»Π° Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.
ΠΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΠΠ
Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΠΠ Ρ ΠΠΠ Π½Π΅Ρ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ² ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠ³Π° ΠΏΠΎ ΡΠΎΠΌΡ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΌΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΡ. ΠΡΠΎΡ ΠΏΠΎΡΠΎΠ³ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΌΠ΅ΡΡΠ½ΡΠ΅ ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ Π²Π»Π°ΡΡΠΈ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄ΠΎΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½ΠΎΠ². ΠΠ΄Π½Π°ΠΊΠΎ Ρ ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ² Π΅ΡΡΡ ΡΡΠ°Π»ΠΎΠ½, Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΎΠ½ΠΈ ΡΠ²Π΅ΡΡΡΡΡΡ ΠΈ ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π½Π΅ ΠΎΡΡ ΠΎΠ΄ΡΡ ΠΎΡ Π½Π΅Π³ΠΎ β ΡΡΠΎ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΡΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ Π€Π΅Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠΈΡΡΡΠ° ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ (Π€ΠΠΠ).
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠΈΠΌ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΠΌ, ΡΡΠΎΠ±Ρ ΡΠ΄Π°ΡΡ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Ρ ΠΎΡΡ Π±Ρ Π½Π° ΡΡΠΎΠΉΠΊΡ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π±ΡΠ°ΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 8 ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ². ΠΡΠΎ ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΌΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ 8 Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠ°ΡΡΠΈ 1. ΠΠ»Ρ ΠΏΡΡΠ΅ΡΠΊΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π±ΡΠ°ΡΡ 22-32 ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»Π°.
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΠΠ
- ΠΠ° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΡΠΎΠΉΡΠΈ ΡΠ΅ΡΡΡ ΠΠΠ ΠΎΠ½Π»Π°ΠΉΠ½ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Π±Π΅Π· ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΈ Π‘ΠΠ‘. ΠΠ° Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°Π·Π΄Π΅Π» ΠΎΠ±Π½ΠΎΠ²Π»ΡΠ΅ΡΡΡ, ΠΈ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ Π² Π½Π΅ΠΌ Π±ΡΠ΄ΡΡ ΠΏΠΎΡΠ²Π»ΡΡΡΡΡ Π½ΠΎΠ²ΡΠ΅ ΡΠ΅ΡΡΡ Π·Π° Π²Π΅ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΡΡΡΡΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½Ρ ΡΠ΅Π°Π»ΡΠ½ΡΠΌ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΠΌ, ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ²ΡΠΈΠΌΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π³ΠΎΠ΄Ρ.
- Π‘ΠΊΠ°ΡΠ°ΠΉΡΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡ Π»ΡΡΡΠ΅ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΡΡΡ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ ΠΈ Π»Π΅Π³ΡΠ΅ Π΅Π³ΠΎ ΡΠ΄Π°ΡΡ. ΠΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΈ ΠΎΠ΄ΠΎΠ±ΡΠ΅Π½Ρ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ ΠΠΠ Π€Π΅Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ½ΡΡΠΈΡΡΡΠΎΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ (Π€ΠΠΠ). Π ΡΡΠΎΠΌ ΠΆΠ΅ Π€ΠΠΠ ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡΡΡ Π²ΡΠ΅ ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΠΠ.
ΠΠ°Π΄Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Ρ ΡΠ²ΠΈΠ΄ΠΈΡΠ΅, ΡΠΊΠΎΡΠ΅Π΅ Π²ΡΠ΅Π³ΠΎ, Π½Π΅ Π²ΡΡΡΠ΅ΡΡΡΡΡ Π½Π° ΡΠΊΠ·Π°ΠΌΠ΅Π½Π΅, Π½ΠΎ Π±ΡΠ΄ΡΡ Π·Π°Π΄Π°Π½ΠΈΡ, Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ, ΠΏΠΎ ΡΠΎΠΉ ΠΆΠ΅ ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈΠ»ΠΈ ΠΏΡΠΎΡΡΠΎ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠΈΡΡΠ°ΠΌΠΈ. - ΠΠ·Π½Π°ΠΊΠΎΠΌΡΡΠ΅ΡΡ Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ, ΠΎΠ½ΠΈ ΠΏΠΎΠΌΠΎΠ³ΡΡ ΠΎΡΠ²Π΅ΠΆΠΈΡΡ ΠΏΠ°ΠΌΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΈ ΡΠ΅ΡΡΠΎΠ²ΡΡ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ².
ΠΠΎΠ»Π΅Π·Π½ΡΠ΅ ΡΡΡΠ»ΠΊΠΈ:
Π¨ΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 Π³ΠΎΠ΄Π° Π² ΠΎΡΠ΅Π½ΠΊΠΈ
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΠΊΠ·Π°ΠΌΠ΅Π½ (ΠΠΠ) β ΠΈΡΠΏΡΡΠ°Π½ΠΈΠ΅, ΠΏΡΠ΅Π΄ΡΡΠΎΡΡΠ΅Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΡ! ΠΠΊΠ·Π°ΠΌΠ΅Π½ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄Π»Ρ Π²ΡΠ΅Ρ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ² ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Ρ, Π½ΠΎ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΊ Π½Π΅ΠΌΡ Π³ΠΎΡΠΎΠ²ΡΡΡΡ Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΈ, ΠΆΠ΅Π»Π°ΡΡΠΈΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π² ΠΊΠΎΠ»Π»Π΅Π΄ΠΆΠ°Ρ , Π²Π΅Π΄Ρ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΡΠΎΠ²Π΅Π½Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΈ ΠΏΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΡΡΠΎΠΊΠΈΠΉ Π±Π°Π»Π».
Π‘Π°ΠΌΠΎΠ΅ Π²ΡΠ΅ΠΌΡ Π΄Π»Ρ Π±ΡΠ΄ΡΡΠΈΡ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ² ΡΠ·Π½Π°ΡΡ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ΅ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊ ΠΏΡΠΎΠ²Π΅ΡΡΡΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ°Π±ΠΎΡΡ, ΠΈ ΠΊΠ°ΠΊΠΎΠΉ Π±ΡΠ΄Π΅Ρ Π² 2019 Π³ΠΎΠ΄Ρ ΡΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΡΠ΅ΡΡΠΎΠ²ΡΡ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ Π² ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ.
ΠΠ°ΠΊΠΈΠΌ Π±ΡΠ΄Π΅Ρ ΠΠΠ Π² 2019 Π³ΠΎΠ΄Ρ?
ΠΡΠ»ΠΈ ΡΠ΅ΡΠΎΡΠΌΠ° ΠΠΠ ΠΊ 2019 Π³ΠΎΠ΄Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π°Π²Π΅ΡΡΠΈΡΡΡ ΠΈ Π² ΠΠΠΠ°Ρ Π΄Π»Ρ 11-ΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΎΠ² ΠΊΠ°ΡΠ΄ΠΈΠ½Π°Π»ΡΠ½ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π½Π΅ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄ΠΈΡΡΡ, ΡΠΎ ΠΠΠ ΡΠΎΠ»ΡΠΊΠΎ Π²Ρ ΠΎΠ΄ΠΈΡ Π² ΡΡΠ°ΠΏ ΡΠ΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π ΠΏΡΠΎΡΠ»ΠΎΠΌ 20172018 ΡΡΠ΅Π±Π½ΠΎΠΌ Π³ΠΎΠ΄Ρ Π² ΠΎΡΠ΅ΡΠ΅Π΄Π½ΠΎΠΉ ΡΠ°Π· Π±ΡΠ»ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΎ ΡΠΈΡΠ»ΠΎ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠ², Π²ΡΠ½ΠΎΡΠΈΠΌΡΡ Π½Π° ΠΈΡΠΎΠ³ΠΎΠ²ΡΡ Π°ΡΡΠ΅ΡΡΠ°ΡΠΈΡ, ΠΈ Π² 2019 Π³ΠΎΠ΄Ρ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ ΠΏΡΠ΅Π΄ΡΡΠΎΠΈΡ ΡΠ΄Π°Π²Π°ΡΡ Π² ΠΎΠ±ΡΠ΅ΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ 5 ΡΠΊΠ·Π°ΠΌΠ΅Π½ΠΎΠ²:
- 2 ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΡΡ : ΡΡΡΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°;
- 3 Π½Π° Π²ΡΠ±ΠΎΡ ΠΈΠ· ΡΠ°ΠΊΠΈΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½, ΠΊΠ°ΠΊ: ΡΠΈΠ·ΠΈΠΊΠ°, Ρ ΠΈΠΌΠΈΡ, ΠΈΡΡΠΎΡΠΈΡ, ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΊΠ°, ΠΈΠ½ΠΎΡΡΡΠ°Π½Π½ΡΠΉ ΡΠ·ΡΠΊ, ΠΎΠ±ΡΠ΅ΡΡΠ²ΠΎΠ·Π½Π°Π½ΠΈΠ΅, Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ, Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΠΈ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ°.
ΠΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ 6 ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΏΠΎΠΊΠ° Π½Π΅Ρ. ΠΠΎ ΡΠ°Π½Π΅Π΅ Π³ΠΎΠ²ΠΎΡΠΈΠ»ΠΎΡΡ, ΡΡΠΎ ΠΊ 2020 Π³ΠΎΠ΄Ρ ΠΎΠ±ΡΠ΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΄Π°Π²Π°Π΅ΠΌΡΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠ² Π΄ΠΎΡΡΠΈΠ³Π½Π΅Ρ ΡΠ΅ΡΡΠΈ.
ΠΡΠ±ΠΎΡ ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ° Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ Π½Π΅ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠΌ, Π²Π΅Π΄Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΠΠ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΎΡΠ΅Π½ΠΊΡ Π² Π°ΡΡΠ΅ΡΡΠ°ΡΠ΅ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅ΠΌ ΠΎΡΠ±ΠΎΡΠ° Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ.
ΠΡΠΎΠ²Π΅ΡΠΊΠ° ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ°Π±ΠΎΡ ΠΠΠ
Π 2019 Π³ΠΎΠ΄Ρ Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΈ Π²ΡΠ΅Ρ ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ² Π Π€ Π±ΡΠ΄ΡΡ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π·Π°Π΄Π°Π½ΠΈΡ, Π²Π΅Π΄Ρ Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΡΠ΅ΠΆΠ½ΠΈΡ Π»Π΅Ρ, ΡΠ΅Π³ΠΎΠ΄Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎ ΠΈΠ΄Π΅Ρ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ Π±Π°Π½ΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ Π·Π½Π°Π½ΠΈΠΉ ΡΡΠ°ΡΠΈΡ ΡΡ.
ΠΠ°ΠΊ ΠΈ Π² 2018 Π³ΠΎΠ΄Ρ, ΠΏΠΈΡΠ°ΡΡ ΡΠ°Π±ΠΎΡΡ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΈ 9-Ρ ΠΊΠ»Π°ΡΡΠΎΠ² Π±ΡΠ΄ΡΡ Π½Π° Π±Π°Π·Π΅ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΡΠ΅Π±Π½ΠΎΠ³ΠΎ Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΡ, ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠΎΠ²ΡΡΠ°Π΅Ρ ΡΠ°Π½ΡΡ Π½Π° Ρ ΠΎΡΠΎΡΠΈΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. ΠΡΠΎΠ²Π΅ΡΠΊΠΎΠΉ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ°Π±ΠΎΡ ΠΠΠ, ΠΊΠ°ΠΊ ΠΈ ΡΠ°Π½Π΅Π΅, Π±ΡΠ΄ΡΡ Π·Π°Π½ΠΈΠΌΠ°ΡΡΡΡ ΡΡΠΈΡΠ΅Π»Ρ ΡΠΊΠΎΠ», ΠΈΠΌΠ΅ΡΡΠΈΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΡ, ΡΡΠΎ Π±Ρ ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠΌ ΠΠΠ.
ΠΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ Ρ ΠΠΠ Π²ΡΠ΅ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ΄ΡΡ ΠΏΡΠΎΠ²Π΅ΡΠ΅Π½Ρ Π΄Π²ΡΠΌΡ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ. ΠΡΠ»ΠΈ ΠΌΠ½Π΅Π½ΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠΎΠ² ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π·ΠΎΠΉΠ΄ΡΡΡΡ, ΡΠΎ ΠΊ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΈΠ²Π»Π΅ΡΠ΅Π½ ΡΡΠ΅ΡΠΈΠΉ ΡΠΊΡΠΏΠ΅ΡΡ, ΠΌΠ½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΈ ΡΡΠ°Π½Π΅Ρ ΡΠ΅ΡΠ°ΡΡΠΈΠΌ.
ΠΡΠ»ΠΈ ΡΡΠ΅Π½ΠΈΠΊ Π½Π΅ ΡΠΎΠ³Π»Π°ΡΠ΅Π½ Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ², ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠ΄Π°ΡΡ Π°ΠΏΠ΅Π»Π»ΡΡΠΈΡ ΠΈ ΡΠ°Π±ΠΎΡΡ Π΅ΡΠ΅ ΡΠ°Π· ΠΏΠ΅ΡΠ΅ΠΏΡΠΎΠ²Π΅ΡΡΡ, Π½ΠΎ ΡΠΆΠ΅ ΡΠΎΠ²ΡΠ΅ΠΌ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΊΡΠΏΠ΅ΡΡΡ, Π²Ρ ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΠΎΡΡΠ°Π² Π°ΠΏΠ΅Π»Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΈΡΡΠΈΠΈ.
Π Ρ ΠΎΠ΄Π΅ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ Π½Π°ΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠ΅ Π±Π°Π»Π»Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΡ Π² ΠΏΡΠΈΠ²ΡΡΠ½ΡΡ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² 5-ΡΠΈΠ±Π°Π»ΡΠ½ΡΡ ΠΎΡΠ΅Π½ΠΊΡ.
Π¨ΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ²
Π₯ΠΎΡΡ Π² Π€ΠΠΠΠ£ Β«Π€ΠΠΠΒ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π»ΠΈ Π΅Π΄ΠΈΠ½ΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΊΠ°Π»Ρ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ Π² ΠΎΡΠ΅Π½ΠΊΠΈ, Π² 2019 Π³ΠΎΠ΄Ρ (ΠΊΠ°ΠΊ ΠΈ ΡΠ°Π½Π΅Π΅) Π½Π° ΠΌΠ΅ΡΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Ρ Π΄ΡΡΠ³ΠΈΠ΅ Π½ΠΎΡΠΌΡ Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ.Π’Π°ΠΊ, Π΄Π»Ρ 2018 Π³ΠΎΠ΄Π° Π±ΡΠ»ΠΈ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°Π±Π»ΠΈΡΡ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ Π±ΡΠ΄ΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½Ρ ΠΈ Π² 2018-2019 ΡΡΠ΅Π±Π½ΠΎΠΌ Π³ΠΎΠ΄Ρ.
ΠΠ·Π½Π°ΠΊΠΎΠΌΠΈΠ²ΡΠΈΡΡ Ρ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ, ΡΡΠΎ ΠΏΡΠΈ Π²ΡΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΠΎ ΡΡΡΡΠΊΠΎΠΌΡ ΡΠ·ΡΠΊΡ ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ (Π²ΡΠ΅Ρ ΡΡΠΎΠ²Π½Π΅ΠΉ), Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π±Π΅ΡΠ΅ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ±ΡΠΈΠΉ ΡΡΠΌΠΌΠ°ΡΠ½ΡΠΉ Π±Π°Π»Π».
Π’Π°ΠΊ, Π² ΡΡΡΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΎΡΠ΅Π½ΠΊΠΈ:
- Β«4Β» Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π±ΡΠ°ΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 4 Π±Π°Π»Π»ΠΎΠ² Π·Π° Π³ΡΠ°ΠΌΠΎΡΠ½ΠΎΡΡΡ ΠΏΡΠΈ 25-33 ΡΡΠΌΠΌΠ°ΡΠ½ΡΡ Π±Π°Π»Π»Π°Ρ ;
- Β«5Β» β Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 6 Π±Π°Π»Π»ΠΎΠ² Π·Π° Π³ΡΠ°ΠΌΠΎΡΠ½ΠΎΡΡΡ ΠΏΡΠΈ 34-39 ΡΡΠΌΠΌΠ°ΡΠ½ΡΡ .
ΠΡΠΎΠ±ΡΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΠ°Π±ΠΎΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΏΡΠΎΠ΄ΠΈΠΊΡΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΌ, ΡΡΠΎ Π½Π° ΡΠΊΠ·Π°ΠΌΠ΅Π½ Π²ΡΠ½ΠΎΡΡΡΡΡ Π΄Π²Π° ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ°: Π°Π»Π³Π΅Π±ΡΠ° ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΡΠ΅Π½ΠΈΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π½Π΅ ΠΏΡΠΎΡΡΠΎ Π½Π°Π±ΡΠ°ΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΎΡΠΎΠ³, Π° ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ Π·Π½Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΊΠΎΠ»ΡΠ½ΡΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½ ΠΏΠΎ ΠΊΡΡΡΡ Β«ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°Β».
ΠΡΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠΎΠ³ Π΄Π»Ρ Π²ΡΡΡΠΏΠ»Π΅Π½ΠΈΡ Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ ΠΈ ΠΊΠΎΠ»Π»Π΅Π΄ΠΆΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ:
ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ | ΠΡΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ Π±Π°Π»Π» | ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ |
ΠΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΡΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ | 18 | 6 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ |
ΠΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ | 18 | 5 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ |
Π€ΠΈΠ·ΠΌΠ°Ρ ΠΏΡΠΎΡΠΈΠ»Ρ | 19 | 7 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ |
ΠΠ±ΡΠ°Ρ ΡΠΊΠ°Π»Π° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΡ ΠΎΠ΄Π½ΡΡ Π±Π°Π»Π»ΠΎΠ² Π½Π° 2019 Π³ΠΎΠ΄ Π΄Π»Ρ ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΡΠ΅Π΄ΠΌΠ΅Ρ | ΠΠ°Π»Π»Ρ |
Π ΡΡΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ | 31 |
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° (Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½Π°ΡΡΠ½ΡΠΉ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ) | 18 |
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° (ΡΠΈΠ·ΠΌΠ°Ρ ΠΏΡΠΎΡΠΈΠ»Ρ) | 19 |
ΠΡΡΠΎΡΠΈΡ | 32 |
Π€ΠΈΠ·ΠΈΠΊΠ° | 30 |
ΠΠ±ΡΠ΅ΡΡΠ²ΠΎΠ·Π½Π°Π½ΠΈΠ΅ | 30 |
ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΊΠ° | 15 |
ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ° | 15 |
ΠΠ½ΠΎΡΡΡΠ°Π½Π½ΡΠΉ ΡΠ·ΡΠΊ | 56 |
ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡ | 33 |
ΠΠ΅ΠΎΠ³ΡΠ°ΡΠΈΡ | 24 |
Π₯ΠΈΠΌΠΈΡ (Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠΌ) | 25 |
Π₯ΠΈΠΌΠΈΡ (Π±Π΅Π· ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°) | 23 |
ΠΠ±ΡΠ°Ρ ΡΠ°Π±Π»ΠΈΡΠ° Π΄Π»Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΠΈ ΡΠ΅ΡΡΠΎΠ²ΡΡ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ ΠΏΠΎ Π²ΡΠ΅ΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ°ΠΌ Π² 2019 Π³ΠΎΠ΄Ρ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄:
ΠΠΈΡΠ΅Π»ΠΈ ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ², Π³Π΄Π΅ Π² 2019 Π³ΠΎΠ΄Ρ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΠΠ Π·Π° ΠΎΡΠ½ΠΎΠ²Ρ Π±Π΅ΡΠ΅ΡΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½Π°Ρ Π΅Π΄ΠΈΠ½Π°Ρ ΡΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ² Π΄Π»Ρ Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°ΡΡΠΈΡ 9 ΠΊΠ»Π°ΡΡ, ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡΡ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ΄ΠΎΠ±Π½ΡΠΌ online ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π½Π° ΡΠ°ΠΉΡΠ΅ 4ege.ru.
ΠΠ΅ΡΠ΅ΡΠ΄Π°ΡΠ° ΠΠΠ
Π 2018 Π³ΠΎΠ΄Ρ ΠΠΠ ΡΠ΄Π°Π²Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ 1,3 ΠΌΠ»Π½. Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΎΠ², Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ Π±Π΅Π· ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΠΏΡΠ°Π²ΠΈΠ»ΠΈΡΡ Ρ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡΠΌΠΈ. ΠΠΎ, ΠΊΠ°ΠΊ Π²ΡΠ΅Π³Π΄Π°, Π΅ΡΡΡ ΠΈ ΡΠ°ΠΊΠΈΠ΅, ΠΊΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠ» ΠΎΡΠ΅Π½ΠΊΡ Β«Π½Π΅ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΒ». Π§ΡΠΎ ΠΎΠΆΠΈΠ΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΡ Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΎΠ²? ΠΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΎΠ±ΡΡΠΈΠΉ:
- ΠΠ΅ΡΠ΅ΡΠ΄Π°ΡΠ°, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΠΏΡΡΠΊΠ°ΡΡΡΡ ΡΡΠ΅Π½ΠΈΠΊΠΈ, Ρ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 2 Π½Π΅ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ².
- ΠΠ΅ΡΠ΅ΡΡΠ² Π΄Π»ΠΈΠ½ΠΎΠΉ Π² ΡΡΠ΅Π±Π½ΡΠΉ Π³ΠΎΠ΄, Π·Π° Π²ΡΠ΅ΠΌΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ΅Π½ΠΈΠΊ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π»ΡΡΡΠ΅ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΡΡΡ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ (Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎ Π·Π°Π½ΠΈΠΌΠ°ΡΡΡ Ρ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌΠΈ).
Π§ΠΈΡΠ°ΠΉΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
ΠΠ°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΊΡ Π½Π° ΡΠ°ΠΉΡΠ΅? ΠΡ Π±ΡΠ΄Π΅ΠΌ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ½Ρ Π²Π°ΠΌ, Π΅ΡΠ»ΠΈ Π²Ρ Π²ΡΠ΄Π΅Π»ΠΈΡΠ΅ Π΅Π΅ ΠΈ Π½Π°ΠΆΠΌΠ΅ΡΠ΅ Ctrl + Enter
ΠΡΡΠΎΡΠΈΡ. ΠΠΠ 2019. ΠΠ΅ΡΠ΅Π²ΠΎΠ΄ Π±Π°Π»Π»ΠΎΠ² Π² ΠΎΡΠ΅Π½ΠΊΠΈ
ΠΠ΅ΡΠ΅Π²ΠΎΠ΄ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ (ΠΠΠ 9 ΠΊΠ»Π°ΡΡ) Π² ΠΎΡΠ΅Π½ΠΊΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ Π² ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΡ , ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½ΡΡ Π½Π° ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π€ΠΠΠ.
ΠΠ΅ΡΠ΅Π²ΠΎΠ΄ Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ Π² ΠΎΡΠ΅Π½ΠΊΡ (ΠΠΠ 9 ΠΊΠ»Π°ΡΡ)
Π’Π°Π±Π»ΠΈΡΠ° 1
ΠΡΠΌΠ΅ΡΠΊΠ° ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅ | ΠΠ±ΡΠΈΠΉ Π±Π°Π»Π» |
2 | 0 β 12 |
3 | 13 β 23 |
4 | 24 β 34 |
5 | 35 β 44 |
ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π±Π°Π»Π» ΠΠΠ ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ (ΠΠΠ 9 ΠΊΠ»Π°ΡΡ) Π² 2019 Π³ΠΎΠ΄Ρ (ΠΎΡΠ΅Π½ΠΊΠ° 3) β 13
ΠΡΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ Π±Π°Π»Π» ΠΠΠ 2019 ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ Π² ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΡ β 32
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π±Π°Π»Π» β 44
Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π±Π°Π»Π»ΠΎΠ² Π½ΡΠΆΠ½ΠΎ Π½Π°Π±ΡΠ°ΡΡ Π½Π° ΠΠΠ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ 3, 4 ΠΈΠ»ΠΈ 5 ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ°ΠΌ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π² ΠΏΠΈΡΡΠΌΠ΅ Π ΠΎΡΠΎΠ±ΡΠ½Π°Π΄Π·ΠΎΡΠ°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΡΠΌ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠΎΠΌ, Ρ ΠΎΡΡ ΠΈ Π½ΠΎΡΠΈΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠ΅Π»ΡΠ½ΡΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ.
Π¨ΠΊΠ°Π»Π° ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π±Π°Π»Π»ΠΎΠ² ΠΠΠ 2019 Π² ΠΎΡΠ΅Π½ΠΊΠΈ. ΠΡΡΠΎΡΠΈΡ (ΠΠΠ 9 ΠΊΠ»Π°ΡΡ) β ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ Π€ΠΠΠ
ΠΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ°Π±ΠΎΡΡ ΠΠΠ ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ ΠΏΡΠΎΠ²Π΅ΡΡΡΡΡΡ Π΄Π²ΡΠΌΡ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ ΡΠΊΡΠΏΠ΅ΡΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ Π΄ΡΡΠ³ ΠΎΡ Π΄ΡΡΠ³Π° Π²ΡΡΡΠ°Π²Π»ΡΡΡ Π±Π°Π»Π»Ρ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΎΡΠ²Π΅Ρ Π½Π° Π·Π°Π΄Π°Π½ΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡβ¦
Π ΡΠ»ΡΡΠ°Π΅ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π±Π°Π»Π»Π°Ρ , Π²ΡΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ Π΄Π²ΡΠΌΡ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ, Π½Π°Π·Π½Π°ΡΠ°Π΅ΡΡΡ ΡΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ°. Π‘ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π² Π±Π°Π»Π»Π°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ Π² ΠΊΡΠΈΡΠ΅ΡΠΈΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΌΡ ΡΡΠ΅Π±Π½ΠΎΠΌΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΡ.
Π’ΡΠ΅ΡΠΈΠΉ ΡΠΊΡΠΏΠ΅ΡΡ Π½Π°Π·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΏΡΠ΅Π΄ΡΠ΅Π΄Π°ΡΠ΅Π»Π΅ΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΈΡΡΠΈΠΈ ΠΈΠ· ΡΠΈΡΠ»Π° ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ², ΡΠ°Π½Π΅Π΅ Π½Π΅ ΠΏΡΠΎΠ²Π΅ΡΡΠ²ΡΠΈΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ°Π±ΠΎΡΡ.
Π’ΡΠ΅ΡΡΠ΅ΠΌΡ ΡΠΊΡΠΏΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ Π±Π°Π»Π»Π°Ρ , Π²ΡΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ, ΡΠ°Π½Π΅Π΅ ΠΏΡΠΎΠ²Π΅ΡΡΠ²ΡΠΈΠΌΠΈ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠ°Π±ΠΎΡΡ ΠΎΠ±ΡΡΠ°ΡΡΠ΅Π³ΠΎΡΡ. ΠΠ°Π»Π»Ρ, Π²ΡΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ ΡΡΠ΅ΡΡΠΈΠΌ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠΌ, ΡΠ²Π»ΡΡΡΡΡ ΠΎΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈΒ».
Π‘ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π² 2 ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π±Π°Π»Π»Π° Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΈΠ· Π·Π°Π΄Π°Π½ΠΈΠΉ 31β35. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ΅ΡΠΈΠΉ ΡΠΊΡΠΏΠ΅ΡΡ ΠΏΡΠΎΠ²Π΅ΡΡΠ΅Ρ ΠΎΡΠ²Π΅ΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° ΡΠ΅ Π·Π°Π΄Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΡΠ·Π²Π°Π»ΠΈ ΡΡΠΎΠ»Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°ΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅.
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π±Π°Π»Π»ΠΎΠ², Π²ΡΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ Π·Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ Π·Π°Π΄Π°Π½ΠΈΠΉ ΡΠ°Π±ΠΎΡΡ, ΠΏΠΎΠ΄ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΎΠ±ΡΠΈΠΉ Π±Π°Π»Π», ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΠΈΡΡΡ Π² ΠΎΡΠΌΠ΅ΡΠΊΡ ΠΏΠΎ ΠΏΡΡΠΈΠ±Π°Π»Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Π΅.
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
90000 Mathematics Cognitive Domains-Fourth and Eighth Grades β TIMSS 2019 ASSESSMENT FRAMEWORKS 90001 90002 Mary Lindquist, Ray Philpot, Ina V.S. Mullis, and Kerry E. Cotter 90003 90002 Download TIMSS 2019 Mathematics Framework (pdf) 90003 90006 Mathematics Cognitive Domains-Fourth and Eighth Grades 90007 90002 In order to respond correctly to TIMSS test items, students need to be familiar with the mathematics content being assessed, but they also need to draw on a range of cognitive skills.Describing these skills plays a crucial role in the development of an assessment like TIMSS 2019, because they are vital in ensuring that the survey covers the appropriate range of cognitive skills across the content domains already outlined. 90003 90002 The first domain, 90011 knowing 90012, covers the facts, concepts, and procedures students need to know, while the second, 90011 applying 90012, focuses on the ability of students to apply knowledge and conceptual understanding to solve problems or answer questions.The third domain, 90011 reasoning 90012, goes beyond the solution of routine problems to encompass unfamiliar situations, complex contexts, and multistep problems. 90003 90002 Knowing, applying, and reasoning are exercised in varying degrees when students display their mathematical competency, which goes beyond content knowledge. These TIMSS cognitive domains encompass the competencies of problem solving, providing a mathematical argument to support a strategy or solution, representing a situation mathematically (e.g., using symbols and graphs), creating mathematical models of a problem situation, and using tools such as a ruler or a calculator to help solve problems. 90003 90002 The three cognitive domains are used for both grades, but the balance of testing time differs, reflecting the difference in age and experience of students in the two grades. For the fourth and eighth grades, each content domain will include items developed to address each of the three cognitive domains. For example, the number domain will include knowing, applying, and reasoning items as will the other content domains.90003 90002 Exhibit 1.4 shows the target percentages of testing time devoted to each cognitive domain for the fourth and eighth grade assessments. 90003 90002 90025 Exhibit 1.4: Target Percentages of the TIMSS 2019 Mathematics Assessment Devoted to Cognitive Domains at the Fourth and Eighth Grades 90026 90003 90028 90029 90030 90031 Cognitive Domains 90032 90033 Percentages 90032 90035 90030 90037 90038 Fourth Grade 90032 90038 Eighth Grade 90032 90035 90030 90031 Knowing 90032 90038 40% 90032 90038 35% 90032 90035 90030 90031 Applying 90032 90038 40% 90032 90038 40% 90032 90035 90030 90031 Reasoning 90032 90038 20% 90032 90038 25% 90032 90035 90067 90068 90069 Knowing 90070 90002 Facility in applying mathematics, or reasoning about mathematical situations, depends on familiarity with mathematical concepts and fluency in mathematical skills.The more relevant knowledge a student is able to recall and the wider the range of concepts he or she understands, the greater the potential for engaging in a wide range of problem solving situations. 90003 90002 Without access to a knowledge base that enables easy recall of the language and basic facts and conventions of number, symbolic representation, and spatial relations, students would find purposeful mathematical thinking impossible. Facts encompass the knowledge that provides the basic language of mathematics, as well as the essential mathematical concepts and properties that form the foundation for mathematical thought.90003 90002 Procedures form a bridge between more basic knowledge and the use of mathematics for solving problems, especially those encountered by many people in their daily lives. In essence, a fluent use of procedures entails recall of sets of actions and how to carry them out. Students need to be efficient and accurate in using a variety of computational procedures and tools. They need to see that particular procedures can be used to solve entire classes of problems, not just individual problems.90003 90028 90029 90030 90031 Recall 90032 90031 Recall definitions, terminology, number properties, units of measurement, geometric properties, and notation (eg, 90011 a 90012 Γ 90011 b 90012 = 90011 ab 90012, 90011 a 90012 + 90011 a 90012 + 90011 a 90012 = 3 90011 a 90012) . 90032 90035 90030 90031 Recognize 90032 90031 Recognize numbers, expressions, quantities, and shapes. Recognize entities that are mathematically equivalent (e.g., equivalent familiar fractions, decimals, and percents; different orientations of simple geometric figures).90032 90035 90030 90031 Classify / Order 90032 90031 Classify numbers, expressions, quantities, and shapes by common properties. 90032 90035 90030 90031 Compute 90032 90031 Carry out algorithmic procedures for +, -, Γ, Γ·, or a combination of these with whole numbers, fractions, decimals, and integers. Carry out straightforward algebraic procedures. 90032 90035 90030 90031 Retrieve 90032 90031 Retrieve information from graphs, tables, texts, or other sources. 90032 90035 90030 90031 Measure 90032 90031 Use measuring instruments; and choose appropriate units of measurement.90032 90035 90067 90068 90069 Applying 90070 90002 The applying domain involves the application of mathematics in a range of contexts. In this domain, the facts, concepts, and procedures as well as the problems should be familiar to the student. In some items aligned with this domain, students need to apply mathematical knowledge of facts, skills, and procedures or understanding of mathematical concepts to create representations. Representation of ideas forms the core of mathematical thinking and communication, and the ability to create equivalent representations is fundamental to success in the subject.90003 90002 Problem solving is central to the applying domain, with an emphasis on more familiar and routine tasks. Problems may be set in real life situations, or may be concerned with purely mathematical questions involving, for example, numeric or algebraic expressions, functions, equations, geometric figures, or statistical data sets. 90003 90028 90029 90030 90031 Determine 90032 90031 Determine efficient / appropriate operations, strategies, and tools for solving problems for which there are commonly used methods of solution.90032 90035 90030 90031 Represent / Model 90032 90031 Display data in tables or graphs; create equations, inequalities, geometric figures, or diagrams that model problem situations; and generate equivalent representations for a given mathematical entity or relationship. 90032 90035 90030 90031 Implement 90032 90031 Implement strategies and operations to solve problems involving familiar mathematical concepts and procedures. 90032 90035 90067 90068 90069 Reasoning 90070 90002 Reasoning mathematically involves logical, systematic thinking.It includes intuitive and inductive reasoning based on patterns and regularities that can be used to arrive at solutions to problems set in novel or unfamiliar situations. Such problems may be purely mathematical or may have real life settings. Both types of items involve transferring knowledge and skills to new situations; and interactions among reasoning skills usually are a feature of such items. 90003 90002 Even though many of the cognitive skills listed in the reasoning domain may be drawn on when thinking about and solving novel or complex problems, each by itself represents a valuable outcome of mathematics education, with the potential to influence learners βthinking more generally.For example, reasoning involves the ability to observe and make conjectures. It also involves making logical deductions based on specific assumptions and rules, and justifying results. 90003 90028 90029 90030 90031 Analyze 90032 90031 Determine, describe, or use relationships among numbers, expressions, quantities, and shapes. 90032 90035 90030 90031 Integrate / Synthesize 90032 90031 Link different elements of knowledge, related representations, and procedures to solve problems.90032 90035 90030 90031 Evaluate 90032 90031 Evaluate alternative problem solving strategies and solutions. 90032 90035 90030 90031 Draw Conclusions 90032 90031 Make valid inferences on the basis of information and evidence. 90032 90035 90030 90031 Generalize 90032 90031 Make statements that represent relationships in more general and more widely applicable terms. 90032 90035 90030 90031 Justify 90032 90031 Provide mathematical arguments to support a strategy or solution.90032 90035 90067 90068 90002 β; numbers.forEach (function (val, index) { if ($. isNumeric (val)) {// Is a References number = val; if (ref_var [number-1]! = undefined) { div_text + = β90003 90002β; } } else {// Is a Footnote if (foot_var [val]! = undefined) { footnote_obj = foot_var [val]; div_text + = β90003.90000 KNEC releases the 2019 Grade 3 learners βassessment criteria 90001 90002 2020 registration for KCPE and KCSE candidates. Here are the instructions from KNEC. 90003 The Kenya National Examinations Council, KNEC, has released guidelines to be used in monitoring the grade three learners βprogress. Here are the guidelines; 90004 90003 KENYA NATIONAL EXAMINATIONS COUNCIL MONITORING LEARNERS βPROGRESS 90006 GRADE 3 2019 90004 90003 INTEGRATED LEARNING AREAS INSTRUCTIONS 90006 a) The teacher will guide the learner to carefully read through the performance task, carry out every step as required, and build a portfolio.90006 b) The task will be carried out within a duration of two months. 90006 c) The task involves a clean up of the market place next to the school. 90006 d) The teacher should seek permission from the local authorities to carry out the task 90006 e) The teacher will use the Assessment Rubrics provided for each task to assess the learnerβs work. 90006 f) Samples of work that show the learnerβs performance on the tasks should be maintained in the assessment portfolio. 90006 g) Samples of work selected for the portfolio should aim at illustrating the learnerβs progress and achievement in learning.90006 h) Each learner is required to develop and maintain a portfolio as evidence of learning. 90004 90018 Also read: 90019 90003 THEME: A CLEAN ENVIRONMENT FOR GOOD HEALTH AND WELL BEING 90004 90003 1.0 GENERAL OUTCOMES FOR EARLY YEARS EDUCATION 90006 a) Explore the immediate environment for learning and enjoyment; 90006 b) Practice hygiene, nutrition, sanitation and safety skills to promote health and wellbeing; 90006 c) Apply creativity and critical thinking skills in problem solving; 90006 d) Apply digital literacy skills for learning and enjoyment.90004 90003 2.0 STANDARD 90006 The learner can: 90006 a) Describe ways of keeping the market place clean; 90006 b) Participate in cleaning the market place; 90006 c) Observe safety when disposing waste; 90006 d) Demonstrate appreciation of a clean environment. 90004 90003 3.0 PERFORMANCE TASK 90004 90003 3.1 Learners will be involved in the following activities: 90006 a) Watching video clips / viewing photographs / pictures of a clean-up exercise and identifying 90006 the cleaning activities observed.90006 b) Pre-visit to the nearest marketplace to observe the state of cleanliness. Guided by the teacher, learners to identify specific areas that require cleaning. 90006 c) i) Identification of the cleaning materials / tools that can be used in cleaning the market place. 90006 ii) With the help of their parents / guardians, each learner to improvise at least one relevant material for cleaning the market place. 90006 d) Learners to visit the marketplace for a clean-up exercise. 90006 (Before the actual cleanup exercise, the teacher should put learners in groups of 4 β 6 and assign cleaning areas to each group).90004 90003 e) Guided by the group leaders, learners to do stretch up exercises to warm up before carrying out the cleaning activity. 90004 90003 f) Learners to carry out the cleaning exercise in their assigned areas while observing safety measures. 90004 90003 g) Learners to safely sort and dispose off the collected waste. 90006 h) Mwanafunzi aandike njia mbalimbali za kutunza usafi sokoni. 90006 i) Learn and sing a song of their choice on cleaning the environment (individually and in groups).90006 j) Individually draw any two objects used in cleaning the market place (such as litter bins, brooms, brushes etc.). Mount the completed drawings in the learnerβs assessment portfolio. 90004 90003 3.2 Targeted Learning areas Reference 90006 a) Environmental Activities Vol. 2, G3, Pg. 126, S2.0, ss 2.1.1 Vol. 2, G3, Pg 134, S3.0, ss 3.3 90006 b) Movement and Creative Activities Vol. 4, G3, Pg. 340, S1.0, ss 1.1 Vol. 4, G2, S1.0, ss 1.1, G1 pg. 13, S1.0 ss 2.1 90006 c) Religious Activities Vol.3, G3, Pg. 132, S6.0, ss 6.3 90006 d) English Activities Vol. 1, G3, Pg. 287, S1.0, ss 1.3 90006 e) Kiswahili Activities Vol. 1, G3, Pg. 98, S6.0, ss 6.4 90006 f) Mathematics Activities Vol. 2, G1, Pg. 4, S1.0, ss 1.1 90006 g) Hygiene and Nutrition Activities Vol. 2, G3, Pg. 200, S1.0, ss 1.4 90004 90003 3.3 Core Competencies Targeted 90006 a) Communication and collaboration as they work in groups. 90006 b) Critical thinking and problem solving as they improvise cleaning materials, 90006 c) Imagination and Creativity as they draw, label and mount objects.90006 d) Digital literacy as they watch video clips and take photos of the cleaning activities. 90006 e) Self-efficacy as they sing individually. 90006 f) Learning to learn as they clean the market place. 90004 90018 More reading on TSC matters; 90019 90074 90075 New, latest TSC Teachers recruitment guidelines 90076 90075 TSC: Wealth declaration guide for teachers, staff 90076 90075 A TSC teacherβs payslip details and how to get yours online 90076 90075 TSC posting, employment, letters for newly recruited teachers 90076 90075 TSC adds another new teacher registration, employment requirement; read the details 90076 90075 All TSC online services: the TSC website, online services and how to easily access them 90076 90075 New list of TSC County Directors 90076 90075 Updated TSC recruitment guidelines for teachers 90076 90075 TSC: Process of handing-taking over by new school heads and other administrators 90076 90075 New academic and professional requirements for registration of teachers 90076 90075 How to check the status of TSC number application online 90076 90075 Get the latest TSC news on these official Social Media links (Facebook, Twitter, WhatsApp, Telegram and online) 90076 90075 How to apply online for the vacant administrative positions at the Teachers Service Commission-tsc 90076 90075 TSC: Most marketable subject combinations 90076 90075 TSC: Revised, new, service charter 90076 90075 TSC: Download all the TSC forms, circulars, regulations and Memos here 90076 90075 TSC: How to easily get the retirement, pension, benefits 90076 90075 TSC: Full process of interdicting, disciplining and dismissing teachers 90076 90075 New, updated, list of offences that can lead to a teacherβs removal from the TSC register 90076 90075 TSC: All teachers βleaves explained 90076 90075 TSC: List of all allowances paid to teachers and to get them 90076 90075 Latest Career Progression Guidelines, CPG, for teachers 90076 90075 TSC: Answers to all the Frequently asked questions by teachers 90076 90075 TSC: A list of all the TSC contacts 90076 90075 TSC: How a teacher should claim the medical expenses costs from TSC 90076 90075 TSC: How to best apply for a teacher transfer 90076 90075 How to easily apply for a TSC number 90076 90075 Applying for a TSC number? This is all you need to know.90076 90075 All what you are required to have in order to apply for a TSC number 90076 90133 90003 3.4 Link to Values ββ90006 Responsibility, love, unity, honesty, cooperation and respect as they work in groups. 90004 90003 3.5 Link to PCIs 90006 a) Citizenship, Environmental education, Health Education, Life Skills, 90006 b) Community Service Learning as they clean the market. 90006 c) Education for Sustainable Development. 90004 90003 90143 90004 90003 90146 Other related news; 90147 90004 90149 90003 2019 KNEC Grade 3 Exams- How to register learners for the 2019 Kenya Early Years Assessment; Requirements 90004 90152 .90000 2019 KEYA Assessment Criteria for Grade 3 Learners by KNEC 90001 90002 The following are the 2019 instructional guidelines to teachers in assessing the Grade 3 Learners. The guidelines have been issued by the Kenya National Examination Council, KNEC. 90003 90002 The guidelines are meant to help in monitoring the 2019 Grade 3 learners as part of the Kenya Early Years Assessment, KENYA. 90003 90002 The Grade 3 teacherβs role has been outlined and integrated learning areas Instructions issued.90003 90008 90009 Monitoring Learners βProgress Grade 3 2019 90010 90011 90012 Integrated Learning Areas Instructions 90013 90002 a) The teacher will guide the learner to carefully read through the performance task, carry out every step as required, and build a portfolio. 90003 90002 b) The task will be carried out within a duration of two months. 90003 90002 c) The task involves a clean up of the market place next to the school. 90003 90002 d) The teacher should seek permission from the local authorities to carry out the task.90003 90002 e) The teacher will use the Assessment Rubrics provided for each task to assess the learnerβs work. 90003 90002 f) Samples of work that show the learnerβs performance on the tasks should be maintained in the assessment portfolio. 90003 90002 g) Samples of work selected for the portfolio should aim at illustrating the learnerβs progress and achievement in learning. 90003 90002 h) Each learner is required to develop and maintain a portfolio as evidence of learning. 90003 90012 THEME: A Clean Environment for Good Health and Well Being 90013 90032 1.0 General Outcomes for Early Years Education 90033 90002 a) Explore the immediate environment for learning and enjoyment; 90003 90002 b) Practice hygiene, nutrition, sanitation and safety skills to promote health and wellbeing; 90003 90002 c) Apply creativity and critical thinking skills in problem solving; 90003 90002 d) Apply digital literacy skills for learning and enjoyment. 90003 90032 2.0 Standard 90033 90002 The learner can: 90003 90002 a) Describe ways of keeping the market place clean; 90003 90002 b) Participate in cleaning the market place; 90003 90002 c) Observe safety when disposing waste; 90003 90002 d) Demonstrate appreciation of a clean environment.90003 90032 3.0 Performance Task 90033 90032 3.1 Learners will be involved in the following activities: 90033 90002 a) Watching video clips / viewing photographs / pictures of a clean-up exercise and identifying 90059 the cleaning activities observed. 90003 90002 b) Pre-visit to the nearest marketplace to observe the state of cleanliness. Guided by the teacher, learners to identify specific areas that require cleaning. 90003 90002 c) i) Identification of the cleaning materials / tools that can be used in cleaning the market place.90003 90002 ii) With the help of their parents / guardians, each learner to improvise at least one relevant material for cleaning the market place. 90003 90002 d) Learners to visit the marketplace for a clean-up exercise. 90059 (Before the actual cleanup exercise, the teacher should put learners in groups of 4 β 6 and assign cleaning areas to each group). 90003 90002 e) Guided by the group leaders, learners to do stretch up exercises to warm up before carrying out the cleaning activity. 90003 90002 f) Learners to carry out the cleaning exercise in their assigned areas while observing safety measures.90003 90002 g) Learners to safely sort and dispose off the collected waste. 90003 90002 h) Mwanafunzi aandike njia mbalimbali za kutunza usafi sokoni. 90003 90002 i) Learn and sing a song of their choice on cleaning the environment (individually and in groups). 90003 90002 j) Individually draw any two objects used in cleaning the market place (such as litter bins, brooms, brushes etc.). Mount the completed drawings in the learnerβs assessment portfolio. 90003 90032 3.2 Targeted Learning areas Reference 90033 90002 a) Environmental Activities Vol.2, G3, Pg. 126, S2.0, ss 2.1.1 Vol. 2, G3, Pg 134, S3.0, ss 3.3 90003 90002 b) Movement and Creative Activities Vol. 4, G3, Pg. 340, S1.0, ss 1.1 Vol. 4, G2, S1.0, ss 1.1, G1 pg. 13, S1.0 ss 2.1 90003 90002 c) Religious Activities Vol. 3, G3, Pg. 132, S6.0, ss 6.3 90003 90002 d) English Activities Vol. 1, G3, Pg. 287, S1.0, ss 1.3 90003 90002 e) Kiswahili Activities Vol. 1, G3, Pg. 98, S6.0, ss 6.4 90003 90002 f) Mathematics Activities Vol. 2, G1, Pg. 4, S1.0, ss 1.1 90003 90002 g) Hygiene and Nutrition Activities Vol.2, G3, Pg. 200, S1.0, ss 1.4 90003 90032 3.3 Core Competencies Targeted 90033 90002 a) Communication and collaboration as they work in groups. 90003 90002 b) Critical thinking and problem solving as they improvise cleaning materials. 90003 90002 c) Imagination and Creativity as they draw, label and mount objects. 90003 90002 d) Digital literacy as they watch video clips and take photos of the cleaning activities. 90003 90002 e) Self-efficacy as they sing individually. 90003 90002 f) Learning to learn as they clean the market place.90003 90032 3.4 Link to Values ββ90033 90002 Responsibility, love, unity, honesty, cooperation and respect as they work in groups. 90003 90032 3.5 Link to PCIs 90033 90002 a) Citizenship, Environmental education, Health Education, Life Skills. 90003 90002 b) Community Service Learning as they clean the market. 90003 90002 c) Education for Sustainable Development. 90003 90012 Below is the PDF preview of the KNEC Guidelines on Assessment of Grade 3 Learners in 2019 90013 .90000 Mathematics Content Domains-Eighth Grade β TIMSS 2019 ASSESSMENT FRAMEWORKS 90001 90002 Mary Lindquist, Ray Philpot, Ina V.S. Mullis, and Kerry E. Cotter 90003 90002 Download TIMSS 2019 Mathematics Framework (pdf) 90003 90006 Mathematics Content Domains-Eighth Grade 90007 90002 Exhibit 1.3 shows the TIMSS Mathematics-Eighth Grade content domains and the target percentages of assessment score points devoted to each. Each content domain consists of topic areas, and each topic area in turn includes several topics.Across the eighth grade mathematics assessment, each topic receives approximately equal weight. 90003 90002 90011 Exhibit 1.3: Target Percentages of the TIMSS 2019 Mathematics Assessment Devoted to Content Domains at the Eighth Grade 90012 90003 90014 90015 90016 90017 Eighth Grade Content Domains 90018 90019 Percentages 90018 90021 90016 90017 Number 90018 90019 30% 90018 90021 90016 90017 Algebra 90018 90019 30% 90018 90021 90016 90017 Geometry 90018 90019 20% 90018 90021 90016 90017 Data and Probability 90018 90019 20% 90018 90021 90046 90047 90048 Number 90049 90002 At the eighth grade, the thirty percent of the assessment devoted to number consists of three topic areas: 90003 90052 90053 Integers (10%) 90054 90053 Fractions and decimals (10%) 90054 90053 Ratio, proportion, and percent (10%) 90054 90059 90002 Building on the number content domain at the fourth grade, eighth grade students should have developed proficiency with more advanced whole number concepts and procedures as well as extended their mathematical understanding of rational numbers (integers, fractions, and decimals).Students also should understand and be able to compute with integers. Fractions and decimals are an important part of daily life and being able to compute with them requires an understanding of the quantities the symbols represent. Students should understand that fractions and decimals are single entities like whole numbers. A single rational number can be represented with many different written symbols, and students need to be able to recognize the distinctions among interpretations of rational numbers, convert between them, and reason with them.Students should be able to solve problems involving ratios, proportions, and percents. 90003 90062 Integers 90063 90064 90053 Demonstrate understanding of properties of numbers and operations; find and use multiples and factors, identify prime numbers, evaluate positive integer powers of numbers, evaluate square roots of perfect squares up to 144, and solve problems involving square roots of whole numbers. 90054 90053 Compute and solve problems with positive and negative numbers, including through movement on the number line or various models (e.g., losses and gains, thermometers). 90054 90069 90062 Fractions and Decimals 90063 90064 90053 Using various models and representations, compare and order fractions and decimals, and identify equivalent fractions and decimals. 90054 90053 Compute with fractions and decimals, including those set in problem situations. 90054 90069 90062 Ratio, Proportion, and Percent 90063 90064 90053 Identify and find equivalent ratios; model a given situation by using a ratio; divide a quantity according to a given ratio.90054 90053 Solve problems involving proportions or percents, including converting between percents and fractions or decimals. 90054 90069 90048 Algebra 90049 90002 The thirty percent of the assessment devoted to algebra is comprised of two topic areas: 90003 90052 90053 Expressions, operations, and equations (20%) 90054 90053 Relationships and functions (10%) 90054 90059 90002 Patterns and relationships are pervasive in the world around us and algebra enables us to express these mathematically.Students should be able to solve real world problems using algebraic models and explain relationships involving algebraic concepts. They need to understand that when there is a formula involving two quantities, if they know one quantity, they can find the other either algebraically or by substitution. This conceptual understanding can extend to linear equations for calculations about things that expand at constant rates (e.g., slope). Functions can be used to describe what will happen to a variable when a related variable changes.90003 90062 Expressions, Operations, and Equations 90063 90064 90053 Find the value of an expression or a formula given values ββof the variables. 90054 90053 Simplify algebraic expressions involving sums, products, and powers; compare expressions to determine if they are equivalent. 90054 90053 Write expressions, equations, or inequalities to represent problem situations. 90054 90053 Solve linear equations, linear inequalities, and simultaneous linear equations in two variables, including those that model real life situations.90054 90069 90062 Relationships and Functions 90063 90064 90053 Interpret, relate and generate representations of linear functions in tables, graphs, or words; identify properties of linear functions including slope and intercepts. 90054 90053 Interpret, relate and generate representations of simple non-linear functions (e.g., quadratic) in tables, graphs, or words; generalize pattern relationships in a sequence using numbers, words, or algebraic expressions. 90054 90069 90048 Geometry 90049 90002 Extending the understanding of shapes and measures assessed at the fourth grade, eighth grade students should be able to analyze the properties of a variety of two- and three-dimensional figures and calculate perimeters, areas, and volumes.They should be able to solve problems and provide explanations based on geometric relationships, such as congruence, similarity, and the Pythagorean theorem. 90003 90002 The geometry content domain at the eighth grade consists of one topic area: 90003 90052 90053 Geometric shapes and measurements (20%) 90054 90059 90062 Geometric Shapes and Measurements 90063 90002 At eighth grade, geometric shapes include circles; scalene, isosceles, equilateral, and right-angled triangles; trapezoids, parallelograms, rectangles, rhombuses, and other quadrilaterals; as well as other polygons including pentagons, hexagons, octagons, and decagons.They also include three-dimensional shapes-prisms, pyramids, cones, cylinders, and spheres. One- and two-dimensional figures can be presented in the Cartesian plane. 90003 90064 90053 Identify and draw types of angles and pairs of lines and use the relationships between angles on lines and in geometric figures to solve problems, including those involving the measures of angles and line segments; solve problems involving points in the Cartesian plane. 90054 90053 Identify two-dimensional shapes and use their geometric properties to solve problems, including those involving perimeter, circumference, area, and the Pythagorean Theorem.90054 90053 Recognize and draw images of geometric transformations (translations, reflections, and rotations) in the plane; identify congruent and similar triangles and rectangles and solve related problems. 90054 90053 Identify three-dimensional shapes and use their geometric properties to solve problems, including those involving surface area and volume; relate three-dimensional shapes with their two-dimensional representations. 90054 90069 90048 Data and Probability 90049 90002 Increasingly, the more traditional forms of data display (e.g., bar graphs, line graphs, pie graphs, pictographs) are being supplemented by an array of new graphic forms (e.g., infographics). By the eighth grade, students should to be able to read and extract the important meaning from a variety of visual displays. It is also important for eighth grade students to be familiar with the statistics underlying data distributions and how these relate to the shape of data graphs. Students should know how to collect, organize, and represent data. Students also should have an initial grasp of some concepts related to probability.90003 90002 The data and probability content domain contains two topic areas: 90003 90052 90053 Data (15%) 90054 90053 Probability (5%) 90054 90059 90062 Data 90063 90064 90053 Read and interpret data from one or more sources to solve problems (e.g., interpolate and extrapolate, make comparisons, draw conclusions). 90054 90053 Identify appropriate procedures for collecting data; organize and represent data to help answer questions. 90054 90053 Calculate, use, or interpret statistics (i.e., mean, median, mode, range) summarizing data distributions; recognize the effect of spread and outliers. 90054 90069 90062 Probability 90063 90064 90053 For simple and compound events: a) determine theoretical probability (based on equally likely outcomes, e.g., rolling a fair die) or b) estimate the empirical probability (based on experimental outcomes). 90054 90069 90048 Calculator Use at the Eighth Grade 90049 90002 Continuing the practice of previous TIMSS assessments, at the fourth grade students will not be permitted to use calculators.This includes both paperTIMSS and eTIMSS. At the eighth grade, students will be permitted to use calculators, although the mathematics items are developed to be calculator neutral-do not advantage or disadvantage students whether or not they have calculators. In paperTIMSS, consistent with past TIMSS assessments, students at the eighth grade may bring their own calculators to the assessment. In eTIMSS, students at the eighth grade will have access to a calculator provided as part of the on-screen interface and will not be permitted to bring their own calculators.The on-screen calculator includes the four basic functions (+, -, Γ, Γ·) and a square root key. The eventual transition to eTIMSS will result in calculators being standardized. 90003 90002 β; numbers.forEach (function (val, index) { if ($. isNumeric (val)) {// Is a References number = val; if (ref_var [number-1]! = undefined) { div_text + = β90003 90002β; } } else {// Is a Footnote if (foot_var [val]! = undefined) { footnote_obj = foot_var [val]; div_text + = β90003.
Leave A Comment