Что такое производная

Производная — главнейшее понятие математического анализа. Она характеризует изменение функции аргумента x в некоторой точке. При этом и сама производная является функцией от аргумента x

Производной функции в точке называется предел (если он существует и конечен) отношения приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

То есть,

         (1)

Наиболее употребительны следующие обозначения производной:

Пример 1. Пользуясь определением производной, найти производную функции

.

Решение. Из определения производной вытекает следующая схема её вычисления.

Дадим аргументу приращение (дельта) и найдём приращение функции:

.

Найдём отношение приращения функции к приращению аргумента:

Вычислим предел этого отношения при условии, что приращение аргумента стремится к нулю, то есть требуемую в условии задачи производную:

К понятию производной привело изучение Галилео Галилеем закона свободного падения тел, а в более широком смысле — задачи о мгновенной скорости неравномерного прямолинейного движения точки.

Однако движение свободно падающего тела явно неравномерное. Скорость v падения постоянно возрастает. И средней скорости уже недостаточно для характеристики быстроты движения на различных участках пути. Такая характеристика тем точнее, чем меньше промежуток времени . Поэтому вводится следующее понятие: мгновенной скоростью прямолинейного движения (или скоростью в данный момент времени t) называется предел средней скорости при :

(при условии, что этот предел существует и конечен).

Так выясняется, что мгновенная скорость есть предел отношения приращения функции s(t) к приращению аргумента t при Это и есть производная, которая в общем виде записывается так:.

.

Решение обозначенной задачи представляет собой физический смысл производной. Итак, производной функции y=f(x) в точке x называется предел (если он существует и конечен) приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

Пример 2. Найти производную функции

Решение. Из определения производной вытекает следующая схема для её вычисления.

Шаг 1. Дадим аргументу приращение и найдём

Шаг 2. Найдём приращение функции:

Шаг 3. Найдём отношение приращения функции к приращению аргумента:

Шаг 4. Вычислим предел этого отношения при , то есть производную:

Касательной к графику функции в точке М называется предельное положение секущей МР при , или, что то же при .

Из определения следует, что для существования касательной достаточно, чтобы существовал предел

,

причём предел равен углу наклона касательной к оси .

Теперь дадим точное определение касательной.

Из этого определения следует, что производная функции

равна угловому коэффициенту касательной к графику этой функции в точке с абсциссой x. В этом состоит геометрический смысл производной:

где — угол наклона касательной к оси абсцисс, т. е. угловой коэффициент касательной.

Пример 3. Найти производную функции и значение этой производной при .

Решение. Воспользуемся схемой, приведённой в примере 1.

Шаг 1.

Шаг 2.

Шаг 3.

Шаг 4.

Выражение под знаком предела не определено при (неопределённость вида 0/0), поэтому преобразуем его, избавившись от иррациональности в числителе и затем сократив дробь:

Найдём значение производной при :

Весь блок «Производная»

Наименьшее значение производной. Производная функции

Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.

Запомним определение:

Производная — это скорость изменения функции.

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала — и после точки продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

Этот раздел содержит задачи ЕГЭ по математике на темы, связанные с исследованием функций и их производных.

В демонстрационных вариантах ЕГЭ 2020 года они могут встретиться под номером 14 для базового уровня и под номером 7 для профильного уровня.

Посмотрите внимательно на эти три графика функций.
Заметили ли вы, что эти функции в некотором смысле «родственники»?
Например, на тех участках, где график зеленой функции расположен выше нуля, красная функция возрастает. На тех участках, где график зеленой функции ниже нуля, красная функция убывает.
Аналогичные замечания можно сделать относительно красного и синего графиков.

Также можно заметить, что нули зеленой функции (точки x = −1 и x = 3) совпадают с точками экстремумов красного графика: при x = −1 на красном графике мы видим локальный максимум, при х = 3 на красном графике локальный минимум.
Нетрудно заметить, что локальные максимумы и минимумы синего графика достигаются в тех же точках, где красный график проходит через значение y = 0.
Можно сделать еще несколько выводов об особенностях поведения этих графиков, потому что они действительно связаны между собой. Посмотрите на формулы функций, расположенные под каждым из графиков, и путем вычислений убедитесь, что каждая предыдущая является производной для последующей и, соответственно, каждая следующая является одной из превообразных предыдущей функции.

φ 1 (x ) = φ» 2 (x ) φ 2 (x ) = Φ 1 (x )
φ 2 (x ) = φ» 3 (x ) φ 3 (x ) = Φ 2 (x )

Вспомним, что мы знаем о производной:

Производная функции y = f (x ) в точке х выражает скорость изменения функции в точке x .

Физический смысл производной заключается в том, что производная выражает скорость протекания процесса, описываемого зависимостью y = f(x).

Геометрический смысл производной заключается в том, что её значение в рассматриваемой точке равняется угловому коэффициенту касательной, проведенной к графику дифференцируемой функции в этой точке.

А теперь пусть красного графика на рисунке нет. Допустим, что и формулы функций нам неизвестны.

Могу ли я спросить вас о чем то, связанном с поведением функции φ 2 (x ), если известно, что она является производной функции φ 3 (x ) и первообразной функции φ 1 (x )?
Могу. И на многие вопросы можно дать точный ответ, ведь мы знаем, что производная является характеристикой скорости изменения функции, поэтому можем судить о некоторых особенностях поведения одной из этих функций, глядя на график другой.

Прежде, чем отвечать на следующие вопросы, прокрутите страницу вверх так, чтобы скрылся верхний рисунок, содержащий красный график. Когда ответы будут даны, верните его обратно, чтобы проверить результат. И только после этого смотрите моё решение.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. (Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. )

1) Пользуясь графиком производной φ» 2 (x ) (в нашем случае это зеленый график), определите какое из 2-ух значений функции больше φ 2 (−3) или φ 2 (−2)?

По графику производной видно, что на участке [−3;−2] её значения строго положительны, значит функция на этом участке только возрастает, поэтому значение функции в левом конце x = −3 меньше, чем её значение в правом конце x = −2.

Ответ: φ 2 (−3) φ 2 (−2)

2) Пользуясь графиком первообразной Φ 2 (x ) (в нашем случае это синий график), определите какое из 2-ух значений функции больше φ 2 (−1) или φ 2 (4)?

По графику первообразной видно, что точка x = −1 находится на участке возрастания, следовательно значение соответсвующей производной положительно. Точка x = 4 находится на участке убывания и значение соответствующей производной отрицательно. Поскольку положительное значение больше отрицательного, делаем вывод — значение неизвестной функции, которая как раз и является производной, в точке 4 меньше, чем в точке −1.

Ответ: φ 2 (−1) > φ 2 (4)

Подобных вопросов по отсутствующему графику можно задать много, что обуславливает большое разноообразие задач с кратким ответом, построенных по такой же схеме. Попробуйте решить некоторые из них.

Задачи на определение характеристик производной по графику функции.


Рисунок 1.


Рисунок 2.

Задача 1

y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции положительна.

Производная функции положительна на тех участках, где функция возрастает. По рисунку видно, что это промежутки (−10,5;−7,6), (−1;8,2) и (15,7;19). Перечислим целые точки внутри этих интервалов: «−10″,»−9», «−8″,»0», «1»,»2″, «3»,»4″, «5»,»6″, «7»,»8″, «16»,»17″, «18». Всего 15 точек.

Ответ: 15

Замечания.
1. Когда в задачах о графиках функций требуют назвать «точки», как правило, имеют в виду только значения аргумента x , которые являются абсциссами соответствующих точек, расположенных на графике. Ординаты этих точек — значения функции, они являются зависимыми и могут быть легко вычислены при необходимости.
2. При перечислении точек мы не учитывали края интервалов, так как функция в этих точках не возрастает и не убывает, а «разворачивается». Производная в таких точках не положительна и не отрицательна, она равна нулю, поэтому они называются стационарными точками. Кроме того, мы не рассматриваем здесь границы области определения, потому что в условии сказано, что это интервал.

Задача 2

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции f » (x ) отрицательна.

Производная функции отрицательна на тех участках, где функция убывает. По рисунку видно, что это промежутки (−7,6;−1) и (8,2;15,7). Целые точки внутри этих интервалов: «−7″,»−6», «−5″,»−4», «−3″,»−2», «9»,»10″, «11»,»12″, «13»,»14″, «15». Всего 13 точек.

Ответ: 13

См. замечания к предыдущей задаче.

Для решения следующих задач нужно вспомнить еще одно определение.

Точки максимума и минимума функции объединяются общим названием — точки экстремума .

В этих точках производная функции либо равна нулю, либо не существует (необходимое условие экстремума ).
Однако необходимое условие — это признак, но не гарантия существования экстремума функции. Достаточным условием экстремума является смена знака производной: если производная в точке меняет знак с «+» на «−», то это точка максимума функции; если производная в точке меняет знак с «−» на «+» , то это точка минимума функции; если в точке производная функции равна нулю, либо не существует, но знак производной при переходе через эту точку не меняется на противоположный, то указанная точка не является точкой экстремума функции. Это может быть точка перегиба, точка разрыва или точка излома графика функции.

Задача 3

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

Вспомним, что уравнение прямой имеет вид y = kx + b , где k — коэффициент наклона этой прямой к оси Ox . В нашем случае k = 0, т.е. прямая y = 6 не наклонена, а параллельна оси Ox . Значит искомые касательные также должны быть параллельны оси Ox и также должны иметь коэффициент наклона 0. Таким свойством касательные обладают в точках экстремумов функций. Поэтому для ответа на вопрос нужно просто посчитать все точки экстремумов на графике. Здесь их 4 — две точки максимума и две точки минимума.

Ответ: 4

Задача 4

Функции y = f (x ), определенной на интервале (−11;23). Найдите сумму точек экстремума функции на отрезке .

На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8.
x 1 + x 2 = 4 + 8 = 12.

Ответ: 12

Задача 5

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых производная функции f » (x ) равна 0.

Производная функции равна нулю в точках экстремума, которых на графике видно 4:
2 точки максимума и 2 точки минимума.

Ответ: 4

Задачи на определение характеристик функции по графику её производной.


Рисунок 1.

Рисунок 2.

Задача 6

На рисунке 2 изображен график f » (x ) — производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка [−6;2] функция f (x ) принимает наибольшее значение.

На указанном отрезке производная нигде не была положительной, следовательно функция не возрастала. Она убывала или проходила через стационарные точки. Таким образом, наибольшего значения функция достигала на левой границе отрезка: x = −6.

Ответ: −6

Замечание: По графику производной видно, что на отрезке [−6;2] она равна нулю трижды: в точках x = −6, x = −2, x = 2. Но в точке x = −2 она не меняла знака, значит в этой точке не могло быть экстремума функции. Скорее всего там была точка перегиба графика исходной функции.

Задача 7

На рисунке 2 изображен график f » (x ) — производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка функция принимает наименьшее значение.

На отрезке производная строго положительна, следовательно функция на этом участке только возрастала. Таким образом, наименьшего значения функция достигала на левой границе отрезка: x = 3.

Ответ: 3

Задача 8

На рисунке 2 изображен график f » (x ) — производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек максимума функции f (x ), принадлежащих отрезку [−5;10].

Согласно необходимому условию экстремума максимум функции может быть в точках, где её производная равна нулю. На заданном отрезке это точки: x = −2, x = 2, x = 6, x = 10. Но согласно достаточному условию он точно будет только в тех из них, где знак производной меняется с «+» на «−». На графике производной мы видим, что из перечисленных точек такой является только точка x = 6.

Ответ: 1

Задача 9

На рисунке 2 изображен график f » (x ) — производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек экстремума функции f (x ), принадлежащих отрезку .

Экстремумы функции могут быть в тех точках, где её производная равна 0. На заданном отрезке графика производной мы видим 5 таких точек: x = 2, x = 6, x = 10, x = 14, x = 18. Но в точке x = 14 производная не поменяла знак, следовательно её надо исключить из рассмотрения. Таким образом, остаются 4 точки.

Ответ: 4

Задача 10

На рисунке 1 изображен график f » (x ) — производной функции f (x ), определенной на интервале (−10,5;19). Найдите промежутки возрастания функции f (x ). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции совпадают с промежутками положительности производной. На графике мы видим их три — (−9;−7), (4;12), (18;19). Самый длинный из них второй. Его длина l = 12 − 4 = 8.

Ответ: 8

Задача 11

На рисунке 2 изображен график f » (x ) — производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек, в которых касательная к графику функции f (x ) параллельна прямой y = −2x − 11 или совпадает с ней.

Угловой коэффициент (он же тангенс угла наклона) заданной прямой k = −2. Нас интересуют параллельные или совпадающие касательные, т.е. прямые с таким же наклоном. Исходя из геометрического смысла производной — угловой коэффициент касательной в рассматриваемой точке графика функции, пересчитываем точки, в которых производная равна −2. На рисунке 2 таких точек 9. Их удобно считать по пересечениям графика и линии координатной сетки, проходящей через значение −2 на оси Oy .

Ответ: 9

Как видите, по одному и тому же графику можно задать самые разнообразные вопросы о поведении функции и её производной. Также один тот же вопрос можно отнести к графикам разных функций. Будьте внимательны при решении этой задачи на экзамене, и она покажется Вам очень легкой. Другие виды задач этого задания — на геометрический смысл первообразной — будут рассмотрены в другом разделе.

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции — все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) — входят.

Учитывая, что первая часть ЕГЭ для «средней группы детского сада», то наверное такие нюансы- перебор.

Отдельно, большое спасибо за «Решу ЕГЭ» всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке }

Значение производной многочлена по методу Горнера

Заданная функция
Рассмотрим одну из простых и незаслужено забытых на просторах интернета методики определения производной полинома, произвольной (положительной) степени.

 

До последнего был уверен, что если известен многочлен вида

и необходимо узнать значение производной например 5 порядка  в какой либо точке, необходимо сначала вычислить эту производную (пятого порядка), а потом уже подставив значение, рассчитать производную.

Оказывается есть более простой и алгоритмически легкий способ, нахождения производной в точке.

Для этого нам понадобится методика описанная в материалах: Разложить многочлен по степеням и Метод Горнера. Деление многочлена.

Да, да, оказывается метод Горнера с успехом решает поставленную задачу.

Рассмотрим пример:

Вычислить производную третьего порядка при х=3  следующего многочлена

1. Разделим заданный многочлен на 

Получим  и остаток 19. 

Число 19 есть значение функции   если мы подставим туда x=3

2. Разделим  снова на 

Получим  и остаток 25. 

Так как это первая проивзодная, то умножим полученный результат на 1!(один факториал)=1. Получили то же число 25

Число 25 это значение первой производной от заданной функции при x=3. То есть если мы вычислим первую производную

 и подставим туда значение 3 получим тот же ответ = 25.

3. Разделим  снова на 

получим   и остаток 13. 

Умножим это число на 2! (два факториал) =2 и мы получим значение производной функции второго порядка при х=3

Это число =26

4. Производная третьего порядка вычисляется в данном случае просто, так как   далее уже делить невозможно, то это и является остатком. Его необходимо умножить на 3!(три факториал)=6

И получим, что производная третьего порядка при заданном многочлене при x=3 равна 12.

Таким незамысловатым способом мы можем находить значения любой производной любого полинома.

Алгоритм  прост, но при многочленах со степенями  выше 10, мы сталкиваемся  с необходимостью вычислять факториалы выше 10, что очень трудоемко, так как факториал от 10 равен 3628800, а факториал от 16 уже 20922789888000

Но нам на пользу приходит одно из свойств методики Горнера, которое гласит: Если мы умножим какую либо функцию на число  то и остаток отделения  возрастет во столько же раз.

Поэтому нам достаточно умножать полученные коэффиценты  полинома  от деления на числа 1,2,3,4,5 и т.д. в зависимости от того какую производную мы вычислем в данный момент и вычислить остаток.

Калькулятор работает и в поле комплексных чисел, поэтому решим вот такой пример.

Есть функция 

Необходимо узнать все возможные производные этой функции при x=i

Несложно убедится что решая это вручную, можно допустить оплошность и пойти по неверному пути.

Намного проще воспользоватся ботом и через XMPP клиент написать

propol 2 1-5i 0 -7 i 2 -9 -1;i

и мы получим все результаты

Найдены значения производной полинома

0 производная. Значение функции -10-6i

1 производная. Значение функции 7+35i

2 производная. Значение функции 112-66i

3 производная. Значение функции -180-282i

4 производная. Значение функции -528+120i

5 производная. Значение функции -1440+720i

6 производная. Значение функции 720+6480i

7 производная. Значение функции 10080

 

Логичный вопрос —  а что же такое нулевая производная?

Ответим —  это исходная функция. А значение -10-6i получается если бы мы -i подставили  в исходную функцию

 

Попробуем решить другое уравнение

знаем чему же равна четвертая производная функции 

при х=2+i

 

Полином 17-ой степени.. это серъезно как и вычисление при комплексном аргументе.

Что ж попробуем

Заданная функция
Производная Значение производной при X=2+i
0 707043+6123674i
1 25630678+39273242i
2 289802562+169486216i
3 2247959580+147950190i
4 13006113720-5465417040i
5 53432793120-62240220840i
6 107126132400-427018989600i
7 -468058852800-2114656795440i
8 -6101588908800-7522728998400i
9 -35506871769600-16099283692800i
10 -1. 393813225728E+14+5293047513600i
11 -3.828579156864E+14+2.0995438464E+14i
12 -6.6691392768E+14+9.6332011776E+14i
13 -3.705077376E+14+6.1024803840002E+14i
14 1.4820309504E+15+7.8460462080004E+14i
15 5.2306974720004E+14+5.230697472E+14i
16 3.1384184832005E+14+1.0461394944E+14i
17 24.89811996672http://abak.pozitiv-r.ru

 

при значении x=2+i значение функции при взятии четвертой производной будет

4 13006113720-5465417040i

Что еще можно заметить?

Что необходимо внимательно смотреть на расчеты.

В нашем примере при взятии 17 призводной  получается число  24.898

хотя должно конечно же быть  где 17! это факториал от 17  = 355687428096000

Это небольшая недоработка  (ошибка при вычислении больших производных)  будет испарвлена в ближайшее время. Но вычисления производных не выше 10 порядка, бот осуществляет правильно.

 

Удачных расчетов!

 

  • Из показательной в алгебраическую. Подробно >>

Производная