3 испарился кристаллик йода массой 20 мг. Сколько
4.1.15 В лабораторных условиях создан высокий вакуум, то есть очень малое давление
4.1.16 Определить молярную массу газа, если его плотность при нормальных условиях
4.1.17 Найти число молекул в 2 кг углекислого газа
4.1.18 Во сколько раз масса молекулы углекислого газа CO2 больше массы молекулы аммиака Nh4
4.1.19 За 20 суток из стакана полностью испарилась 0,2 кг воды. Сколько в среднем молекул
4.1.20 Считая, что диаметр молекул водорода составляет около 0,23 нм, подсчитать, какой длины
4.1.21 В сосуде находится газ под давлением 150 кПа при температуре 23 C. Найти
4.1.22 Определить среднюю квадратичную скорость молекул водорода
4.1.23 Под каким давлением находится кислород в баллоне, если при температуре 27 C
4.1.24 При какой температуре средняя квадратичная скорость молекул кислорода
4.1.25 Какова плотность сжатого воздуха при 0 C в камере шины автомобиля “Волга”? Давление
4.1.26 Определить среднюю квадратичную скорость молекул азота при температуре
4. 3, а средняя квадратичная
4.1.29 Сколько молекул кислорода находится в сосуде объемом 1 л, если температура
4.1.30 Определить плотность воздуха при 27 C и давлении 0,1 МПа
4.1.31 Какое давление на стенки сосуда производят молекулы газа, если масса газа 3 г, объем
4.1.32 Какое давление производит углекислый газ при температуре 330 К, если его плотность
4.1.33 Вычислить среднюю квадратичную скорость молекул углекислого газа
4.1.34 Определить среднеквадратичную скорость молекул газа при давлении 100 кПа и плотности
4.1.35 В баллоне емкостью 40 л находится 10 кг кислорода под давлением 20 МПа. Найти
4.1.36 Энергия поступательного движения, которой обладают все молекулы газа, находящегося
4.1.37 Найти концентрацию молекул газа, у которого средняя квадратичная скорость молекул
4.1.38 В первом сосуде находится азот, во втором – водород. Чему равно отношение давления
4.1.39 В сосуде вместимостью 2 м3 находится 2,4 кг газа. Под каким давлением находится газ
4. 1.40 Плотность газа в баллоне электрической лампы 0,9 кг/м3, давление при горении 110 кПа
4.1.41 При какой температуре находится одноатомный газ, если средняя кинетическая энергия
4.1.42 Под каким давлением находится кислород в баллоне, если при температуре 27 C
4.1.43 Найдите отношение средних скоростей молекул O2 и h3 при одинаковой температуре
4.1.44 Найти среднюю квадратичную скорость молекул газа, имеющего плотность 1,8 кг/м3
4.1.45 В баллоне находится кислород при давлении 4 МПа и температуре 42 C. Определить
4.1.46 В баллоне объемом 0,01 м3 находится газ, кинетическая энергия поступательного движения
4.1.47 Во сколько раз плотность метана (Ch5) отличается от плотности кислорода (O2)
4.1.48 Определить давление азота в ампуле, если при 0 C в ней концентрация молекул
4.1.49 Во сколько раз средняя квадратичная скорость молекул воздуха при температуре 303 К
4.1.50 При некоторой температуре средняя скорость молекул азота равна 600 м/с. Какова
4. 1.51 До какой температуры при нормальном атмосферном давлении надо нагреть кислород
4.1.52 Во сколько раз плотность воздуха зимой при температуре минус 23 C больше плотности
4.1.53 Во сколько раз изменится средняя квадратичная скорость теплового движения молекул
4.1.54 Во сколько раз изменится средняя квадратичная скорость молекул идеального газа
4.1.55 Гелий находится при температуре 580 К. При какой температуре должен находиться
4.1.56 Во сколько раз изменится плотность молекул газа, если при увеличении температуры
4.1.57 Каким давлением нужно сжать воздух, чтобы при температуре 100 C его плотность стала
4.1.58 Среднеквадратичная скорость молекул газа равна 500 м/с. Какой объем займет газ массой
4.1.59 Оценить минимальное расстояние между центрами соседних атомов железа, считая его
4.1.60 Какое время понадобится для того, чтобы на поверхность стекла нанести слой серебра
4.1.61 Концентрация молекул кислорода (M=32 г/моль) в сосуде вместимостью 5 л равна
4. 21 молекул кислорода (молярная

Уравнение Клапейрона-Менделеева

4.2.1 Какой объем занимает 1 кг кислорода при 0 C и давлении 800 кПа?
4.2.2 Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и
4.2.3 В баллоне емкостью 25,6 л находится 1,04 кг азота при давлении 3,55 МПа. Определите
4.2.4 Баллон содержит 28 кг кислорода при давлении 770 кПа. Какова масса гелия, занимающего
4.2.5 В изотермическом процессе объем газа уменьшился вдвое. Во сколько раз
4.2.6 Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объем 500 л
4.2.7 Сколько молекул хлора содержится при нормальных условиях в колбе емкостью 0,5 л?
4.2.8 До какой температуры нужно нагреть запаянный шар, содержащий 9 г воды, чтобы шар
4.2.9 Сколько молекул воздуха содержится в комнате объемом 60 м3 при нормальных
4.2.10 Сколько весит воздух, занимающий объем 150 л при температуре 15 C и давлении
4.2.11 В баллоне емкостью 4 л создано давление 0,1 мкПа. 25 молекул, средняя квадратичная
4.2.20 Найти массу водорода, находящегося в баллоне объемом 20 л под давлением 830 кПа
4.2.21 Газ массой 16 г при давлении 1 МПа и температуре 112 C занимает объем 1600 см3
4.2.22 Найти число молекул воздуха в комнате, имеющей объем 8x5x4 м3, при температуре 10 C
4.2.23 Вычислить молярную массу бутана, 2 л которого при температуре 15 C и давлении 87 кПа
4.2.24 Какая часть газа осталась в баллоне, давление в котором было 12,2 МПа, а температура
4.2.25 Идеальный газ при давлении 1,33 кПа и температуре 15 C занимает объем 2 л. Каким
4.2.26 Из баллона емкостью 5 л из-за неисправности вентиля произошла утечка газа, в результате
4.2.27 Газ, объем которого 0,8 м3 при температуре 300 К производит давление 280 кПа. На сколько
4.2.28 В баллоне объемом 200 л при температуре 20 C и давлении 10 МПа находится кислород
4.2.29 Некоторый газ массой 7 г, находящийся в баллоне при температуре 27 C, создает давление
4.2.30 Сколько молекул воздуха выходит из комнаты объемом 80 м3 при повышении температуры
4. 2.31 В цилиндре дизеля воздух сжимается от 80 до 3000 кПа, а объем уменьшается от 7,5 до 0,5 л
4.2.32 В открытом сосуде газ нагрели так, что его температура увеличилась в 3 раза. Сколько
4.2.33 Температура воздуха в комнате была 10 C. После того как печь протопили, температура
4.2.34 Газ массой 1,2 г занимает объем 400 см3 при температуре 280 К. После нагревания газа
4.2.35 Из баллона со сжатым водородом объемом 0,01 м3 вытекает газ, при температуре 280 К
4.2.36 Откачанная лампа накаливания объемом 10 см3 имеет трещину, в которую проникает
4.2.37 Когда из сосуда выпустили некоторое количество газа, давление в нем упало на 40%
4.2.38 При температуре 727 C газ занимает объем 8 л и производит давление 200 кПа на стенки
4.2.39 Воздух в открытом сосуде нагревают от 10 до 600 C и затем, герметически закрыв сосуд
4.2.40 До какой температуры нагрели колбу, содержащую воздух, если давление воздуха в ней
4.2.41 Баллон, содержащий 1 кг азота, при испытании взорвался при температуре 630 К. Какое
4.2.42 При какой температуре давление 240 л водорода равно 126,6 кПа, если при нормальных
4.2.43 В баллоне находилось 5 кг газа при давлении 1 МПа. Какое количество газа взяли из баллона
4.2.44 Во сколько раз изменится объем кислорода массой 0,32 кг, если его давление увеличится
4.2.45 Баллон содержит газ при температуре 7 C и давлении 91,2 МПа. Каким будет давление
4.2.46 В баллоне находится газ при температуре 15 C. Во сколько раз изменится его давление
4.2.47 Сколько электронов заключается в 1 л кислорода при давлении 1 МПа и температуре
4.2.48 Плотность пара некоторого соединения углерода с водородом равна 3 г/л при 43 C
4.2.49 В комнате объемом в 30 м3 температура с 15 C поднялась до 25 C. На сколько при этом
4.2.50 Баллон содержит сжатый газ при 27 C и давлении 3 МПа. Каково будет давление, если
4.2.51 На сколько уменьшится масса воздуха в открытом сосуде, если его нагреть от 0 до 100 C?
4.2.52 Баллон содержит сжатый газ при 27 C и давлении 2000 кПа. Каково будет давление, если
4.2.53 Перед проведением газосварочных работ манометр баллона с кислородом показывал
4.2.54 Газ при давлении 126,6 кПа и температуре 300 К занимает объем 0,6 м3. Найти объем
4.2.55 Газ при давлении 0,2 МПа и температуре 15 C имеет объем 5 л. Чему равен объем
4.2.56 Сосуд вместимостью 0,6 м3, содержащий гелий массой 2 кг, разорвался при температуре
4.2.57 В сосуде объемом 10 литров находится 2 г водорода при температуре 2000 К. Определить
4.2.58 Какова минимальная разница в массе воздуха зимой и летом при нормальном атмосферном
4.2.59 Воздух в сосуде объемом 5 л находится при температуре 27 C под давлением 2 МПа
4.2.60 Некоторая масса водорода находится при температуре 200 К и давлении 0,4 кПа. Газ
4.2.61 Перед проведением газосварочных работ манометр баллона с кислородом показывал
4.2.62 В сосуде находится 1 литр воды при температуре 27 C. Чему стало бы равным давление
4.2.63 В двух сосудах находится одинаковое количество одного и того же газа. В первом сосуде
4.2.64 Резиновая камера содержит воздух при температуре 27 C и нормальном атмосферном
4.2.65 В баллоне объемом 10 л находится кислород, масса которого 12,8 г. Давление в баллоне
4.2.66 Баллон содержит 0,3 кг гелия. Абсолютная температура в баллоне уменьшилась на 10%
4.2.67 В откачанной ампуле объемом 3 см3 содержится радий массой 5 г в течение одного года
4.2.68 Два сосуда, содержащих одинаковую массу одного и того же газа, соединены трубкой
4.2.69 Сколько молей газа следует добавить к одному молю данного газа, чтобы его давление
4.2.70 В открытом цилиндре находится 90 г газа. Температуру газа увеличили от 300 до 450 К
4.2.71 Из баллона объемом 200 дм3, содержащего гелий при давлении 2 МПа и температуре 273 К
4.2.72 На рисунке показан график процесса, происходящего с идеальным газом. Укажите точки
4.2.73 На PT-диаграмме изображен замкнутый процесс, который совершает кислород некоторой
4.2.74 Если нагреть 1 моль идеального газа на 1 К при постоянном объеме, то давление возрастет
4. 2.75 Имеется два сосуда с одним и тем же газом при одинаковой температуре. Плотность газа
4.2.76 При увеличении температуры газа на 60 К его объем возрос на 1 л. На сколько литров
4.2.77 Насос захватывает при каждом качании 1 л воздуха при нормальных условиях и нагнетает
4.2.78 Воздушный шар имеет легкорастяжимую теплоизолированную оболочку массой 130 кг
4.2.79 В некотором процессе давление и объем идеального газа связаны соотношением
4.2.80 Какой радиус должен иметь наполненный гелием воздушный шар, чтобы он мог подняться
4.2.81 Надувной шарик, заполненный гелием, удерживают на нити. Найдите натяжение нити
4.2.82 Два баллона с объемами 20 и 10 л соединены длинной тонкой трубкой и содержат 6 моль
4.2.83 Воздушный шар объемом 20 м3, наполненный гелием, поднялся на высоту 180 м за 0,5 минуты
4.2.84 Внутри замкнутого цилиндра, наполненного воздухом, находится шарик радиусом 3 см
4.2.85 На дне цилиндра, наполненного воздухом, плотность которого 1,29 кг/м3, лежит полый
4. 2.86 В замкнутом сосуде к верхней стенке на пружине жесткостью 4 Н/м подвешена сфера
4.2.87 Во сколько раз изменится температура идеального газа, если уменьшить его объем
4.2.88 Внутри закрытого с обоих концов горизонтального цилиндра есть поршень
4.2.89 Тонкий резиновый шар радиусом 2 см наполнен воздухом при температуре 20 C
4.2.90 Цилиндрический сосуд делится невесомым поршнем на две части. В одну часть сосуда
4.2.91 Два одинаковых шара соединены тонкой трубкой, в которой находится капелька ртути
4.2.92 Внутри закрытого с обоих концов горизонтального цилиндра имеется тонкий поршень
4.2.93 Два одинаковых сосуда, содержащих газ при 300 К, соединили горизонтальной трубкой
4.2.94 Горизонтально расположенный цилиндр разделен скользящей без трения перегородкой
4.2.95 Объем пузырька, всплывающего на поверхность со дна озера, увеличился в два раза
4.2.96 Состояние одного киломоля идеального газа менялось по графику 1-2-3. Определить
4.2.97 Сосуд объемом 5 л разделен перегородкой на две части, заполненные одним газом
4. 3=const
4.2.99 Воздушный шар объемом 1000 м3 наполнен гелием при температуре окружающего воздуха
4.2.100 В цилиндре с площадью основания 100 см2 находится воздух. Поршень расположен на высоте
4.2.101 В сосуд, на дне которого лежит твердый шар, нагнетают воздух при температуре 27 C
4.2.102 В закрытом с обоих концов цилиндре длиной 2 м поршень соединён с днищами пружинами
4.2.103 Тонкостенный резиновый шар собственным весом 0,6 Н наполнен неоном и погружен в озеро
4.2.104 Давление воздуха в сосуде равно 102,4 кПа. Вместимость цилиндра разрежающего насоса
4.2.105 Компрессор всасывает в 1 мин 3 м3 сухого воздуха при температуре 290 К и давлении 100 кПа
4.2.106 Давление воздуха в сосуде 97 кПа. После трёх ходов откачивающего поршневого насоса
4.2.107 В цилиндре длиной 2L=2 м тонкий поршень соединён с днищами пружинами одинаковой
4.2.108 Газ, занимающий при температуре 127 C и давлении 100 кПа объем 2 л, изотермически
4.2.109 В цилиндре под поршнем находится газ при нормальных условиях. Сначала объем газа
4.2.110 При увеличении абсолютной температуры идеального газа в 2 раза его давление
4.2.111 Когда из сосуда выпустили некоторое количество газа, давление в нем упало на 40%

Изопроцессы

4.3.1 Определить начальную температуру газа, если при изохорном нагревании
4.3.2 В закрытом баллоне находится газ при температуре 295 К
4.3.3 Давление в откачанной рентгеновской трубке при 15 градусах Цельсия
4.3.4 На сколько Кельвин надо нагреть воздух при постоянном давлении
4.3.5 Газ изотермически сжимают от объема 0,15 м3 до объема 0,1 м3
4.3.6 Газ нагрели на 1 К при постоянном объеме. Давление газа при этом
4.3.7 Газ нагрели на 100 К при постоянном объеме. Давление газа
4.3.8 В закрытом сосуде находится идеальный газ. Во сколько раз
4.3.9 Во сколько раз изменяется плотность идеального газа
4.3.10 В процессе изобарного нагревания газа его объем увеличился в 2 раза
4.3.11 Сосуд объемом 12 м3, содержащий газ под давлением 400 кПа
4. 3.12 Сосуд, содержащий 10 л воздуха при давлении 1 МПа, соединяют с пустым
4.3.13 Резиновая камера содержит воздух под давлением 104 кПа. Камеру
4.3.14 До какой температуры нужно нагреть воздух, взятый при 20 градусах
4.3.15 Объем некоторой массы газа при изобарном нагревании на 10 К
4.3.16 Даны две изохоры для одной и той же массы идеального газа
4.3.17 Газ сжат изотермически от 8 до 6 л. Давление при этом возросло
4.3.18 В сосуде объемом 1 л при температуре 183 градуса Цельсия находится
4.3.19 В цилиндре под поршнем изотермически сжимают 9 г водяного
4.3.20 Во сколько раз изменится плотность идеального газа при температуре
4.3.21 При 27 градусах Цельсия газ занимает объем 10 л. До какой
4.3.22 Продукты сгорания газа охлаждаются в газоходе с 1000 до 300 градусов
4.3.23 Газ занимает объем 8 л при температуре 300 К. Определите массу газа
4.3.24 Давление азота в электрической лампочке объемом 0,15 л равно 68 кПа
4.3.25 Бутылка с газом закрыта пробкой, площадь сечения которой 2,5 см2
4. 3.26 В цилиндре под поршнем находится газ. Масса поршня 0,6 кг
4.3.27 Два сосуда объемом 2 и 4 л, заполненные одинаковым газом, соединены
4.3.28 В цилиндре под поршнем находится воздух. Вес поршня 60 Н
4.3.29 В цилиндре под поршнем находится вода массой 35 мг и пар массой 25 мг
4.3.30 Баллон, наполненный воздухом при температуре 273 К и атмосферном
4.3.31 В цилиндре под поршнем находится воздух при давлении 0,2 МПа
4.3.32 Один конец цилиндрической трубки, длина которой 25 см и радиус 1 см
4.3.33 Расположенная горизонтально, запаянная с обоих концов стеклянная трубка
4.3.34 В вертикальном закрытом цилиндре находится подвижный поршень
4.3.35 Открытую стеклянную трубку длиной 1 м наполовину погружают в ртуть
4.3.36 В стеклянной трубке находится столбик ртути длиной 10 см. Когда
4.3.37 Посередине откачанной и запаянной с обоих сторон горизонтально
4.3.38 Открытую с обеих сторон стеклянную трубку длиной 60 см
4.3.39 В трубке длиной 1,73 м, заполненной газом, находится столбик ртути
4. 3.40 В каком из изображенных на рисунке процессов, проведенных
4.3.41 Горизонтально расположенный закрытый цилиндрический сосуд
4.3.42 На рисунке изображены гиперболы для трех идеальных газов с одинаковыми массами
4.3.43 На рисунке изображены гиперболы для трех идеальных газов с разными массами
4.3.44 Постоянную массу идеального газа переводят из состояния 1
4.3.45 Горизонтально расположенный закрытый цилиндрический сосуд длины
4.3.46 Температура воздуха в комнате повысилась от 17 до 27 градусов Цельсия
4.3.47 Газ при 27 градусах Цельсия занимает объем V. До какой температуры
4.3.48 Баллон, содержащий 12 л кислорода при давлении 1 МПа, соединяют

Влажность

4.4.1 Определите относительную влажность воздуха при температуре 18 C, если точка росы
4.4.2 Определите давление водяных паров в воздухе при температуре 20 С и относительной
4.4.3 5 м3 воздуха при температуре 25 С содержат 86,5 г водяного пара. Определить абсолютную
4.4.4 Определить абсолютную влажность воздуха при температуре 37 C, если давление
4. 4.5 В 6 м3 воздуха с температурой 19 С содержится 51,3 г водяного пара. Определите
4.4.6 В 10 м3 воздуха с температурой 19 С содержится 71,3 г водяного пара. Определите
4.4.7 В комнате объемом 120 м3 при температуре 15 C относительная влажность составляет 60%
4.4.8 Найти массу водяного пара, содержащегося в спортивном зале объемом 1100 м3
4.4.9 В комнате объемом 200 м3 относительная влажность воздуха при 20 С равна 70%
4.4.10 При температуре 22 C относительная влажность воздуха равна 60%. Найти относительную
4.4.11 В комнате размером 10x5x3 м3 поддерживается температура 293 К, а точка росы 283 К
4.4.12 В цистерне объемом 10 м3 находится воздух с относительной влажностью 70%
4.4.13 Воздух в помещении имеет температуру 24 C и относительную влажность 50%. Определите
4.4.14 Найти массу водяных паров в 1 м3 воздуха при нормальном атмосферном давлении
4.4.15 Давление водяного пара в воздухе на 40% ниже давления насыщенных паров при этой же
4.4.16 В сосуде объемом 100 л при 27 C находится воздух с относительной влажностью 30%
4. 4.17 Влажность в комнате объемом 520 м3 при температуре 25 C равна 90%. Какое количество
4.4.18 Сколько надо испарить воды в 1000 м3 воздуха, относительная влажность которого 40%
4.4.19 В комнате объемом 60 м3 при температуре 18 C относительная влажность воздуха 50%

Задачи на постоянный ток с подробными решениями

Закон Ома для участка цепи. Сопротивление

7.1.1 Определить силу тока, проходящего через сопротивление 15 Ом, если напряжение на нем
7.1.2 Определить падение напряжения на проводнике, имеющем сопротивление 10 Ом
7.1.3 Через лампочку накаливания проходит ток 0,8 А. Сколько электронов проводимости
7.1.4 Удлинитель длиной 30 м сделан из медного провода диаметром 1,3 мм. Каково сопротивление
7.1.5 Эквивалентное сопротивление трех параллельно соединенных проводников равно 30 Ом
7.1.6 Проволока имеет сопротивление 36 Ом. Когда ее разрезали на несколько равных частей
7.1.7 Определить плотность тока, текущего по медной проволоке длиной 10 м, на которую
7. 1.8 Определить плотность тока, если за 0,4 с через проводник сечением 1,2 мм2 прошло
7.1.9 Найти плотность тока в стальном проводнике длиной 10 м, на который подано напряжение
7.1.10 Какое напряжение надо приложить к концам стального проводника длиной 30 см
7.1.11 Допустимый ток для изолированного медного провода площадью поперечного сечения
7.1.12 Определить падение напряжения на полностью включенном реостате, изготовленном
7.1.13 Определить падение напряжения в линии электропередачи длиной 500 м при токе
7.1.14 Найти массу алюминиевого провода, из которого изготовлена линия электропередачи
7.1.15 Вольтметр показывает 6 В. Найти напряжение на концах участка цепи, состоящей
7.1.16 На сколько надо повысить температуру медного проводника, взятого
7.1.17 Медная проволока при 0 C имеет сопротивление R_0. До какой температуры надо нагреть
7.1.18 Вольфрамовая нить электрической лампы при температуре 2000 C имеет сопротивление
7.1.19 Определить сопротивление вольфрамовой нити электрической лампы при 24 C
7. 1.20 Сопротивление медной проволоки при температуре 20 C равно 0,04 Ом
7.1.21 При нагревании металлического проводника от 0 до 250 C его сопротивление увеличилось
7.1.22 До какой температуры нагревается нихромовая электрогрелка, если известно, что ток
7.1.23 Плотность тока в проводнике сечением 0,5 мм2 равна 3,2 мА/м2. Сколько электронов
7.1.24 По проводнику с поперечным сечением 0,5 см2 течет ток силой 3 А. Найти среднюю скорость
7.1.25 Средняя скорость упорядоченного движения электронов в медной проволоке сечением
7.1.26 К концам медного провода длиной 200 м приложено напряжение 18 В. Определить среднюю
7.1.27 Какой ток покажет амперметр, если напряжение U=15 В, сопротивления R1=5 Ом, R2=10 Ом
7.1.28 За одну минуту через поперечное сечение проводника прошел заряд 180 Кл
7.1.29 Какой ток покажет амперметр, если R1=1,25 Ом, R2=1 Ом, R3=3 Ом, R4=7 Ом, напряжение
7.1.30 В рентгеновской трубке пучок электронов с плотностью тока 0,2 А/мм2 попадает на участок
7. 1.31 За какое время в металлическом проводнике с током 32 мкА через поперечное сечение
7.1.32 Анодный ток в радиолампе равен 16 мА. Сколько электронов попадает на анод лампы
7.1.33 Участок цепи AB состоит из пяти одинаковых проводников с общим сопротивлением 5 Ом
7.1.34 Четыре лампы накаливания сопротивлением 110 Ом каждая включены в сеть с напряжением

Закон Ома для полной цепи

7.2.1 Источник тока с ЭДС 18 В имеет внутреннее сопротивление 6 Ом. Какой ток потечет
7.2.2 Кислотный аккумулятор имеет ЭДС 2 В, а внутреннее сопротивление 0,5 Ом. Определить
7.2.3 Определить ЭДС источника питания, если при перемещении заряда 10 Кл сторонняя сила
7.2.4 К источнику тока с ЭДС 12 В и внутренним сопротивлением 2 Ом подсоединили
7.2.5 При внешнем сопротивлении 3,75 Ом в цепи идет ток 0,5 А. Когда в цепь ввели еще
7.2.6 Источник тока замкнут внешним резистором. Определить отношение электродвижущей силы
7.2.7 ЭДС аккумуляторной батареи равна 12 В, внутреннее сопротивление 0,06 Ом, а сопротивление
7. 2.8 ЭДС батареи равна 1,55 В. При замыкании ее на нагрузку сопротивлением 3 Ом
7.2.9 В цепи, состоящей из источника тока с ЭДС 3 В и резистора сопротивлением 20 Ом
7.2.10 ЭДС элемента 15 В. Ток короткого замыкания равен 20 А. Чему равно внутреннее сопротивление
7.2.11 Определить ток короткого замыкания источника тока, если при внешнем сопротивлении
7.2.12 Батарея с ЭДС в 6 В и внутренним сопротивлением 1,4 Ом питает внешнюю цепь
7.2.13 Определить силу тока в проводнике R1, если ЭДС источника 14 В, его внутреннее сопротивление
7.2.14 В сеть с напряжением 220 В включены последовательно десять ламп сопротивлением по 24 Ом
7.2.15 ЭДС источника 6 В. При внешнем сопротивлении цепи 1 Ом сила тока 3 А. Какой будет
7.2.16 Источник тока с внутренним сопротивлением 1,5 Ом замкнут на резистор 1,5 Ом. Когда в цепь
7.2.17 Генератор с ЭДС 80 В и внутренним сопротивлением 0,2 Ом соединен со сварочным аппаратом
7.2.18 Для включения в сеть дуговой лампы, рассчитанной на напряжение 42 В и силу тока 10 А
7. 2.19 Определить внутреннее сопротивление источника тока, имеющего ЭДС 1,1 В
7.2.20 Какой ток покажет амперметр, если R1=1,5 Ом, R2=1 Ом, R3=5 Ом, R4=8 Ом, ЭДС источника
7.2.21 Батарея гальванических элементов с ЭДС 15 В и внутренним сопротивлением 5 Ом замкнута
7.2.22 В сеть с напряжением 24 В включены два последовательно соединенных резистора. При этом
7.2.23 Щелочной аккумулятор создает силу тока 0,8 А, если его замкнуть на сопротивление 1,5 Ом
7.2.24 Какова ЭДС источника, если при измерении напряжения на его зажимах вольтметром
7.2.25 Два источника тока с ЭДС 2 и 1,2 В, внутренними сопротивлениями 0,5 и 1,5 Ом соответственно
7.2.26 Аккумулятор подключен для зарядки к сети с напряжением 12,5 В. Внутреннее сопротивление
7.2.27 Батарея элементов замкнута двумя проводниками сопротивлением 4 Ом каждый
7.2.28 Цепь состоит из аккумулятора с внутренним сопротивлением 5 Ом и нагрузки 15 Ом
7.2.29 Два источника с одинаковыми ЭДС 2 В и внутренними сопротивлениями 0,2 и 0,4 Ом соединены
7. 2.30 Источник тока имеет ЭДС 12 В. Сила тока в цепи 4 А, напряжение на внешнем сопротивлении 11 В
7.2.31 Два элемента с внутренним сопротивлением 0,2 и 0,4 Ом соединены одинаковыми полюсами
7.2.32 Два элемента соединены параллельно. Один имеет ЭДС E1=2 В и внутреннее сопротивление
7.2.33 Два элемента с ЭДС, равными E1=1,5 В и E2=2 В, соединены одинаковыми полюсами
7.2.34 Определить число последовательно соединенных элементов с ЭДС 1,2 В и внутренним
7.2.35 Источник тока с внутренним сопротивлением 1,5 Ом замкнут на резистор 1,5 Ом. Когда
7.2.36 В схеме, показанной на рисунке, внутреннее и внешние сопротивления одинаковы, а расстояние
7.2.37 Имеется 5 одинаковых аккумуляторов с внутренним сопротивлением 1 Ом каждый
7.2.38 Определите заряд на обкладках конденсатора C=1 мкФ в цепи, изображенной на рисунке
7.2.39 Конденсатор и проводник соединены параллельно и подключены к источнику с ЭДС 12 В
7.2.40 Определите заряд на обкладках конденсатора C=1 мкФ. 18 ионов в секунду. Найти силу тока в газе
7.3.3 Определите массу алюминия, который отложится на катоде за 10 ч при электролизе Al2(SO4)3
7.3.4 Цинковый анод массой 5 г поставлен в электролитическую ванну, через которую проходит ток
7.3.5 При какой силе тока протекает электролиз водного раствора сульфата меди, если за 50 мин
7.3.6 Определить затраты электроэнергии на получение 1 кг алюминия из трехвалентного состояния
7.3.7 Через раствор медного купороса в течение 2 с протекал электрический ток силой 3,2 А
7.3.8 При электролизе сернокислого цинка ZnSO4 в течение 4 ч выделилось 24 г цинка. Определить
7.3.9 Электролиз алюминия проводится при напряжении 10 В на установке с КПД 80%. Какое
7.3.10 Определите массу выделившейся на электроде меди, если затрачено 6 кВтч электроэнергии
7.3.11 При никелировании изделий в течение 2 ч отложился слой никеля толщиной 0,03 мм. Найти
7.3.12 При электролизе медного купороса за 1 ч выделяется медь массой, равной 0,5 г. Площадь
7.3.13 При электролизе раствора серной кислоты за 50 минут выделилось 0,3 г водорода. Определить
7.3.14 Определите сопротивление раствора серной кислоты, если известно, что при прохождении тока
7.3.15 Две электролитические ванны соединены последовательно. В первой ванне выделилось
7.3.16 Какой толщины слой серебра образовался на изделии за 3 мин, если плотность тока в растворе
7.3.17 Плотность тока при серебрении контактов проводов равна 40 А/м2. Определить толщину
7.3.18 В ряде производств водород получают электролизом воды. При каком токе, пропускаемом
7.3.19 Никелирование пластинок производится при плотности тока 0,4 А/дм2. С какой скоростью
7.3.20 Электролиз воды ведется при силе тока 2,6 А, причем в течение часа получено 0,5 л кислорода
7.3.21 Сколько электроэнергии надо затратить для получения 2,5 л водорода при температуре 25 C
7.3.22 Электрический пробой воздуха наступает при напряженности поля 3 МВ/м. Определить потенциал
7.3. (-7) кг/Кл. Сколько меди выделится на электроде
7.3.27 К источнику с ЭДС 200 В и внутренним сопротивлением 2 Ом подсоединены последовательно

Работа и мощность тока

7.4.1 По проводнику сопротивлением 20 Ом за 5 мин прошло количество электричества 300 Кл
7.4.2 Электрический паяльник рассчитан на напряжение 120 В при токе 0,6 А. Какое количество
7.4.3 Батарея, включенная на сопротивление 2 Ом, дает ток 1,6 А. Найти мощность, которая теряется
7.4.4 Дуговая сварка ведется при напряжении 40 В и силе тока 500 А. Определить энергию
7.4.5 К источнику тока с внутренним сопротивлением 0,6 Ом подключено внешнее сопротивление
7.4.6 Чему равен КПД источника тока с ЭДС 12 В и внутренним сопротивлением 0,5 Ом
7.4.7 Кипятильник работает от сети с напряжением 125 В. Какая энергия расходуется в кипятильнике
7.4.8 Во сколько раз увеличится количество теплоты, выделяемое электроплиткой, если сопротивление
7.4.9 Какое количество электроэнергии расходуется на получение 5 кг алюминия, если электролиз
7. 4.10 Во сколько раз изменятся тепловые потери в линии электропередачи при увеличении напряжения
7.4.11 Найти полезную мощность, которую может дать батарея, ЭДС которой равна 24 В
7.4.12 Два резистора сопротивлением 2 и 5 Ом соединены последовательно и включены в сеть
7.4.13 Определите силу тока в кипятильнике, если при подключении к напряжению 12 В, он нагревает
7.4.14 Напряжение на зажимах автотранспортного генератора равно 24 В. Определить работу
7.4.15 Поперечное сечение медной шины 80 мм2. Какое количество теплоты выделится на 1 м длины
7.4.16 Мощность автомобильного стартера 6000 Вт. Какова сила тока, проходящего через стартер
7.4.17 Две лампы имеют одинаковые мощности. Одна из них рассчитана на напряжение 120 В
7.4.18 ЭДС источника тока равна 2 В, внутреннее сопротивление 1 Ом. Внешняя цепь потребляет
7.4.19 На сколько градусов изменится температура воды в калориметре, если через нагреватель
7.4.20 Через поперечное сечение спирали нагревательного элемента паяльника каждую секунду
7. 4.21 Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В
7.4.22 Два проводника, соединенных параллельно, имеют сопротивления 4 и 8 Ом. При включении
7.4.23 Масса воды в нагревателе 2,5 кг. На сколько градусов повысится температура воды, если
7.4.24 Мощность, выделяемая на резисторе, подключенном к источнику тока с ЭДС 3,0 В
7.4.25 Из комнаты за сутки теряется 87 МДж тепла. Какой длины нужна нихромовая проволока
7.4.26 Две одинаковые лампочки мощностью 50 Вт каждая, рассчитанные на напряжение 10 В
7.4.27 Электролампа с вольфрамовой спиралью в момент включения при 20 C потребляет мощность
7.4.28 Электробритва имеет мощность 15 Вт и рассчитана на напряжение 110 В. При напряжении
7.4.29 При замыкании источника тока с внутренним сопротивлением 2 Ом на сопротивление 4 Ом
7.4.30 Емкость аккумулятора 75 А*ч. Какую работу должен совершить источник тока для зарядки
7.4.31 Электроплитка, работающая от сети с напряжением 220 В, расходует мощность 600 Вт
7. 4.32 Девять нагревательных элементов с сопротивлением 1 Ом каждый соединены
7.4.33 Скоростной лифт массой 1600 кг за 300 с поднимается на высоту 30 м. Определить силу тока
7.4.34 Четыре одинаковых источника тока соединены, как показано на рисунке. ЭДС каждого
7.4.35 На сколько градусов поднимется температура медного стержня, если по нему в течение 0,5 с
7.4.36 Определить ток короткого замыкания источника питания, если при токе 15 А он отдает
7.4.37 ЭДС батареи аккумуляторов 12 В. Сила тока короткого замыкания 5 А. Какую наибольшую
7.4.38 В электрочайник с сопротивлением 140 Ом налита вода массой 1,5 кг при температуре 20 С
7.4.39 Два элемента с ЭДС 5 и 10 В и внутренними сопротивлениями 1 и 2 Ом соединены последовательно
7.4.40 Батарея состоит из параллельно соединенных источников тока. При силе тока во внешней цепи
7.4.41 Три лампочки мощностью P01=50 Вт и P02=25 Вт и P03=50 Вт, рассчитанные на напряжение
7.4.42 К источнику тока подключен реостат. При сопротивлении реостата 4 Ом и 9 Ом получается
7.4.43 Определить ЭДС аккумулятора, если при нагрузке в 5 А он отдает во внешнюю цепь 10 Вт
7.4.44 На резисторе внешней цепи аккумулятора выделяется тепловая мощность 10 Вт
7.4.45 При подключении к источнику тока ЭДС 15 В сопротивления 15 Ом КПД источника равен 75%
7.4.46 По линии электропередачи протяженностью в 100 км должен пройти электрический ток
7.4.47 Линия имеет сопротивление 300 Ом. Какое напряжение должен иметь генератор
7.4.48 Источник тока с ЭДС 5 В замыкается один раз на сопротивление 4 Ом, а другой раз – на 9 Ом
7.4.49 При замыкании на сопротивление 5 Ом батарея элементов дает ток 1 А
7.4.50 Определите КПД электропаяльника сопротивлением 25 Ом, если медная часть его массой
7.4.51 Найти ток короткого замыкания в цепи генератора с ЭДС 70 В, если при увеличении
7.4.52 Два чайника, каждый из которых потребляет при напряжении 200 В по 400 Вт, закипают
7.4.53 При силе тока 2 А во внешней цепи выделяется мощность 24 Вт, а при силе тока 5 А – мощность 30 Вт
7. 4.54 Элемент замыкают один раз сопротивлением 4 Ом, другой – резистором сопротивлением 9 Ом
7.4.55 Сила тока, протекающего в проводнике, сопротивление которого равно 15 Ом, меняется
7.4.56 Лампу, рассчитанную на напряжение U1=220 В, включили в сеть с напряжением U2=110 В
7.4.57 Две лампочки имеют одинаковые мощности. Первая лампочка рассчитана на напряжение 127 В
7.4.58 При ремонте бытовой электрической плитки ее спираль была укорочена на 0,2 первоначальной
7.4.59 Сопротивление лампочки накаливания в рабочем состоянии 240 Ом. Напряжение в сети 120 В
7.4.60 Два резистора с одинаковым сопротивлением каждый включаются в сеть постоянного напряжения
7.4.61 Стоимость 1 кВт*ч электроэнергии равна 50 коп. Паяльник, включенный в сеть с напряжением
7.4.62 Определите силу тока в обмотке двигателя электропоезда, развивающего силу тяги 6 кН

Амперметр и вольтметр в электрической цепи. Шунты и добавочные сопротивления

7.5.1 Сопротивление вольтметра 400 Ом, предел измерения 4 В. Какое дополнительное сопротивление
7.5.2 Какое дополнительное сопротивление нужно подключить к вольтметру со шкалой 100 В
7.5.3 Миллиамперметр имеет сопротивление 25 Ом, рассчитан на предельный ток 50 мА
7.5.4 К амперметру с сопротивлением 0,1 Ом подключен шунт с сопротивлением 11,1 мОм
7.5.5 Какой шунт нужно подсоединить к гальванометру со шкалой на 100 делений, ценой деления 1 мкА
7.5.6 Вольтметр постоянного тока рассчитан на измерение максимального напряжения 3 В
7.5.7 Для измерения напряжения сети 120 В последовательно соединили два вольтметра
7.5.8 Амперметр имеет сопротивление 0,02 Ом, его шкала рассчитана на 1,2 А. Каково должно
7.5.9 Имеется миллиамперметр с внутренним сопротивлением 10 Ом, который может измерять
7.5.10 Предел измерения амперметра с внутренним сопротивлением 0,4 Ом 2 А. Какое шунтирующее
7.5.11 Зашунтированный амперметр измеряет токи до 10 А. Какую наибольшую силу тока
7.5.12 Амперметр показывает ток 0,04 А, а вольтметр – напряжение 20 В. Найти сопротивление
7.5.13 Вольтметр, рассчитанный на измерение напряжения до 20 В, необходимо включить в сеть
7.5.14 Гальванометр имеет сопротивление 200 Ом, и при силе тока 100 мкА стрелка отклоняется
7.5.15 Гальванометр со шкалой из 100 делений и ценой деления 50 мкА/дел, надо использовать как
7.5.16 К амперметру с внутренним сопротивлением 0,03 Ом подключен медный шунт длиной 10 см
7.5.17 Предел измерения амперметра 5 А, число делений шкалы 100, внутреннее сопротивление
7.5.18 Вольтметр, внутреннее сопротивление которого 50 кОм, подключенный к источнику
7.5.19 Вольтметр с внутренним сопротивлением 3 кОм, включенный в городскую осветительную сеть
7.5.20 Если подключить к гальванометру шунт 100 Ом, вся шкала соответствует току во внешней цепи
7.5.21 Стрелка миллиамперметра отклоняется до конца шкалы, если через миллиамперметр идет ток
7.5.22 Гальванометр со шкалой из 50 делений имеет цену деления 2 мкА/дел
7.5.23 Вольтметр, соединенный последовательно с сопротивлением R1=10 кОм, при включении
7. 5.24 Амперметр с внутренним сопротивлением 2 Ом, подключенный к батарее, показывает ток 5 А
7.5.25 Вольтметр, подключенный к источнику с ЭДС 12 В, показывает напряжение 9 В. К его клеммам
7.5.26 Аккумулятор замкнут на некоторый проводник. Если в цепь включить два амперметра
7.5.27 К источнику тока подключены последовательно амперметр и резистор. Параллельно резистору
7.5.28 Два вольтметра, подключенные последовательно к ненагруженной батарее, показывают
7.5.29 В цепь, состоящую из источника ЭДС и сопротивления 2 Ом, включают амперметр сначала
7.5.30 Каково удельное сопротивление проводника, если его длина 10 км, площадь поперечного
7.5.31 Медный провод длиной 500 м имеет сопротивление 2,9 Ом. Найти вес провода
7.5.32 Проводники сопротивлением 2, 3 и 4 Ом соединены параллельно. Найти общее
7.5.33 Какого сопротивления проводник нужно соединить параллельно с резистором 300 Ом
7.5.34 Три проводника сопротивлением 2, 3 и 6 Ом соединены параллельно. Найти наибольший ток
7. 5.35 В городскую осветительную сеть включены последовательно электрическая плитка, реостат
7.5.36 Во сколько раз площадь поперечного сечения алюминиевого провода больше, чем у медного
7.5.37 Цепь состоит из трех сопротивлений 10, 20 и 30 Ом, соединенных последовательно
7.5.38 Два электронагревателя сопротивлением 25 и 20 Ом находятся под напряжением 100 В
7.5.39 ЭДС батареи 6 В, внутреннее и внешнее сопротивления соответственно равны 0,5 и 11,5 Ом
7.5.40 Атомная масса золота 197,2, валентность 3. Вычислить электрохимический эквивалент золота
7.5.41 Лампу, рассчитанную на напряжение 220 В, включили в сеть напряжением 110 В. Во сколько
7.5.42 Спираль электронагревателя укоротили на 0,1 первоначальной длины. Во сколько раз
7.5.43 Сколько времени длилось никелирование, если был получен слой никеля массой 1,8 г
7.5.44 Электромотор имеет сопротивление 2 Ом. Какую мощность потребляет мотор при токе
7.5.45 Через раствор сернокислой меди (медного купороса) прошло 2*10^4 Кл электричества
7. 5.46 Какой ток должен проходить по проводнику в сети напряжением 120 В, чтобы в нем
7.5.47 По проводнику сопротивлением 4 Ом в течение 2 минут прошло 500 Кл электричества
7.5.48 В схеме, изображенной на рисунке, R1=5 Ом, R2=6 Ом, R3=3 Ом, сопротивлением амперметра
7.5.49 Вольтметр, внутреннее сопротивление которого равно 50 кОм, подключенный к источнику
7.5.50 Определите показание амперметра в электрической цепи, изображенной на рисунке
7.5.51 Какой величины надо взять дополнительное сопротивление, чтобы можно было включить

Задачи по физике с решениями и руководствами

Включены задачи по физике с решениями и руководствами с полными пояснениями. Больше внимания уделяется темам физики, включенным в предмет физики SAT с сотнями задач с подробными решениями. Понятия физики четко обсуждаются и подчеркиваются. Реальные приложения также включены, поскольку они показывают, как эти концепции в физике используются, например, в инженерных системах.

Приложения HTML 5, разработанные для настольных компьютеров, iPad и других планшетов, также включены для интерактивного изучения концепций физики. Эти приложения «приближают» вас к концепции физики, которую вы хотите понять.

Практические вопросы и задачи для тестов

  • Бесплатные вопросы к SAT и AP по физике.
  • Задачи по физике с подробными решениями и пояснениями.

Векторы

  • Векторы в физике. Определения, формулы, примеры с решениями.

Силы

  • Силы в физике, учебные пособия и задачи с решениями.

Магнетизм и электромагнетизм

  • Примеры и проблемы в магнетизме и электромагнетизме.

Оптика

  • Учебники по оптике, примеры и вопросы с решениями.

Движение

  • Задачи движения, вопросы с решениями и учебные пособия
  • Учебные пособия по перемещению и расстоянию, задачи и их подробные решения
  • Учебные пособия по скорости и скорости, задачи и их подробные решения
  • Учебные пособия по ускорению
  • Уравнения равномерного ускорения, задачи и их подробные решения
  • Ускорение Моделирование вертикального движения с использованием апплета HTML5 (используйте chrome 60 9 или Firefox)
00 Снаряды
  • Снаряды в физике

Физические калькуляторы и решатели

  • Физические калькуляторы и решатели

Electrostatic

  • Electrostatic

Формулы и константы

  • Физические формулы Справочник
  • Prefixes SICE. приложения
    • Интерактивное моделирование HTML5 Physics Приложения

Прямые продажи рекламы

как решать задачи импульса

Автор — электронная почта

© Problemsphysics.com. Все права защищены.

Практические задачи: решения по кинематике — physics-prep.com

Практические задачи: решения по кинематике

1. (легко) С какой скоростью будет двигаться объект (при движении вдоль оси x) в момент времени t = 10 с, если бы он имел скорость 2 м/с при t = 0 и постоянное ускорение 2 м/с 2 ?
v = v о + at
v = 2 + 2(10)
v = 22 м/с

2. (легко) Автомобиль катится к обрыву с начальной скоростью 15 м/с. Максимальное отрицательное ускорение, которое могут обеспечить тормоза, равно -0,3 м/с 2 . Если обрыв находится в 350 м от начального положения автомобиля, съедет ли автомобиль с обрыва?
Чтобы остановиться, конечная скорость должна быть равна нулю до того, как автомобиль проедет 350 м.
v 2 = v o 2 + 2a(x — x o )
0 = 15 2 + 2 (-0,3)(x — 0)
x = 375 м
Таким образом, машина не может вовремя остановиться и падает с обрыва.

3. (умеренное) Что окажет наибольшее влияние на смещение объекта, равномерно ускоряющегося в одномерном движении: удвоение начальной скорости или удвоение времени ускорения? Кроме того, играет ли величина ускорения какую-либо роль в различии эффекта между этими двумя параметрами?
Анализ второго кинематического уравнения, x — x o = v o t + ½at 2 указывает на то, что удвоение либо времени, либо начальной скорости приведет к увеличению смещения, но поскольку время очевидно в обеих частях решения, это будет иметь наибольший эффект. Величина ускорения действительно смягчает влияние времени. Большее ускорение указывает на то, что эффект времени будет больше.

4. (умеренная) Тележка А движется с постоянной скоростью мимо точки 1 по прямому пути со скоростью 0,3 м/с. Тележка В движется мимо точки 1 со скоростью 0,1 м/с, но равномерно ускоряется со скоростью 0,1 м/с 2 . Точка 2 находится на 1,0 м дальше точки 1. Какая тележка первой доедет до точки 2?
Найдите время, за которое каждая тележка достигнет точки 2:
Тележка А:
x — x o = v o t + ½at 2
1,0 — 0 = 0,3t + 0
t = 3,13 с 9 Тележка B:
x — x o = v o t + ½at 2
1,0 — 0 = 0,1t + ½(0,1)t 2
Используйте квадратное уравнение для определения 1 6 3 t 4 t 9093. Тележка А прибывает в точку 2 первой.

5. (легко) Небольшой мяч вылетает из окна в момент времени t = 0. Какое расстояние он пролетает в условиях свободного падения за 2,8 секунды? Если бы у мяча была большая масса, упал бы он с большего расстояния?
Предположим y O = 0
Y — Y O = V O T + ½GT 2
Y -0 = 0 + -4,9 (2,8) 2
y = -38. 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. означает, что мяч упал на 38,4 м ниже своего начального положения.
Ускорение свободного падения не зависит от массы, поэтому расстояние, пройденное более массивным объектом, будет таким же.

6. (умеренная) Три сферы удерживаются в разных положениях над столом. Сфера 1 находится ближе всего к столу, а сфера 3 дальше всего от стола. Предположим, что все столкновения со столом абсолютно упругие. То есть при ударе энергия не теряется, и сфера возвращается на свою первоначальную высоту, прежде чем снова упасть, как если бы ее уронили из состояния покоя. Считайте движение вверх от стола положительным движением.

Для вопросов A и B предположим следующее:

Начальная высота сферы 1 = 2,0 м

Начальная высота сферы 2 = 3,0 м

Начальная высота сферы 3 = 4,0 м

Сфера 1 освобождена от состояния покоя.

A. С какой скоростью сфера 2 должна первоначально двигаться вверх, если она впервые ударяется о стол одновременно с сферой 1, ударяющейся о стол во второй раз?
Время первого удара сферы 1:
x — x o = v o t + ½at 2  
-2 = 0 — 4,9t 2
t = 0,64 с
Требуется 3(0,64 с) = 1,92 с, чтобы попасть во второй раз (вниз, вверх, вниз)
Теперь сфера 2 должна
x — x o = -3 = v o t + ½gt 2  
-3 = v o (1,92) — 4,9(1,92) 2 2 2  
-3
v o = 7,8 м/с

B. С какой скоростью шар 3 должен первоначально двигаться вниз, если он впервые ударится о стол одновременно с первым ударом шара 1 о стол.
х — х o = -4 = v o t + ½gt 2 = v o (0,64) — 4,9(0,64) 2
v 90,134 o o 3 означает, что шар имеет скорость 3,1 м/с.

C. Теперь предположим, что начальная скорость шара 2 вверх равна 1 м/с, а начальная скорость шара 3 вверх равна 2 м/с. Определите разницу начальных высот шаров 2 и 3, если они ударятся о стол в течение первый раз, когда сфера 1 попадает на стол в шестой раз. Сфера 1 выходит из состояния покоя.
Время удара шара 1 в шестой раз = 11(0,64) = 7,0 с ) 2
x — x o  = -233 м (это означает, что она должна упасть так далеко, чтобы удариться о стол)
Для сферы 3:
x — x o = v o t + ½gt 2 = 2(7) -4,9(7) 2
x — x o = -226 м (это означает, что он должен упасть так далеко, чтобы удариться о стол)
Разница двух начальных высот равна 7 м.

7. (легко) Тележка находится на точке x=5м в момент времени t=0. Тележка разгоняется до 4 м/с 2 . Если скорость тележки в момент t=0 равна 3 м/с, найдите положение тележки в момент t=2 с, а также определите, где находится тележка, когда она достигнет скорости 5 м/с.
x — x o = v o t + ½at 2
x — 5 = 3(2) + ½(4)(2) 2
x = 19 м
v 2 = v 2 o 2 + 2a(x — x o )
5 2 = 3 2 + (2)(4)(x — 5)
x = 7 м

8. (умеренная) Автомобиль, движущийся со скоростью 20 м/с, проезжает угол улицы. Автомобиль поддерживает эту скорость, даже если ограничение скорости составляет 10 м/с. Полицейская машина, сидевшая на углу, начинает преследовать машину, разогнавшись до 2 м/с 2 . Сколько времени понадобится полицейской машине, чтобы поймать спидера? На каком расстоянии от угла находится точка догона? С какой скоростью будет двигаться полицейская машина в это время?
Для легкового автомобиля: x = 20t
Для полицейского автомобиля: x = ½(2)t 2
В точке догона: 20t = ½(2)t 2
Следовательно, t = 20 с
положение в момент догона: x догон  = 20t = 20(20) = 400 м
Скорость догона : v = v o + at = 0 + (2)(20) = 40 м/с

9. (жесткий) Две сферы катятся навстречу друг другу. При t = 0 сфера 1 находится в точке x = 0 и движется вправо со скоростью 10 м/с, а сфера 2 движется со скоростью 2 м/с влево и имеет начальное положение x = 1000 м. Наблюдения за сферами показывают следующие данные: -Через 2 с сфера 2 набрала скорость и движется со скоростью 10 м/с влево. Это ускорение сохраняется до тех пор, пока сферы не столкнутся.
— Видно, что Сфера 1 имеет ускорение 2 м/с 2  вправо. С какой скоростью будет двигаться каждая сфера при столкновении?

Найти ускорение сферы 2:
v = v o  + at = -10 = -2 + a(2)
a = -4 м/с 2
Найти положение в момент удара (t ):
For sphere 1: x 1  = v o t + ½at 2  
x 1 = 10t + ½(2)t 2  = 10t + t 2
For sphere 2: х 2 — x O = V O T +½AT 2
x 2 — 1000 = -2T -½ (-4) T 2
x 2 2 2 2 . 2
Теперь найдите время, чтобы воздействовать, настройка x 1 = x 2
10t + T 2 = 1000 — 2T — 2T 2
0 = -3T 2 2
0 = -3T 2 2
0 = -3t 2 2
0 = -3T
2 2
0 = -3T
2 2
0 = -3T
2 2
0 = -3t 2 2
0 = 1 Используя квадратичную формулу: t = 16,4 с
Найдите скорость (относительно Земли) для каждого шара в момент удара:
v 1  = = v o  + at = 10 + 2(16,4) = 43 м/с s
Их скорости являются величинами этих решений.

10. (умеренная) Эта проблема является продолжением проблемы, которую вы видели в предыдущей презентации об автомобилях на красный свет:
Автомобили стоят в ряд (с расстоянием между автомобилями 5,0 м) на красный свет. Предположим, что каждая машина имеет длину 4,6 м. Когда загорается зеленый свет, все автомобили разгоняются до 1,22 м/с 9. 0132 2 в течение 10,0 секунд, а затем продолжайте движение с постоянной скоростью. Если свет горит зеленым в течение 90,0 секунд, сколько автомобилей доедет до перекрестка или проедет через него?
x 10 = Расстояние Каждый автомобиль движется в первые 10 секунд
x 10 = V O T + ½AT 2 = 0 + ½ (1,22) 10 2 = 61 M
V 9011. скорость через 10 секунд = v o + at
v 10 = 0 + (1,22)(10) = 12,2 м/с
x 80 = расстояние, пройденное каждым автомобилем за последние 80 секунд
x 80 = v 10 (80s) = 976 м
Суммарное расстояние, которое проезжают автомобили за 90 с = 61 + 976 = 1037
Расстояние от передней части одной машины до передней части другой = 4,6 + 5 = 9,6 м
#автомобилей с по перекресток = 1037/9,6 = 108
Последний автомобиль доезжает до края перекрестка.
Таким образом, окончательный ответ состоит в том, что 109 автомобилей проезжают через перекресток.

11. (умеренная) Определите расстояние между двумя стальными сферами (через 1,4 с), сброшенными с башни, если вторая сфера была сброшена через 0,5 с после первой. Предположим, что происходит свободное падение и что сферы падают из состояния покоя.
(Используйте Y O = 0 и + — UP)
Сфера 1 после 1,4 с:
Y 1 = Y O + V O T + ½GT 2
. 1351351351351351351351351351351351313513513513135135135.13135135136 = 2
. 1351351351359135136. 0 — 4,9 (1,4) 2
Y 1 = -9,6 м
Сфера 2 после 0,9 с:
Y 2 = Y O + V O T + ½GT
2
2 2 2 2 2 2 2 . = 0 + 0 — 4,9(0,9) 2  
y 1 = -4,0 м
В это время сферы будут находиться на расстоянии 5,6 м друг от друга.

12. (жесткий) Если мяч подбрасывается вверх (условия свободного падения) с начальной скоростью 2,0 м/с, какое время он проводит больше в верхних 0,1 м подбрасывания или в нижних 0,1 м подбрасывания?
(Используйте y o  = 0 и + вверх)
Сначала найдите максимальную высоту (где v = 0):
v 2 = v o 2 + 2gΔy
0 = 2 3 29013 19,6Δy
Δy = максимальная высота = 0,2 м
Таким образом, движение верха происходит от y = 0,1 м (на пути вверх) до y = 0,1 (на пути вниз):
Нужно найти скорость при y = 0,1:
v 2 = v o 2 + 2g∆y
v 2 = 2 2 — 19,6(0,14) с (по симметрии скорость при y = 0,1 на пути вниз противоположна)
Теперь найдем время для движения верхней части: движение дна на пути вверх:
y — y o = ½(v + v o )t
0,1 — 0 = ½(1,4 + 2)t
t = 0,06 с
По симметрии для движения дна на спуске t = 0,06 с.