Теплопередача — урок. Физика, 8 класс.

В природе существует три вида теплопередачи:
1) теплопроводность;
2) конвекция;
3) излучение.

Теплопроводность

Теплопроводность — переход теплоты с одного тела на другое при их соприкосновении или с более тёплой части тела на холодную.

 

…………………………………………………………. Теплопроводность происходит потому, что частицы с большей энергией при взаимодействии отдают энергию частицам с меньшей энергией.

  


Различные вещества имеют разную теплопроводность. Большую теплопроводность имеют все металлы. Малую теплопроводность имеют газы, вакуум не имеет теплопроводности (в вакууме нет частиц, которые бы обеспечивали теплопроводность).

Вещества, которые плохо проводят теплоту, называют теплоизоляторами.

Искусственно созданными теплоизоляторами являются каменная вата, пенопласт, поролон, металлокерамика (используется в производстве космических кораблей).

Конвекция

Распространение тепла перемещающимися струями газа или жидкости называется конвекцией.

 

Конвекция около электрического масляного радиатора.

Конвекция в помещении. Тёплый воздух поднимается вверх, холодный опускается вниз.

 

При конвекции тепло переносит само вещество. Конвекция наблюдается только в жидкостях и газах.

Тепловое излучение

Распространение тепла от тёплого тела при помощи инфракрасных лучей называют тепловым излучением.

Тепловое излучение — единственный вид теплопередачи, который может осуществляться в вакууме. Чем выше температура, тем сильнее тепловое излучение. Тепловое излучение производят, например, люди, животные, Земля, Солнце, печь, костёр. Инфракрасное излучение можно изображать или измерять термографом (термокамерой).
  
Инфракрасные термокамеры воспринимают невидимое инфракрасное или тепловое излучение и осуществляют точные бесконтактные измерения температуры.
Инфракрасная термография позволяет полностью визуализировать тепловое излучение. На рисунке видно инфракрасное излучение ладони человека.

…………………………………………………………………..

Во время термографического обследования зданий и сооружений имеется возможность обнаружить конструкционные места с повышенной тепловой проницаемостью, проверить качество соединений различных конструкций, найти места с повышенным воздухообменом.

 

Излучение. Приготовление пищи в микроволновке :: Класс!ная физика

ИЗЛУЧЕНИЕ

Излучение — это перенос энергии путем испускания электромагнитных волн.
Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас.

Эти лучи называют тепловым излучением.

Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.

Все окружающие нас предметы излучают тепло в той или иной мере.

Тепловое ( инфракрасное ) излучение не воспринимается глазом.

При повышении температуры тела тепловое излучение увеличивается, т.е. чем выше температура тела, тем интенсивнее тепловое излучение. Как фантастично выглядел бы окружающий мир, если бы мы могли видеть недоступные нашему глазу тепловые излучения других тел!

Теплопередача способом излучения возможна в любом веществе и в вакууме.
Все тела излучают энергию и остывают.
Тела способны не только излучать, но и поглощать тепловое излучение, приэтом они нагреваются.

Темные тела лучше поглощают излучение, чем светлые (или имеющие зеркальную, полированную поверхность), и лучше излучают.


ЗНАЕШЬ ЛИ ТЫ ?

Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву.

Гремучие змеи и сибирские щитомордники реагируют на изменения температуры до тысячной доли градуса.

Глаза таракана чувствуют колебания температуры в сотую долю градуса.

Устали? — Отдыхаем!

Урок 19. излучение и спектры — Физика — 11 класс

Урок Конспект Дополнительные материалы

Виды излучений и источники

Соедините попарно фигуры так, чтобы каждому излучения соответствовал источник.

Подсказка

Вспомните виды излучений и их источники.

Спектр

Установите соответствие между вопросом и ответом.

Подсказка

Вспомните определения спектров.

Какой спектр называется линейчатым?

Как получить сплошной спектр?

Какой спектр называется сплошным?

Как получить линейчатый спектр?

Нагревая тело до высокой температуры

Спектр, состоящий из отдельных линий

Спектр, в котором все цвета от красного до фиолетового плавно переходят друг в друга

Разложением излучения нагретого разрежённого газа или излучения твёрдого тела, прошедшего через газ

Спектры излучения

На рисунке даны спектры излучения водорода (1), гелия (2), натрия (4).

Определите какие из них содержатся в смеси газов (3)? Выберите несколько вариантов ответа.

Подсказка

Внимательно посмотрите спектры излучений

Защита от гамма-излучения

Что может служить защитой от гамма-излучения?

Подсказка

Вспомните свойства гамма-излучения.

Физические термины

Решите кроссворд.

Подсказка

Вспомните материал конспекта.

Физические термины

Выделите мышкой 4 слова, которые относятся к теме урока.

  1. Основной источник теплового излучения на Земле.
  2. Поток электромагнитных волн длиной от 400 до 800 нм.
  3. Спектр, состоящий из отдельных полос, разделённых тёмными промежутками.
  4. Излучение нагретых тел.
Подсказка

Вспомните излучения, спектры и источники.

Катодолюминесценция

Заполните пропуски в тексте. Для этого наберите пропущенные слова на клавиатуре компьютера.

Подсказка

Повторите определения излучений.

Монохроматическое излучение

Заполните пропуск в задаче, выбрав правильный вариант ответа из выпадающего меню.

Подсказка

Вспомните формулу длины волны.

2 5 150 7 умножить на 10 в степени 6 5 7 длин волн монохроматического излучения с частотой 500 ТГц укладывается на отрезке 30 см.

Виды излучений

Расположите виды излучений в порядке возрастания длины волны.

Подсказка

Посмотрите шкалу электромагнитных излучений.

Рентгеновское

Открытие X-лучей и источники излучений

Ответьте на вопросы, чтобы решить кроссворд.

Подсказка

Вспомните открытие X-лучей, источники излучений.

Излучение и спектры

Ответьте на вопросы, чтобы увидеть рисунок.

Подсказка

Вспомните материалы видеолекции.

Частота колебаний света

Ответьте на вопросы, чтобы решить кроссворд.

Подсказка

Вспомните формулу, связывающую частоту, длину волны и скорость.

Физические термины

Выделите мышкой 4 слова, которые относятся к теме урока.

  1. Способ передачи тепла с помощью инфракрасных волн.
  2. Учение о свете.
  3. Тело, способное излучать свет.
  4. Физическая величина.
Подсказка

Вспомните материал видеолекции

Непрерывный рентгеновский спектр

Решите задачу и подчеркните правильный вариант ответа. {-9}$ м

Сибирское синхротронное излучение – Наука – Коммерсантъ

В июле Владимир Путин подписал указ о мерах по развитию синхротронно-нейтронных исследований в России. За ближайшие три месяца экспертному сообществу под эгидой Минобрнауки нужно разработать федеральную научно-техническую программу развития синхротронно-нейтронных исследований на 2019–2027 годы.

Инфраструктура для синхротронных исследований будет включать источник синхротронного излучения поколения 4+ в Новосибирской области, синхротрон на Дальнем Востоке (остров Русский) и модернизированный Курчатовский источник синхротронного излучения в Москве. Концепция новосибирского Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ») уже подготовлена Институтом катализа им. Г.К. Борескова СО РАН и Институтом ядерной физики им. Г.И. Будкера СО РАН. В основе концепции – реализуемость, своевременность и эффективность. Пользователям синхротронного излучения из России и других стран будут обеспечены бесперебойное пучковое время, адаптивные возможности экспериментальных станций и прозрачная система отбора заявок.

Вредный эффект стал счастливой находкой

Потери энергии на кольцевых электронных или позитронных ускорителях долгое время считались неизбежным злом. С одной стороны, пучки электронов и позитронов, которые сталкиваются в кольцевых ускорителях (коллайдерах), должны быть максимально плотными и иметь минимальное поперечное сечение (эмиттанс). Высокая плотность пучков дает возможность точнее идентифицировать частицы, которые создаются при столкновении пучков. Но чем выше была энергия и чем плотнее был пучок в кольцевом ускорителе, тем сильнее частицы одного заряда сталкивались друг с другом — и разлетались. Чтобы победить эти нежелательные эффекты, ученые придумали целый ряд технологий и приемов, например, охлаждение пучка, которое сегодня повсеместно используется в ускорительном оборудовании.

Эмиттанс — важнейшая численная характеристика пучка ускоренных частиц. Строгое его определение: объем фазового пространства, который занят пучком (то есть это произведение объема пучка в пространстве координат на его объем в пространстве импульсов (или скоростей)). Малому эмиттансу соответствует узкий пучок с малым разбросом по скоростям.

В ходе продолжительной борьбы выяснилось, что излучение, порождаемое движущимся в магнитном поле пучком заряженных электронов, способно творить чудеса. С начала 60-х годов началось использование этого — синхротронного — излучения (СИ) в экспериментах, сначала в атомной спектроскопии, а вскоре и в физике твердого тела. Побочный продукт очень быстро стал востребованным, и начиная с источников второго поколения это оборудование создавалось целенаправленно.

Синхротронное излучение образуется в поворотных магнитах, установленных в вакуумной камере, внутри которой с почти световой скоростью движется узконаправленный пучок электронов. Во время поворота — под воздействием магнитного поля — летящие электроны испускают по касательной к орбите пучки фотонов в широком спектре, максимум которого приходится на рентгеновский диапазон. Для пользовательской станции обычно нужны фотоны строго определенной длины волны, то есть излучение должно быть монохроматическим. Эту задачу решает специальный рентгенооптический прибор — монохроматор.

Синхротронный источник Нобелевских премий

Сегодня самые популярные направления исследований на СИ — это биология и медицина, в частности, создание новых фармацевтических препаратов. За открытия, сделанные в процессе изучения белковых кристаллических структур на источниках СИ, с 1997 года присуждено уже семь Нобелевских премий. Нобелевские премии по химии в последние годы зачастую получают именно молекулярные биологи — специалисты в области низкотемпературной белковой кристаллографии, имеющие к химии лишь косвенное отношение.

«Просвечивать» рентгеновским пучком образцы, чтобы определять их состав и атомную структуру, требуется абсолютно во всех научных направлениях: в химии, в материаловедении, в геологии, в физике поверхностей (полупроводников), в физике взрыва и даже в археологии. Причем в археологии этот метод изучения особенно ценен, поскольку он не разрушает исследуемый предмет. Кроме научных организаций, пользователями станций СИ обычно являются наукоемкие производства, в частности, вся фармацевтическая промышленность, производители оборудования и машиностроения.

Сейчас в мире работает более 40 накопителей частиц — источников СИ. Они различаются на поколения по ширине поперечного сечения пучка частиц — эмиттансу, от которого напрямую зависит яркость, а следовательно, и качество получаемых изображений или спектров. Чем меньше сечение, тем выше яркость. «Каждому новому поколению источников СИ присущ все меньший эмиттанс,— рассказал заместитель директора Института ядерной физики им. Г. И. Будкера СО РАН Евгений Левичев.— К первому поколению относят накопители с эмиттансом примерно 300–500 нанометров (нм), исходно предназначенные для физики элементарных частиц. Второе поколение — это уже специализированные установки для экспериментов с СИ и с эмиттансом около 20–100 нм. Установки третьего поколения, наиболее многочисленные и совершенные, обладают эмиттансом от 1 до 10 нм и производят пучки рентгеновского излучения высокой яркости».

Лучше меньше, да ярче

Наибольшей яркости излучения ученые добиваются, уменьшая эмиттанс — благодаря сочетанию узкой прецизионной вакуумной камеры и более точных структур магнитов, а также благодаря новым возможностям программных продуктов, позволяющих производить более точные расчеты магнитных полей и динамики пучка. Предел величины эмиттанса пучка, к которому сейчас стремятся все передовые лаборатории, стал дифракционным, то есть по порядку величины он совпадает с длиной волны фотона (1 пикометр, или 0,001 нм).

«Если у кого-то в мире получится создать источник СИ с размерами электронного пучка, равными длине волны излучаемых фотонов, и добиться, чтобы они были когерентны (совпадали по фазе), как, например, у лазерного излучения в световом диапазоне, то изображение изучаемого объекта в рентгеновском излучении станет трехмерным, голографическим»,— поясняет Евгений Левичев.

Структура магнитов в установке «СКИФ» позволяет достичь эмиттанса 0,05 нм,·или 50 пикометров. Эти показатели для источника поколения 4+ оптимальны. Руководитель лаборатории синхротронного излучения Института ядерной физики им. Г. И. Будкера СО РАН Константин Золотарев пояснил, что для исследователей представляет интерес именно рентгеновский диапазон излучения, поскольку длина волны в этом диапазоне сопоставима с размером атома или одной ячейки анализируемого кристалла. «Все, что человечество знает сегодня о кристаллах,— это информация, полученная с помощью дифракции в рентгеновском излучении»,— отметил ученый.

«Расстояние между атомами сравнимо с длиной волны этого излучения, поэтому мы имеем дифракцию и получаем координаты каждого атома, даже если это очень сложная молекула. Самое актуальное направление — это белковая кристаллография. Сами по себе белки, разумеется, не являются кристаллами, но чтобы можно было исследовать их на источнике СИ, они должны быть закристаллизованы, что требует большого труда, денег и времени. Кристаллизация некоторых белков может занимать месяцы. Затем, чтобы не испортить полученный кристалл во время доставки и облучения, его замораживают жидким азотом».

Белковые макромолекулы очень сложны — они могут содержать десятки тысяч атомов. И единственный надежный способ ее идентифицировать — это снять ее спектр. Именно это позволяет сделать рентгеновское излучение в соответствующем диапазоне длин волн.

Схема размещения исследовательской инфраструктуры

Фото: ЦКП «СКИФ»

Космические технологии

Одной из первых пользовательских станций в России стала в 2007 году станция «Космос» на кольцевом ускорителе ВЭПП-4. В вакуумной камере она имитировала солнечное излучение в космосе. Это позволяет испытывать измерительное оборудование космических аппаратов, предназначенное для изучения солнечной активности. На новом синхротронном источнике ЦКП «СКИФ» планируется шесть базовых станций: «Микрофокус», «Структурная диагностика», «Быстропротекающие процессы» (рентгенография взрыва), «Диагностика в высокоэнергетическом диапазоне» и другие направления. В отличие от работ на ВЭПП-4, «СКИФ» предназначен исключительно для пользователей — научных исследований по ускорительной физике на нем не будет. Пользователи обычно приезжают работать на станции СИ со своими образцами для исследований и собственными научными или технологическими задачами. В этой связи сегодня ведется огромная работа по выявлению и привлечению потребителей синхротронного излучения.

Кто заплатит за СИ

Для некоторых российских ученых исследования на станциях СИ — обычная работа, которую они регулярно ведут за рубежом, где время для исследований выделяется безвозмездно. А как же в таком случае окупаются миллиардные вложения? Во-первых, во всем мире заметную часть потребителей СИ представляет наукоемкий и высокотехнологичный бизнес, который активно использует время на СИ. Готова ли к таким работам российская промышленность — отдельный вопрос. Ведь для работ на СИ нужны целенаправленные вложения на подготовку кадров и самих образцов. Во-вторых, миллиардные вложения в передовую науку практически никогда не окупаются непосредственно. Государство, которое строит у себя источник СИ последнего поколения, получает настолько значимые преференции на международном уровне в научной и технологической сфере, что прямой подсчет экономической выгоды не имеет смысла.

Резкий скачок исследовательских возможностей положительно сказывается практически на всех уровнях — от фундаментальной и прикладной науки до наукоемких производств как малого бизнеса, так и большой промышленности. В Италии, например, есть станция СИ, на которой обследуют пациентов, выявляя опухоли на ранних стадиях,— как мы уже знаем, доза облучения на любом источнике регулируется, луч получается узконаправленный и очень яркий, отсюда — высокая контрастность изображения, а разрешение (плотность точек) снимка на порядки больше, чем на самом лучшем томографе. Упрощенно описать возможности источников СИ по сравнению с существующими высокотехнологичными методами исследований можно, используя выражение «на порядки»: на порядки ярче и детальнее изображение, на порядки быстрее анализ, на порядки точнее результат, на порядки больше функций.

Канал для исследования ударно-волновых процессов

Что позволяет делать СИ

Заместитель руководителя проектного офиса ЦКП «СКИФ», руководитель лаборатории перспективных синхротронных методов исследования Института катализа им. Г. К. Борескова СО РАН Ян Зубавичус поясняет принцип работы станции: «Рентгеновский пучок формируется на длинной многополюсной структуре из магнитов под названием ондулятор. Излучение пучка после ондулятора очень узконаправленное, а после рефракционных линз, которые установлены на этой станции, он сжимается еще сильнее и составит десятки, максимум сотни нанометров. На такой станции будет удобно производить неразрушающий флуоресцентный анализ химического состава образцов».

«Фактически здесь производится картографирование элементного состава с шагом, определяемым размером рентгеновского пучка-зонда. Это актуальные исследования для геологии и для археологии и, собственно, для разработки катализаторов, в которых главную роль играют активные компоненты (например, наночастицы благородных металлов, таких как платина или золото), которых в исследуемом веществе совсем немного. Ни один инструментальный метод физико-химического анализа не может сравниться ни по скорости, ни по информативности с технологией СИ. Кроме того, в синхротроне можно исследовать не только структуры, но и процессы, отслеживая структурные изменения за кратчайшие промежутки времени — пикосекунды. Например, можно максимально реалистично смоделировать внутри камеры станции реальный каталитический процесс, происходящий в автомобильной системе дожигания выхлопных газов или в каталитическом реакторе».

«Источник СИ, в отличие от других методов исследований, обладает большой гибкостью настроек и потому дает существенную свободу по созданию условий, приближенных к реальным. В частности, для многих процессов не подходит вакуум, поскольку изучается, допустим, присоединение продуктов неполного сгорания топлива к катализатору (экологические проекты в энергетическом секторе). Для этого существуют специальные «камеры плохого вакуума», внутри которых ученые помещают небольшое количество газов и взаимодействующих веществ и могут наблюдать эффективность работы катализатора, в буквальном смысле подсчитывая количество присоединенных молекул вредных выбросов».

Кристаллические вирусы

Самые передовые и актуальные исследования на источниках СИ касаются белковой кристаллографии. Для этих работ в ЦКП «СКИФ» будет предназначено сразу несколько станций СИ. Одна из них — специализированная станция структурной вирусологии одного из крупнейших в России научного центра вирусологии и биотехнологий «Вектор». Кроме непосредственного облучения образцов, на этих станциях нужно будет обеспечить и их подготовку, ведь многие из белковых кристаллов подвержены быстрому разрушению. Для этого будет построена чистая лаборатория, обеспечивающая полную биологическую безопасность выполняемых работ непосредственно вблизи станции.

«Выделение и кристаллизация белков — это кропотливая, многоэтапная, дорогостоящая и очень долгая работа, которая производится методом комбинаторного скрининга,— поясняет Ян Зубавичус.— С применением технологий генной инженерии кусок ДНК (гена), кодирующий внутриклеточный синтез определенного белка, вставляется, например, в ДНК кишечной палочки, чтобы она наработала несколько миллиграммов этого белка. Затем его долго чистят, выделяют и создают подходящие условия для кристаллизации. Далеко не все белки кристаллизуются, а из тех, которые подвержены данной процедуре, каждый требует своих условий. Одному белку нужна пониженная влажность, другому определенная температура».

Теме структурной биологии на СИ посвящен целый раздел биологической науки, которая очень развита, но, главным образом, за рубежом. Число же российских биологов в этой области невелико. При огромной производительности станции (несколько минут на образец) загрузить ее заказами от отечественной науки и производства пока нереально. Но предложение со временем должно будет сформировать спрос. Сейчас общее число пользователей синхротронных центров в мире составляет около 10 тыс. исследовательских групп в год. Так что создателям ЦКП «СКИФ» есть на что рассчитывать.

Мария Роговая


Электромагнитные волны, свойства. Электромагнитное поле. Тесты, курсы по физике

Тестирование онлайн

  • Колебательный контур. Электромагнитные волны

Электромагнитное поле

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур «открывают», т.е. создают условия для того, чтобы поле «уходило» в пространство. Это устройство называется открытым колебательным контуром — антенной.

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Радиоактивность: альфа-, бета-, гамма-излучение

 

Ни для кого не секрет, что радиация вредна. Это знают все. Все слышали про ужасные жертвы и опасность радиоактивного воздействия. Что же такое радиация? Как она возникает? Существуют ли разные виды радиации? И как от нее защититься?

Слово «радиация» происходит от латинского radius и обозначает луч. В принципе радиация – это все виды существующих в природе излучений – радиоволны, видимый свет, ультрафиолет и так далее. Но излучения бывают различными, некоторые из них полезны, некоторые вредны. Мы в обычной жизни привыкли словом радиация называть вредное излучение, возникающее вследствие радиоактивности некоторых видов вещества. Разберем, как на уроках физики объясняют явление радиоактивности.

Радиоактивность в физике

Мы знаем, что атомы вещества состоят из ядра и вращающихся вокруг него электронов. Так вот ядро – это в принципе очень устойчивое образование, которое сложно разрушить. Однако, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство различную энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, различно и их действие на человека и меры защиты от него. Разберем все по порядку.

Альфа-излучение

Альфа-излучение — это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение

Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

В любом случае без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом. Поэтому общее правило одно – избегать подобных мест, а если уж попали, то укутаться как можно большим количеством одежды и вещей, дышать через ткань, не есть и не пить, и постараться поскорее покинуть место заражения. А потом при первой же возможности избавиться от всех этих вещей и хорошенько вымыться.

Радиоактивность также можно рассматривать как свидетельство сложного строения атомов. Изначально еще философы древности представляли себе мельчайщую частицу вещества — атом — неделимой частицей. Как радиактивность позволила разрушить данное представление? Подробности по ссылке.

Нужна помощь в учебе?



Предыдущая тема: Электронное строение атома
Следующая тема:&nbsp&nbsp&nbspПланетарная модель атома: опыт Резерфорда

Рентгенотерапия

Рентгенотерапия — это медицинская дисциплина, изучающая теорию и практику применения рентгеновского излучения с лечебной целью.

Является частным разделом лучевой терапии, при котором с лечебной целью используется рентгеновское излучение с энергией от 10 до 250 кВ. С увеличением напряжения  на рентгеновской трубке увеличивается энергия излучения и вместе с этим его проникающая способность в тканях возрастает от нескольких миллиметров до 8—10 см.

Использование рентгенотерапии началось в 1897 г., однако научные основы рентгенотерапия получила только с развитием физики, дозиметрии, радиобиологии и накоплением клинического опыта. Рентгенотерапия при напряжении от 160 до 250 кв до 50-х годов нашего столетия была единственным методом дистанционного облучения глубоко расположенных патологических процессов как воспалительного и дистрофического характера, так и злокачественных опухолей. Однако, при раке внутренних органов, характеризующемся малой радиочувствительностью  и требующем для своего разрушения больших доз излучения (в пределах 60—70 Гр), рентгенотерапия оказалась малоэффективной.

Различают рентгенотерапию глубокую или ортовольтную (расстояние фокус — кожа 30 см и больше) и близкофокусную (расстояние фокус — кожа  7,5-20 см).

Рентгеновское излучение, генерируемое в рентгеновских трубках при помощи высоковольтных электрических аппаратов, при воздействии на ткани и органы тела человека вызывает подавление функций отдельных клеток, угнетение их роста, а в ряде случаев и их деструкцию. Эти явления оказываются следствием поглощения и рассеяния— первичных физических процессов взаимодействия рентгеновского излучения с биологической средой. За первичными физическими следуют физико-химические и биохимические процессы, определяющие развитие терапевтического эффекта. Особенностью рентгеновского излучения является его непрерывный энергетический спектр, в котором присутствуют кванты излучения с любыми энергиями, вплоть до максимального значения, соответствующего наибольшему напряжению генерирования. Последнее в настоящее время в рентгенотерапии обычно не превышает 250 кВ.

Для получения однородного пучка используют фильтры, поглощающие мягкие лучи. Для излучений малой энергии применяют фильтры из легких металлов (алюминий, латунь толщиной 0,5—6 мм). Для излучений больших энергий (180—200 кВ) однородность излучения достигается применением фильтров из тяжелых металлов (цинк, медь толщиной 0,5—2 мм).

Для ограничения поля облучения и удобства центрации при рентгенотерапии применяют цилиндрические или прямоугольные тубусы, обеспечивающие необходимое для каждого конкретного больного кожно-фокусное расстояние. Выходное окно тубусов аппаратов для короткофокусной рентгенотерапии имеет диаметр до 10 см и для глубокой площадь 16—400 см2.

Лечебный эффект рентгенотерапии связан с поглощенной дозой излучения в области патологического очага. Величина оптимальной поглощенной дозы, ее дробление, ритм облучения обусловлены в каждом случае характером патологического процесса. На степень сопутствующих реакций окружающих патологический очаг здоровых тканей и органов, а также реакций всего организма влияет величина интегральных доз в этих отдельных анатомических структурах и во всем теле больного.

Эффекты воздействия рентгенотерапии не однозначны для разных гистологических структур, что связано с различной чувствительностью последних к ионизирующему излучению.

Однако чувствительность облучаемых тканей в организме человека зависит и от ряда других многочисленных факторов — возраста, пола, температуры тела и облучаемого участка, локализации последнего, его гидрофильности, кровоснабжения, кислородного насыщения, его функциональной активности, интенсивности обменных процессов и мн. др., в том числе и от исходного состояния, а также реактивности организма. На биологические эффекты рентгенотерапии влияет характер распределения дозы облучения во времени. Дробное облучение по сравнению с однократным оказывается менее повреждающим. В этом случае лучше выявляется дифференциальная чувствительность тканей и так называемый терапевтический интервал — разница в чувствительности нормальных и патологических гистоструктур.

Рентгенотерапия может вызывать различные эффекты. В зависимости от величины поглощенной дозы излучения, ритма облучения, объекта воздействия, характера и стадии заболевания и, наконец, реактивности организма больного могут иметь место противовоспалительные, десенсибилизирующие, деструктивные, анальгезирующие и другие эффекты. В связи с расширением возможностей использования высокоэнергетических источников излучения рентгенотерапии применяется преимущественно при сравнительно неглубоком расположении патологического очага и при возможности применения небольших доз излучения.

Рентгенотерапия является эффективным методом лучевого лечения в различных областях медицины: онкологии, дерматологии и косметологии, травматологии и ортопедии.

Для лечения поверхностных злокачественных новообразований базальноклеточного и плоскоклеточного рака кожи, начальных стадий рака губы и рака вульвы близкофокусная рентгенотерапия является методом выбора и имеет ряд преимуществ перед хирургическими методами лечения. При большем распространении процесса ренгенотерапия сочетается с дистанционными методами лучевой терапии.

Близкофокусная рентгенотерапия является самостоятельным радикальным методом лечения предраковых заболеваний (старческая кератома, болезнь Боуэна, кожный рог, лейкоплакия и т.д.), ряда дегенеративных воспалительных и гипертрофических заболеваний кожи (синдром Дюпюитрена, подошвенный фиброматоз, келоидные рубцы, бородавки и кондиломы, дерматологические заболевания, в том числе псориаз, грибовидные микозы, экземы, нейродермиты).

Рентгенотерапия применяется при лечении гинекомастии, послеоперационной лимфореи, является высокоэффективным методом лечения дегенеративных и воспалительных заболеваний (невралгии и невриты лицевого нерва, плечевого сплетения, пояснично-крестцовый радикулит, артрозы).

Рентгенотерапия может применяться также при некоторых неспецифических дегенеративно-дистрофических и воспалительных процессах костно-суставного аппарата, сопровождающиеся реактивным воспалением мягких тканей и выраженным болевым синдромом.

Хороший результат получают при рентгенотерапии острых воспалительных процессов, при использовании малых разовых доз порядка 0,1—0,15 Гр и суммарной дозы не превышающей 1 Гр — рекомендуется только в ранних стадиях острых воспалительных заболеваний и в случаях отсутствия других равноценных способов лечения или при неэффективности последних у лиц старше 40 лет. При неопухолевых заболеваниях у детей рентгенотерапию применять не следует.

Рентгенотерапия должна применяться только при наличии научно обоснованных показаний к такому лечению и только у больных с безупречно доказанным заболеванием.

Возможность применения различных режимов фракцирования дозы облучения делает этот метод применимым для лечения даже очень пожилых пациентов.

Возможно применение 1-2 сеансов облучения с интервалом в несколько недель или 5-10 сеансов через день в течение 3 недель, а также иные варианты.

 

В радиотерапевтическом отделении ГБУЗ ТОКОД с 2 июня 2015 года рентгенотерапия проводится на современной рентгено-терапевтической установке XTRAHL 200 (Великобритания).

Система XTRAHL 200 идеально подходит как для близкофокусной рентгенотерапии поверхностных кожных новообразований, так и для ортовольтной терапии вторичных поражений, в том числе и костных метастазов.

Показания для рентгенотерапии:

  • плоскоклеточный или базально-клеточный рак кожи I-II стадии либо 2 этапом после ДГТ
  • рак вульвы в составе сочетанно-лучевой терапии
  • рак нижней губы I-II стадии либо 2 этапом после ДГТ
  • рецидивы рака молочной железы (в рубце, мягких тканях, коже)
  • внутрикостные МТС в ребра (единичные очаги)
  • неопухолевые заболевания (пяточные шпоры, остеоартрозы коленных суставов, келоидные рубцы, послеоперационная лимфорея)

Противопоказания к рентгенотерапии могут быть абсолютными и относительными.

Абсолютные противопоказания.

  • общее тяжелое состояние больного
  • выраженная кахексия
  • наличие сопутствующих заболеваний других органов (сердца, легких, печени, почек) в стадии декомпенсации.
  • лейкопения и тромбоцитопения, анемия.
  • лучевая болезнь или лучевые повреждения, даже перенесенные в прошлом.

Относительные противопоказания.

  • острые септические и инфекционные заболевания
  • генерализованное поражение кожи .
  • сформировавшиеся абсцессы и флегмоны до вскрытия
  • беременность.
  • детский возраст
Массивная базалиома до облучения у 90 летней женщины, которой было отказано в оперативном лечении. Та же базалиома через несколько недель после облучения. Опухоль ликвидирована, оставшаяся рана превратится в белый рубец в течение полугода.

В большинстве случаев рентгенотерапия не вызывает системных последствий. Большая часть побочных эффектов обусловлена реакцией кожи, которая проявляется в виде эпидермита. Сначала во время каждого сеанса возникает отек, покраснение, зуд. По мере продолжения лечения симптомы становятся более выраженными и достигают максимума к третьей неделе терапии и проходят через 1 – 1,5 месяца после ее окончания.

На пораженном участке кожи образуются пузырьки, заполненные экссудатом. Они лопаются, открывая воспаленный эпидермис ярко-красного цвета. Это служит воротами для патогенной флоры, и при несоблюдении рекомендаций врача присутствует развития бактериальной инфекции. Также отмечают появление ранок, покрытых корками.

Чувствительность кожи к излучению зависит от множества факторов.

Это: локализация опухоли, передняя поверхность шеи более восприимчива к радиационному воздействию, чем кожа крыльев носа и других участков лица, затылка; температура воздуха, в жаркую погоду кровоснабжение эпидермиса улучшается, что повышает риск развития последствий лечения, в холода такая вероятность снижается; лишний вес, было доказано, что кожа тучных людей в большей степени восприимчива к действию излучения; трещины, царапины увеличивают проницаемость эпидермиса; возрастные изменения.

Опасным последствием такого лечения служит лучевая язва. Под воздействием радиоактивных изотопов нарушается микроциркуляция в кровеносных сосудах, расположенных под кожей. Риск осложнений возрастает пропорционально глубине проникновения патологического процесса и силе облучения.

О начале язвенных изменений в коже свидетельствуют такие симптомы: сухость и шелушение; исчезновение поверхностного рисунка эпидермиса; появление сосудистых «звездочек»; нарушение пигментации.

Если опухоль расположена возле слизистых оболочек носа или рта, может возникнуть их воспаление – мукозит. Для него характерны сухость эпителия, появление жжения и болезненности при касании. Однако такие последствия встречаются нечасто. При лучевом лечении опухоли в области глаз отмечают рецидивирующий конъюнктивит.

Долгосрочные осложнения лучевой терапии

Со временем кожа, попавшая под воздействие излучения, становится тоньше, под ней заметна сосудистая сетка. Через год – полтора после окончания лечения возможно появление более светлых или, наоборот, темных участков эпидермиса. Выраженность этих признаков зависит от продолжительности лечения, полученной в итоге терапии дозы облучения, площади воздействия. Стоит отметить, что лучевая язва, о которой шла речь выше, может также появиться спустя несколько месяцев после окончания курса лечения.

Самым опасным последствием является высокий риск развития более тяжелой, злокачественной формы рака кожи – плоскоклеточного. По этой причине облучение нежелательно для пациентов моложе 50 лет. Также из-за риска возникновения осложнений подобный метод лечения не применяется при рецидивах базалиомы. После воздействия радиационного излучения на волосистую область отмечают выпадение волос. Со временем они отрастают, но становятся ломкими, тусклыми, их окраска более блеклая.

При лечении опухолей, расположенных на коже лица вблизи глаз, может возникнуть катаракта. Насколько высок риск подобного заболевания неизвестно, так как на сегодняшний день пороговая доза облучения хрусталика не установлена. Из-за рубцевания тканей после разрушения клеток новообразования ограничивается их подвижность, что оказывает влияние на мимику. Также происходят изменения в работе сальных и потовых желез в области воздействия излучения.

Профилактика осложнений

Больного предупреждают, что перед началом курса лечения (также и во время него) следует беречь кожу от повреждений. Кроме того, рекомендуется придерживаться таких правил:

защищаться от прямых солнечных лучей, не посещать солярий, выходить на улицу в одежде с длинным рукавом, лицо закрывать широкополой шляпой, открытые участки кожи мазать специальным кремом;

нельзя растирать кожу, попавшую под облучение, массировать, ставить банки, прикладывать горчичники, обрабатывать антисептиками и спиртовыми растворами (йодом, зеленкой, перекисью) без назначения доктора;

гигиенические процедуры следует проводить с осторожностью, чтобы не смыть нанесенные врачом отметки, определяющие область лучевого воздействия;

запрещено делать компрессы, ставить грелку;

перед применением ароматизированного мыла или геля для душа, пены для ванн, дезодоранта, крема следует в обязательном порядке проконсультироваться с врачом, средства декоративной косметики (если они разрешены) необходимо смывать за 4 часа до сеанса лучевого лечения базалиомы;

для профилактики бактериальной инфекции стоит ограничить посещение таких общественных мест, как бассейны или бани.

Лучевая терапия – это серьезная нагрузка на организм. Поэтому при появлении любых беспокоящих симптомах необходимо обратиться за консультацией к своему лечащему врачу или медсестре. Также лучше согласовывать с ними изменения в питании, климате. Стоит помнить, что опасность последствий лучевого лечения и рентгенотерапии сохраняется всю оставшуюся жизнь.

% PDF-1.4 % 8160 0 объект> эндобдж xref 8160 209 0000000016 00000 н. 0000019265 00000 п. 0000019568 00000 п. 0000019613 00000 п. 0000019650 00000 п. 0000019696 00000 п. 0000019751 00000 п. 0000019883 00000 п. 0000019920 00000 п. 0000020073 00000 п. 0000020207 00000 п. 0000020754 00000 п. 0000020848 00000 п. 0000020941 00000 п. 0000021034 00000 п. 0000021127 00000 п. 0000021313 00000 п. 0000021428 00000 п. 0000021816 00000 п. 0000022992 00000 п. 0000077166 00000 п. 0000077322 00000 п. 0000088229 00000 п. 0000088440 00000 п. 0000088500 00000 н. 0000088592 00000 п. 0000088675 00000 п. 0000088779 00000 п. 0000088878 00000 п. 0000088983 00000 п. 0000089102 00000 п. 0000089294 00000 п. 0000089390 00000 п. 0000089488 00000 н. 0000089682 00000 п. 0000089778 00000 п. 0000089868 00000 н. 00000

00000 п. 00000
  • 00000 п. 00000
  • 00000 п. 00000
  • 00000 п. 00000

    00000 п. 00000 00000 п. 0000090783 00000 п. 0000090879 00000 н. 0000090969 00000 п. 0000091190 00000 н. 0000091286 00000 п. 0000091376 00000 п. 0000091567 00000 п. 0000091663 00000 п. 0000091753 00000 п. 0000091937 00000 п. 0000092032 00000 н. 0000092122 00000 п. 0000092309 00000 п. 0000092437 00000 п. 0000092526 00000 п. 0000092732 00000 н. 0000092826 00000 п. 0000092915 00000 н. 0000093097 00000 п. 0000093191 00000 п. 0000093280 00000 п. 0000093472 00000 п. 0000093566 00000 п. 0000093655 00000 п. 0000093829 00000 п. 0000093923 00000 п. 0000094012 00000 п. 0000094175 00000 п. 0000094269 00000 п. 0000094358 00000 п. 0000094543 00000 п. 0000094637 00000 п. 0000094726 00000 п. 0000094891 00000 п. 0000094985 00000 п. 0000095074 00000 п. 0000095172 00000 п. 0000095274 00000 п. 0000095371 00000 п. 0000095477 00000 п. 0000095592 00000 п. 0000095709 00000 п. 0000095833 00000 п. 0000095942 00000 п. 0000096089 00000 п. 0000096199 00000 п. 0000096308 00000 п. 0000096408 00000 п. 0000096509 00000 п. 0000096638 00000 п. 0000096782 00000 п. 0000096895 00000 п. 0000097014 00000 п. 0000097133 00000 п. 0000097251 00000 п. 0000097361 00000 п. 0000097493 00000 п. 0000097613 00000 п. 0000097730 00000 п. 0000097844 00000 п. 0000097987 00000 п. 0000098105 00000 п. 0000098246 00000 п. 0000098383 00000 п. 0000098503 00000 п. 0000098649 00000 п. 0000098751 00000 п. 0000098868 00000 н. 0000098999 00000 н. 0000099122 00000 п. 0000099242 00000 п. 0000099366 00000 п. 0000099507 00000 п. 0000099656 00000 п. 0000099783 00000 п. 0000099926 00000 н. 0000100062 00000 н. 0000100191 00000 н. 0000100352 00000 н. 0000100516 00000 н. 0000100642 00000 н. 0000100791 00000 п. 0000100905 00000 н. 0000101020 00000 н. 0000101159 00000 н. 0000101299 00000 н. 0000101420 00000 н. 0000101556 00000 н. 0000101691 00000 н. 0000101805 00000 н. 0000101918 00000 н. 0000102062 00000 н. 0000102197 00000 н. 0000102361 00000 п. 0000102480 00000 н. 0000102648 00000 н. 0000102771 00000 н. 0000102899 00000 н. 0000103037 00000 н. 0000103155 00000 п. 0000103319 00000 п. 0000103466 00000 н. 0000103605 00000 н. 0000103734 00000 п. 0000103845 00000 н. 0000103959 00000 н. 0000104078 00000 н. 0000104198 00000 п. 0000104331 00000 п. 0000104455 00000 н. 0000104595 00000 н. 0000104708 00000 н. 0000104819 00000 н. 0000104935 00000 п. 0000105074 00000 н. 0000105210 00000 п. 0000105356 00000 п. 0000105471 00000 п. 0000105589 00000 п. 0000105754 00000 п. 0000105879 00000 п. 0000106010 00000 п. 0000106140 00000 п. 0000106272 00000 н. 0000106399 00000 н. 0000106534 00000 п. 0000106660 00000 н. 0000106792 00000 н. 0000106904 00000 н. 0000107044 00000 н. 0000107183 00000 п. 0000107301 00000 п. 0000107419 00000 п. 0000107541 00000 н. 0000107659 00000 н. 0000107782 00000 п. 0000107924 00000 н. 0000108146 00000 п. 0000108275 00000 п. 0000108394 00000 п. 0000108517 00000 н. 0000108637 00000 п. 0000108766 00000 н. 0000108891 00000 н. 0000109020 00000 н. 0000109140 00000 н. 0000109262 00000 н. 0000109414 00000 п. 0000109539 00000 п. 0000109668 00000 н. 0000109805 00000 н. 0000109919 00000 п. 0000110034 00000 н. 0000110154 00000 н. 0000110272 00000 н. 0000110440 00000 н. 0000110595 00000 н. 0000110768 00000 н. 0000110901 00000 н. 0000111051 00000 н. 0000111188 00000 н. 0000111335 00000 н. 0000111460 00000 н. 0000111612 00000 н. 0000019088 00000 п. 0000004573 00000 н. трейлер ] >> startxref 0 %% EOF 8368 0 obj> поток x} XgUo4u + tȦ, [M7 & (Ą-FM7, (

    Методы теплопередачи | Физика

    Цель обучения

    К концу этого раздела вы сможете:

    • Обсудите различные методы передачи тепла.

    Не менее интересны, чем эффекты теплопередачи в системе, методы, с помощью которых это происходит. Всякий раз, когда есть разница температур, происходит передача тепла. Теплоотдача может происходить быстро, например, через кастрюлю, или медленно, например, через стенки ящика для льда для пикника. Мы можем контролировать скорость теплопередачи, выбирая материалы (например, толстую шерстяную одежду на зиму), контролируя движение воздуха (например, используя уплотнители вокруг дверей) или выбирая цвет (например, белая крыша для отражения лета). Солнечный свет).Так много процессов связано с теплопередачей, поэтому трудно представить себе ситуацию, когда теплообмен не происходит. Однако каждый процесс, связанный с передачей тепла, осуществляется всего тремя способами:

    1. Проводимость — это передача тепла через неподвижное вещество при физическом контакте. (Материя неподвижна в макроскопическом масштабе — мы знаем, что существует тепловое движение атомов и молекул при любой температуре выше абсолютного нуля. ) Тепло, передаваемое между электрической горелкой плиты и дном кастрюли, передается за счет теплопроводности.
    2. Конвекция — это передача тепла за счет макроскопического движения жидкости. Этот тип переноса имеет место, например, в топке с принудительной подачей воздуха и в погодных системах.
    3. Передача тепла посредством излучения происходит, когда излучаются или поглощаются микроволны, инфракрасное излучение, видимый свет или другая форма электромагнитного излучения. Очевидный пример — потепление Земли Солнцем. Менее очевидный пример — тепловое излучение человеческого тела.

    Рис. 1. В камине передача тепла происходит всеми тремя способами: теплопроводностью, конвекцией и излучением. Излучение отвечает за большую часть тепла, передаваемого в комнату. Передача тепла также происходит через теплопроводность в комнату, но гораздо медленнее. Теплообмен за счет конвекции также происходит через холодный воздух, поступающий в комнату вокруг окон, и горячий воздух, покидающий комнату, поднимаясь вверх по дымоходу.

    Мы рассмотрим эти методы более подробно в трех следующих модулях.Каждый метод имеет уникальные и интересные характеристики, но все три имеют одну общую черту: они передают тепло исключительно из-за разницы температур. Рис. 1.

    Проверьте свое понимание

    Назовите пример из повседневной жизни (отличный от текста) для каждого механизма теплопередачи.

    Решение
    • Электропроводность: тепло передается вашим рукам, когда вы держите чашку горячего кофе.
    • Конвекция: теплопередача, когда бариста «пропаривает» холодное молоко, чтобы сделать горячее какао .
    • Излучение: разогрев холодной чашки кофе в микроволновой печи.

    Сводка раздела

    • Тепло передается тремя различными способами: теплопроводностью, конвекцией и излучением.

    Концептуальные вопросы

    1. Каковы основные способы передачи тепла от горячего ядра Земли к ее поверхности? С поверхности Земли в космос?
    2. Когда наши тела становятся слишком теплыми, они реагируют потоотделением и усилением кровообращения на поверхности, чтобы отводить тепловую энергию от ядра. Как это повлияет на человека, находящегося в горячей ванне с температурой 40 ° C?
    3. На рис. 2 показан разрез термоса (также известного как сосуд Дьюара), который представляет собой устройство, специально разработанное для замедления всех форм теплопередачи. Объясните функции различных частей, таких как вакуум, серебрение стен, тонкостенная длинная стеклянная горловина, резиновая опора, воздушный слой и стопор.

      Рис. 2. Конструкция термоса предназначена для подавления всех способов теплопередачи.

    4. Конструкция термоса разработана таким образом, чтобы препятствовать передаче тепла всеми способами.
    5. На рисунке показан вид термоса в разрезе с обозначенными различными частями.

    Глоссарий

    теплопроводность: передача тепла через неподвижное вещество при физическом контакте

    конвекция: передача тепла за счет макроскопического движения жидкости

    излучение: теплопередача, возникающая при испускании или поглощении микроволн, инфракрасного излучения, видимого света или другого электромагнитного излучения

    открытых учебников | Сиявула

    Математика

    Наука

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 7A

          • Марка 7Б

          • 7 класс (A и B вместе)

        • Африкаанс

          • Граад 7А

          • Граад 7Б

          • Граад 7 (A en B saam)

      • Пособия для учителя

      • Читать онлайн
      • Учебники

        • Английский

          • Марка 8A

          • Сорт 8Б

          • Оценка 8 (вместе A и B)

        • Африкаанс

          • Граад 8А

          • Граад 8Б

          • Граад 8 (A en B saam)

      • Пособия для учителя

      • Читать онлайн
      • Учебники

        • Английский

          • Марка 9А

          • Марка 9Б

          • 9 класс (A и B вместе)

        • Африкаанс

          • Граад 9А

          • Граад 9Б

          • Граад 9 (A en B saam)

      • Пособия для учителя

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 4A

          • Класс 4Б

          • Класс 4 (вместе A и B)

        • Африкаанс

          • Граад 4А

          • Граад 4Б

          • Граад 4 (A en B saam)

      • Пособия для учителя

      • Читать онлайн
      • Учебники

        • Английский

          • Марка 5А

          • Марка 5Б

          • Оценка 5 (вместе A и B)

        • Африкаанс

          • Граад 5А

          • Граад 5Б

          • Граад 5 (A en B saam)

      • Пособия для учителя

      • Читать онлайн
      • Учебники

        • Английский

          • Марка 6А

          • Марка 6Б

          • 6 класс (A и B вместе)

        • Африкаанс

          • Граад 6А

          • Граад 6Б

          • Граад 6 (A en B saam)

      • Пособия для учителя

    Наша книга лицензионная

    Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

    CC-BY-ND (фирменные версии)

    Вам разрешается и поощряется свободное копирование этих версий. Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

    Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

    CC-BY (версии без бренда)

    Эти небрендовые версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, преобразовывать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

    Учебное пособие по физике

    Если вы следовали инструкциям с самого начала этого урока, значит, вы постепенно усложняли понимание температуры и тепла.Вы должны разработать модель материи, состоящую из частиц, которые вибрируют (покачиваются в фиксированном положении), перемещаются (перемещаются из одного места в другое) и даже вращаются (вращаются вокруг воображаемой оси). Эти движения придают частицам кинетическую энергию. Температура — это мера среднего количества кинетической энергии, которой обладают частицы в образце вещества. Чем больше частицы вибрируют, перемещаются и вращаются, тем выше температура объекта. Мы надеемся, что вы приняли понимание тепла как потока энергии от объекта с более высокой температурой к объекту с более низкой температурой.Разница температур между двумя соседними объектами вызывает эту теплопередачу. Передача тепла продолжается до тех пор, пока два объекта не достигнут теплового равновесия и не будут иметь одинаковую температуру. Обсуждение теплопередачи было построено вокруг некоторых повседневных примеров, таких как охлаждение горячей кружки кофе и нагревание холодной банки с попой. Наконец, мы исследовали мысленный эксперимент, в котором металлическая банка с горячей водой помещается в чашку из пенополистирола с холодной водой.Тепло передается от горячей воды к холодной до тех пор, пока оба образца не будут иметь одинаковую температуру.

    Теперь мы должны ответить на некоторые из следующих вопросов:

    • Что происходит на уровне частиц, когда энергия передается между двумя объектами?
    • Почему всегда устанавливается тепловое равновесие, когда два объекта передают тепло?
    • Как происходит теплопередача в объеме объекта?
    • Существует более одного метода передачи тепла? Если да, то чем они похожи и чем отличаются друг от друга?

    Проводимость — вид из частиц

    Давайте начнем обсуждение с возвращения к нашему мысленному эксперименту, в котором металлическая банка с горячей водой была помещена в чашку из пенополистирола с холодной водой. Тепло передается от горячей воды к холодной до тех пор, пока оба образца не будут иметь одинаковую температуру. В этом случае передачу тепла от горячей воды через металлическую банку к холодной воде иногда называют теплопроводностью. Кондуктивный тепловой поток подразумевает передачу тепла от одного места к другому при отсутствии какого-либо материального потока. Нет никаких физических или материальных движений из горячей воды в холодную. От горячей воды к холодной передается только энергия.Кроме потери энергии, от горячей воды больше ничего не ускользнет. И кроме получения энергии, в холодную воду больше ничего не входит. Как это произошло? Каков механизм, который делает возможным теплопроводный поток?

    Подобный вопрос относится к вопросу на уровне частиц. Чтобы понять ответ, мы должны думать о материи как о состоящей из крошечных частиц, атомов, молекул и ионов. Эти частицы находятся в постоянном движении; это дает им кинетическую энергию.Как упоминалось ранее в этом уроке, эти частицы перемещаются по всему пространству контейнера, сталкиваясь друг с другом и со стенками своего контейнера. Это называется поступательной кинетической энергией и является основной формой кинетической энергии для газов и жидкостей. Но эти частицы также могут колебаться в фиксированном положении. Это дает частицам кинетическую энергию колебаний и является основной формой кинетической энергии для твердых тел. Проще говоря, материя состоит из маленьких вигглеров и маленьких взломщиков.Вигглеры — это частицы, колеблющиеся в фиксированном положении. Они обладают колебательной кинетической энергией. Удары — это те частицы, которые движутся через контейнер с поступательной кинетической энергией и сталкиваются со стенками контейнера.

    Стенки контейнера представляют собой периметры образца вещества. Так же, как периметр вашей собственности (как и в случае с недвижимостью) является самым дальним продолжением собственности, так и периметр объекта является самым дальним продолжением частиц в образце материи.По периметру маленькие бомбы сталкиваются с частицами другого вещества — частицами контейнера или даже с окружающим воздухом. Даже вигглеры, закрепленные по периметру, трясутся. Находясь по периметру, их шевеление приводит к столкновениям с находящимися рядом частицами; это частицы контейнера или окружающего воздуха.

    На этом периметре или границе столкновения маленьких бомберов и вигглеров являются упругими столкновениями, в которых сохраняется общее количество кинетической энергии всех сталкивающихся частиц.Конечный эффект этих упругих столкновений заключается в передаче кинетической энергии через границу частицам на противоположной стороне. Более энергичные частицы потеряют немного кинетической энергии, а менее энергичные частицы получат немного кинетической энергии. Температура — это мера среднего количества кинетической энергии, которой обладают частицы в образце вещества. Таким образом, в среднем в более высокотемпературном объекте больше частиц с большей кинетической энергией, чем в более низкотемпературном объекте.Поэтому, когда мы усредняем все столкновения вместе и применяем принципы, связанные с упругими столкновениями, к частицам в образце материи, логично сделать вывод, что объект с более высокой температурой потеряет некоторую кинетическую энергию, а объект с более низкой температурой получит некоторую кинетическую энергию. . Столкновения наших маленьких бомжей и вигглеров будут продолжать передавать энергию до тех пор, пока температуры двух объектов не станут одинаковыми. Когда это состояние теплового равновесия достигнуто, средняя кинетическая энергия частиц обоих объектов становится равной.При тепловом равновесии количество столкновений, приводящих к выигрышу в энергии, равно количеству столкновений, приводящих к потере энергии. В среднем нет чистой передачи энергии в результате столкновений частиц по периметру.

    На макроскопическом уровне тепло — это передача энергии от высокотемпературного объекта низкотемпературному объекту. На уровне частиц тепловой поток можно объяснить в терминах суммарного эффекта столкновений всей группы маленьких взрывных устройств .Нагревание и охлаждение — макроскопические результаты этого явления на уровне частиц. Теперь давайте применим этот вид частиц к сценарию металлической банки с горячей водой, расположенной внутри чашки из пенополистирола, содержащей холодную воду. В среднем частицы с наибольшей кинетической энергией — это частицы горячей воды. Будучи жидкостью, эти частицы движутся с поступательной кинетической энергией, и ударяется о частицы металлической банки. Когда частицы горячей воды ударяются о частицы металлической банки, они передают энергию металлической банке.Это нагревает металлическую банку. Большинство металлов являются хорошими проводниками тепла, поэтому они довольно быстро нагреваются по всей емкости. Канистра нагревается почти до той же температуры, что и горячая вода. Металлическая банка, будучи цельной, состоит из маленьких вигглеров . Вигглеры по внешнему периметру металла могут столкнуться с частицами в холодной воде. Столкновения между частицами металлической банки и частицами холодной воды приводят к передаче энергии холодной воде.Это медленно нагревает холодную воду. Взаимодействие между частицами горячей воды, металлической банки и холодной воды приводит к передаче энергии наружу от горячей воды к холодной. Средняя кинетическая энергия частиц горячей воды постепенно уменьшается; средняя кинетическая энергия частиц холодной воды постепенно увеличивается; и, в конце концов, тепловое равновесие будет достигнуто в точке, где частицы горячей и холодной воды будут иметь одинаковую среднюю кинетическую энергию.На макроскопическом уровне можно наблюдать снижение температуры горячей воды и повышение температуры холодной воды.

    Механизм, в котором тепло передается от одного объекта к другому посредством столкновения частиц, известен как проводимость. При проводке нет чистой передачи физического материала между объектами. Ничто материальное не пересекает границу. Изменения температуры полностью объясняются увеличением и уменьшением кинетической энергии во время столкновений.

    Проводимость через объем объекта

    Мы обсудили, как тепло передается от одного объекта к другому посредством теплопроводности. Но как он проходит через большую часть объекта? Например, предположим, что мы достаем керамическую кружку для кофе из шкафа и ставим ее на столешницу. Кружка комнатной температуры — может быть, 26 ° C. Затем предположим, что мы наполняем керамическую кофейную кружку горячим кофе с температурой 80 ° C.Кружка быстро нагревается. Энергия сначала проникает в частицы на границе между горячим кофе и керамической кружкой. Но затем он течет через большую часть керамики ко всем частям керамической кружки. Как происходит теплопроводность самой керамики?

    Механизм теплопередачи через объем керамической кружки описан так же, как и раньше. Керамическая кружка состоит из набора упорядоченных виглеров. Это частицы, которые колеблются в фиксированном положении.Когда керамические частицы на границе между горячим кофе и кружкой нагреваются, они приобретают кинетическую энергию, которая намного выше, чем у их соседей. По мере того как они извиваются более энергично, они врезаются в своих соседей и увеличивают свою кинетическую энергию колебаний. Эти частицы, в свою очередь, начинают более энергично покачиваться, и их столкновения с соседями увеличивают их колебательную кинетическую энергию. Процесс передачи энергии посредством маленьких бэнгеров продолжается от частиц внутри кружки (в контакте с частицами кофе) к внешней стороне кружки (в контакте с окружающим воздухом).Вскоре вся кофейная кружка станет теплой, и ваша рука почувствует это.

    Этот механизм проводимости за счет взаимодействия частиц с частицами очень распространен в керамических материалах, таких как кофейная кружка. То же самое работает с металлическими предметами? Например, вы, вероятно, заметили высокие температуры, достигаемые металлической ручкой сковороды, когда ее ставят на плиту. Горелки на плите передают тепло металлической сковороде. Если ручка сковороды металлическая, она тоже нагревается до высокой температуры, достаточно высокой, чтобы вызвать сильный ожог.Передача тепла от сковороды к ручке сковороды происходит за счет теплопроводности. Но в металлах механизм проводимости несколько сложнее. Подобно электропроводности, теплопроводность в металлах возникает за счет движения свободных электронов . Электроны внешней оболочки атомов металла распределяются между атомами и могут свободно перемещаться по всей массе металла. Эти электроны переносят энергию от сковороды к ручке сковороды. Детали этого механизма теплопроводности в металлах значительно сложнее, чем приведенное здесь обсуждение.Главное, чтобы понять, что передача тепла через металлы происходит без движения атомов от сковороды к ручке сковороды. Это квалифицирует передачу тепла как относящуюся к категории теплопроводности.

    Теплообмен путем конвекции

    Является ли теплопроводность единственным средством передачи тепла? Может ли тепло передаваться через объем объекта другими способами, кроме теплопроводности? Ответ положительный. Модель теплопередачи через керамическую кофейную кружку и металлическую сковороду включает теплопроводность. Керамика кофейной кружки и металл сковороды твердые. Передача тепла через твердые тела происходит за счет теплопроводности. Это в первую очередь связано с тем, что твердые тела имеют упорядоченное расположение частиц, которые закреплены на месте. Жидкости и газы — не очень хорошие проводники тепла. На самом деле они считаются хорошими теплоизоляторами. Обычно тепло не проходит через жидкости и газы за счет теплопроводности. Жидкости и газы — это жидкости; их частицы не закреплены на месте; они перемещаются по большей части образца материи.Модель, используемая для объяснения теплопередачи через объем жидкостей и газов, включает конвекцию. Конвекция — это процесс передачи тепла от одного места к другому за счет движения жидкостей. Движущаяся жидкость несет с собой энергию. Жидкость течет из места с высокой температурой в место с низкой температурой.

    Чтобы понять конвекцию в жидкостях, давайте рассмотрим передачу тепла через воду, которая нагревается в кастрюле на плите. Конечно, источником тепла является горелка печи. Металлический горшок, в котором находится вода, нагревается конфоркой печи. По мере того, как металл нагревается, он начинает передавать тепло воде. Вода на границе с металлическим поддоном становится горячей. Жидкости расширяются при нагревании и становятся менее плотными. По мере того, как вода на дне горшка становится горячей, ее плотность уменьшается. Разница в плотности воды между дном и верхом горшка приводит к постепенному образованию циркуляционных токов . Горячая вода начинает подниматься к верху кастрюли, вытесняя более холодную воду, которая была там изначально.А более холодная вода, которая была наверху горшка, движется к дну горшка, где она нагревается, и начинает подниматься. Эти циркуляционные токи медленно развиваются с течением времени, обеспечивая путь для нагретой воды для передачи энергии от дна горшка к поверхности.

    Конвекция также объясняет, как электрический обогреватель, установленный на полу холодного помещения, нагревает воздух в помещении. Воздух, находящийся возле змеевиков нагревателя, нагревается. По мере того, как воздух нагревается, он расширяется, становится менее плотным и начинает подниматься.Когда горячий воздух поднимается, он выталкивает часть холодного воздуха в верхнюю часть комнаты. Холодный воздух движется в нижнюю часть комнаты, чтобы заменить поднявшийся горячий воздух. По мере того, как более холодный воздух приближается к обогревателю в нижней части комнаты, он нагревается обогревателем и начинает подниматься. Снова медленно образуются конвекционные токи. Воздух движется по этим путям, неся с собой энергию от обогревателя по всей комнате.

    Конвекция — это основной метод передачи тепла в таких жидкостях, как вода и воздух.Часто говорят, что тепла поднимается в таких ситуациях на . Более подходящее объяснение — сказать, что нагретая жидкость поднимается на . Например, когда нагретый воздух поднимается от обогревателя на полу, он уносит с собой более энергичные частицы. По мере того как более энергичные частицы нагретого воздуха смешиваются с более холодным воздухом у потолка, средняя кинетическая энергия воздуха в верхней части комнаты увеличивается. Это увеличение средней кинетической энергии соответствует увеличению температуры.Конечным результатом подъема горячей жидкости является передача тепла из одного места в другое. Конвекционный метод передачи тепла всегда предполагает передачу тепла движением вещества. Это не следует путать с теорией калорийности, обсуждавшейся ранее в этом уроке. В теории калорийности тепло было жидкостью, а движущаяся жидкость — теплом. Наша модель конвекции рассматривает тепло как передачу энергии, которая является просто результатом движения более энергичных частиц.

    Два обсуждаемых здесь примера конвекции — нагрев воды в кастрюле и нагрев воздуха в комнате — являются примерами естественной конвекции.Движущая сила циркуляции жидкости является естественной — разница в плотности между двумя местами в результате нагрева жидкости в каком-либо источнике. (Некоторые источники вводят понятие выталкивающих сил, чтобы объяснить, почему нагретые жидкости поднимаются. Мы не будем здесь приводить подобные объяснения. ) Естественная конвекция является обычным явлением в природе. Океаны и атмосфера Земли нагреваются естественной конвекцией. В отличие от естественной конвекции, принудительная конвекция включает перемещение жидкости из одного места в другое вентиляторами, насосами и другими устройствами.Многие системы отопления дома включают принудительное воздушное отопление. Воздух нагревается в печи, выдувается вентиляторами через воздуховоды и выпускается в помещения в местах вентиляции. Это пример принудительной конвекции. Перемещение жидкости из горячего места (около печи) в прохладное (комнаты по всему дому) приводится в движение вентилятором. Некоторые духовки являются духовками с принудительной конвекцией; у них есть вентиляторы, которые нагнетают нагретый воздух от источника тепла в духовку. Некоторые камины увеличивают нагревательную способность огня, продувая нагретый воздух из каминного блока в соседнее помещение.Это еще один пример принудительной конвекции.


    Теплообмен излучением

    Последний метод передачи тепла включает излучение. Излучение — это передача тепла посредством электромагнитных волн. излучать означает посылать или распространять из центра. Будь то свет, звук, волны, лучи, лепестки цветов, спицы колес или боль, если что-то излучает , то оно выступает или распространяется наружу из источника.Передача тепла излучением включает перенос энергии от источника к окружающему его пространству. Энергия переносится электромагнитными волнами и не связана с движением или взаимодействием материи. Тепловое излучение может происходить через материю или через область пространства, лишенную материи (то есть вакуум). Фактически, тепло, получаемое на Землю от Солнца, является результатом распространения электромагнитных волн через пустоту пространства между Землей и Солнцем.

    Все объекты излучают энергию в виде электромагнитных волн. Скорость, с которой эта энергия высвобождается, пропорциональна температуре Кельвина (T), возведенной в четвертую степень.

    Мощность излучения = k • T 4

    Чем горячее объект, тем больше он излучает. Солнце явно излучает больше энергии, чем горячая кружка кофе. Температура также влияет на длину и частоту излучаемых волн. Объекты при обычной комнатной температуре излучают энергию в виде инфракрасных волн.Поскольку мы невидимы для человеческого глаза, мы не видим эту форму излучения. Инфракрасная камера способна обнаружить такое излучение. Возможно, вы видели тепловые фотографии или видеозаписи излучения, окружающего человека или животное, или горячую кружку кофе, или Землю. Энергия, излучаемая объектом, обычно представляет собой набор или диапазон длин волн. Обычно это называется спектром излучения . По мере увеличения температуры объекта длины волн в спектрах испускаемого излучения также уменьшаются.Более горячие объекты, как правило, излучают более коротковолновое и более высокочастотное излучение. Катушки электрического тостера значительно горячее комнатной температуры и излучают электромагнитное излучение в видимой области спектра. К счастью, это обеспечивает удобное предупреждение для пользователей о том, что катушки горячие. Вольфрамовая нить накаливания излучает электромагнитное излучение в видимом (и за его пределами) диапазоне. Это излучение не только позволяет нам видеть, но и нагревает стеклянную колбу, в которой находится нить накала.Поднесите руку к лампочке (не касаясь ее), и вы также почувствуете излучение лампочки.

    Тепловое излучение — это форма передачи тепла, потому что электромагнитное излучение, испускаемое источником, переносит энергию от источника к окружающим (или удаленным) объектам. Эта энергия поглощается этими объектами, вызывая увеличение средней кинетической энергии их частиц и повышение температуры. В этом смысле энергия передается из одного места в другое посредством электромагнитного излучения.Изображение справа было получено тепловизором. Камера обнаруживает излучение, испускаемое объектами, и представляет его с помощью цветной фотографии. горячих цветов представляют области объектов, которые излучают тепловое излучение с большей интенсивностью. (Изображения любезно предоставлены Питером Льюисом и Крисом Уэстом из SLAC Стэндфорда. )

    Наше обсуждение на этой странице относилось к различным методам теплопередачи. Были описаны и проиллюстрированы проводимость, конвекция и излучение.Макроскопия была объяснена с точки зрения частиц — постоянная цель этой главы Учебного пособия по физике. Последняя тема, которую мы обсудим в Уроке 1, носит более количественный характер. На следующей странице мы исследуем математику, связанную со скоростью теплопередачи.

    Проверьте свое понимание

    1. Рассмотрим объект A с температурой 65 ° C и объект B с температурой 15 ° C.Два объекта помещаются рядом друг с другом, и маленькие бомбы начинают сталкиваться. Приведет ли какое-либо столкновение к передаче энергии от объекта B к объекту A? Объяснять.

    2. Предположим, что объект A и объект B (из предыдущей задачи) достигли теплового равновесия. Столкнулись ли частицы двух объектов друг с другом? Если да, то приводит ли какое-либо столкновение к передаче энергии между двумя объектами? Объяснять.

    Определение излучения и примеры

    Радиация и радиоактивность — два понятия, которые легко спутать. Просто помните, что вещество не обязательно должно быть радиоактивным, чтобы излучать излучение. Давайте посмотрим на определение радиации и посмотрим, чем оно отличается от радиоактивности.

    Определение излучения

    Радиация — это испускание и распространение энергии в форме волн, лучей или частиц.Выделяют три основных типа излучения:

    • Неионизирующее излучение : Это выделение энергии из низкоэнергетической области электромагнитного спектра. Источники неионизирующего излучения включают свет, радио, микроволны, инфракрасный (тепло) и ультрафиолетовый свет.
    • Ионизирующее излучение : Это излучение с достаточной энергией, чтобы удалить электрон с атомной орбитали, образуя ион. Ионизирующее излучение включает рентгеновские лучи, гамма-лучи, альфа-частицы и бета-частицы.
    • Нейтроны : Нейтроны — это частицы, находящиеся в ядре атома. Когда они отрываются от ядра, они обладают энергией и действуют как излучение.

    Примеры излучения

    Излучение включает в себя излучение любой части электромагнитного спектра, а также выброс частиц. Примеры включают:

    • Горящая свеча излучает излучение в виде тепла и света.
    • Солнце испускает излучение в виде света, тепла и частиц.
    • Уран-238, распадаясь на торий-234, испускает излучение в виде альфа-частиц.
    • Электроны, переходящие из одного энергетического состояния в более низкое, испускают излучение в виде фотона.

    Разница между излучением и радиоактивностью

    Излучение — это высвобождение энергии, принимает ли она форму волн или частиц. Радиоактивность относится к распаду или расщеплению атомного ядра. При распаде радиоактивный материал выделяет излучение.Примеры распада включают альфа-распад, бета-распад, гамма-распад, высвобождение нейтронов и спонтанное деление. Все радиоактивные изотопы испускают радиацию, но не вся радиация связана с радиоактивностью.

    электромагнитного спектра | Определение, схема и использование

    Электромагнитный спектр , полное распределение электромагнитного излучения по частоте или длине волны. Хотя все электромагнитные волны в вакууме распространяются со скоростью света, они делают это в широком диапазоне частот, длин волн и энергий фотонов.Электромагнитный спектр включает в себя весь диапазон электромагнитного излучения и состоит из множества поддиапазонов, обычно называемых частями, таких как видимый свет или ультрафиолетовое излучение. Различные части носят разные названия, основанные на различиях в поведении при излучении, пропускании и поглощении соответствующих волн, а также на их различных практических применениях. Между этими смежными частями нет четких принятых границ, поэтому диапазоны имеют тенденцию перекрываться.

    Электромагнитный спектр. Узкий диапазон видимого света показан увеличенным справа.

    Британская энциклопедия, Inc.

    Подробнее по этой теме

    Электромагнитное излучение: Электромагнитный спектр

    Краткое описание известных явлений, приведенное выше, касается электромагнитного излучения от низких частот ν (радиоволны) до чрезвычайно высоких частот…

    Весь электромагнитный спектр, от самой низкой до самой высокой частоты (от самой длинной до самой короткой длины волны), включает все радиоволны (например, коммерческое радио и телевидение, микроволны, радары), инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, и гамма-лучи. Для спектроскопии можно использовать почти все частоты и длины волн электромагнитного излучения.

    типов электромагнитного излучения

    Радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-лучи — это все типы электромагнитного излучения. Радиоволны имеют самую большую длину волны, а гамма-лучи — самую короткую длину волны.

    Британская энциклопедия, Inc.

    Что такое радиация? — Физика для детей

    Радиация: определение

    • Излучение — это передача энергии посредством волн (электромагнитное излучение) или быстро движущихся частиц (излучение твердых частиц).
    • Излучение может быть в виде тепла, звука и света.
    • Излучение можно почувствовать или увидеть как свет или обнаружить с помощью специальных инструментов, таких как рентгеновские лучи.
    • Излучение горячего объекта короче и интенсивнее, чем излучение более холодного объекта.
    • Солнце, Земля, почва, микроволновая печь, телевидение, сотовые телефоны — все это подвергает нас воздействию радиации.

    Электромагнитное излучение включает фотоны (энергия, которая всегда движется), распространяющиеся в виде волн (радио, доставляющих звук в наши уши) или подобных частицам (рентгеновские лучи). В электромагнитном излучении есть два типа излучения.

    • Ионизирующее излучение обладает достаточной энергией, чтобы разрушать атомы и создавать ионы.Например: электроэнергия.
    • Неионизирующее излучение заставляет атомы двигаться только в молекуле. Например: микроволновая печь, разогревающая пищу.

    Виды излучения

    • Альфа-излучение испускает положительно заряженные альфа-частицы, потому что в ядре слишком много протонов. Например: Радий
    • Бета-излучение испускает отрицательно заряженные бета-частицы, потому что в ядре слишком много нейтронов. Например: Водород
    • Гамма- и рентгеновское излучение излучает чрезмерную энергию от ядра.Например: Йод

    Лучевая терапия рака

    Раковые клетки начинают размножаться и одна за другой разрушают ценные клетки вашего тела. Лучевая терапия включает в себя гамма-лучи высокой энергии, убивающие раковые клетки. Для внешней лучевой терапии используется большой аппарат, который указывает на пораженное место и испускает радиационные лучи. При внутренней лучевой терапии в организм вводят радиоактивное вещество, чтобы убить опухолевые клетки.

    2 интересных факта о радиации

    1. Слишком сильное облучение вызывает рак, поскольку радиация изменяет клеточные структуры в нашем организме.
    2. Радиация измеряется в кюри.

    Ищете больше статей и видео по физике? Перейти к: Физика для детей.

    .