Музей компьютеров » Русские счёты

=============================================================================================================

Немного истории

Счёты — это первое простейшее устройство для вычислений. Почти с начала 19 века счёты не меняются и становятся такими, какими мы их видим сегодня, а в дальнейшем совершенствуются в основном разве что внешне, с точки зрения удобства пользования и  вплоть до 70-х годов ХХ-века являлись наиболее массовым вспомогательным вычислительным устройством. Начиная с 70-х годов с ними начинают конкурировать электронные калькуляторы, счеты  и в наше время ещё можно встретить, хотя уже очень редко.

Русские счеты, XVI в. с десятичной системой счисления создаются примерно в это время.Ранее считалось, что русские счеты ведут свое происхождение от китайского суаньпаня, и только лишь в начале 50-х годов прошлого столетия ленинградский ученый И.Г. Спасский убедительно показал что это  русское, так как у этого прибора, во-первых, горизонтальное расположение спиц с косточками и, во-вторых, для представления чисел использована десятичная , а не пятеричная система счисления. (Помните как в сказке Конёк-горбунок царь спрашивает Ивана-дурочка: » Что в замен хотишь добра» и тот отвечает:» Два-пять шапок серебра». )  Десятичный строй счетов — довольно веское основание для того, чтобы признать временем возникновения этого прибора XVI век, когда десятичный принцип счисления был впервые применен в денежном деле России.

Широкое использование в торговле невиданного на Западе счетного инструмента отмечали в XVII—XVIII столетиях многие иностранцы. Английский капитан Перри, находившийся в России с 1698 по 1712 год и издавший по возвращению на родину книгу в которой он  писал:“Для счета они (русские) пользуются изобретенным ими особым прибором с нанизанными на проволочные прутья шариками от четок или бусами, который они устраивают в ящике или небольшой раме, … Передвигая туда и сюда шарики, они справляются с делением и умножением разных сумм…”

Счёты в то время уже представляли лишь одно счетное поле, на спицах которого размещались либо 10, либо 4 косточки (спица с 4 четками — это дань “полушке”, русской денежной единице в 1/4 копейки).

Пятеричная система счисления

Число в пятеричной системе изображается пятью цифрами: 0, 1, 2, 3, 4. В этой системе цифра 4 — наибольшая (как 9 — в десятичной),  единица высшего разряда не в 10, а в 5 раз больше единицы низшего.
Единица второго разряда — это пять.
Единица третьего разряда — «25», так как 5•5=25
Единица четвертого разряда — «125», так как 25•5=125
Единица пятого разряда — «625», так как 125•5=625 и т.д.
При изображении числа в пятеричной системе счисления, на первом месте справа стоят простые единицы (не свыше 4), на втором — не десятки, а пятерки, на третьем — не сотни, а «25» и т.д.

Пример:
Число 139 изобразить в пятеричной системе.

Делим 139 на 5, чтобы узнать, сколько в нем единиц первого разряда:
139:5=27, остаток 4. Значит, число простых единиц будет 4.
Далее, 27 пятёрок не могут стоять все во втором разряде, т.к. высшая цифра в пятеричной системе — 4, и больше 4 единиц ни в одном разряде быть не должно, делим 27 на 5 (27:5=5, остаток 2), значит это  показывает, что во втором разряде («5») будет цифра 2.
В третьем разряде («25») — цифра 4.
Итак: 139 = 5•25 + 2•5 + 4 или в пятеричной системе 524.

Десятичная система счисления

Современная десятичная система счисления это десять цифр – от 0 до 9.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен.

Древнее изображение десятичных цифр не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 – углов нет, 2 – два угла и т.д.

Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Наряду с появлением письменности, возникновение и развитие десятичной системы счисления явилось одним из важнейших достижений человечесва.

ru.pc-history.com

Как перевести число в пятиричную систему

Автор КакПросто!

Многообразие систем счисления в математике объясняется различным происхождением теорий чисел, как территориальным, так и прикладным. Например, с развитием компьютеров и других технических средств большое распространение получила сравнительно молодая двоичная система. Пятеричная также является позиционной, она была основой счета еще в древнем племени майя.

Статьи по теме:

Инструкция

Система счисления – неотъемлемая часть математической теории, отвечающая за символьную запись чисел. Каждая система имеет собственную арифметику, совокупность действий: сложение, умножение, деление и умножение. Основанием пятеричной системы является цифра 5. Соответственно, это число представляет собой один разряд, например, 132 в пятеричной системе представляет собой 2•5^0 + 3•5¹ + 1•5² = 2 + 15 + 25 = 42 в десятеричной. Чтобы перевести число в пятеричную систему из любой другой позиционной системы счисления, воспользуйтесь методом последовательного деления. Искомое число делите на 5, записывая промежуточные остатки в обратном порядке, т.е. справа налево.

Начните с десятичной системы. Переведите число 69:69/5 = 13 → 4 в остатке;13/5 = 2 → 3;2/5 = 0 → 2.

Итак, получилось число 234. Проверьте результат: 234 = 4•1 + 3•5 + 2•25 = 69.

Сделать перевод числа из любой другой системы можно двумя способами: либо тем же последовательным делением, либо используя промежуточную систему, самым удобным вариантом которой будет десятичная. Несмотря на наличие дополнительного этапа, второй метод более быстрый и точный, поскольку не предполагает действий непривычной арифметики. Например, приведите восьмеричное число 354 к пятеричному виду. Воспользуйтесь первым способом:354/5 = 57 → 1 в остатке;57/5 = 11 → 2;11/5 = 1 → 4;1/5 = 0 → 1. Неудобно, не правда ли? Все время нужно помнить о том, что делимое число имеет разрядность, равную 8, а не 10, хотя наметанный на десятичных операциях глаз обманчиво воспринимает его именно так. Теперь примените второй способ:Перейдите к десятичному виду: 354 = 4•1 + 5•8 +3•64= 236.

Сделайте привычный перевод:236/5 = 47 → 1;47/5 = 9 → 2;9/5 = 1 → 4;1/5 = 0 → 1.

Запишите результат: 354_8 = 1421_5. Проверьте: 1421=1•1+2*5+4•25+1•125=236.

Источники:

  • пятеричная система счисления

Совет полезен?

Распечатать

Как перевести число в пятиричную систему

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru

Перевод чисел в различные системы счисления с решением | Онлайн калькулятор

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ . или ,. Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку «Получить запись».

Исходное число записано в 23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.

Хочу получить запись числа в 23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.

Получить запись


=

Выполнено переводов: 1513027

Также может быть интересно:

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число:5921
Позиция:3210

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·103+9·102+2·101+1·100. Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число:1234567
Позиция:3210-1-2-3

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·103+2·102+3·101+4·100+5·10-1+6·10-2+7·10-3.

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.11012 в десятичную систему счисления.
Решение: 10011.11012 = 1·24+0·23+0·22+1·21+1·20+1·2-1+1·2-2+0·2-3+1·2-4 = 16+2+1+0.5+0.25+0.0625 = 19.812510
Ответ: 10011.11012 = 19.812510

2. Перевести число E8F.2D16 в десятичную систему счисления.
Решение: E8F.2D16 = 14·162+8·161+15·160+2·16-1+13·16-2 = 3584+128+15+0.125+0.05078125 = 3727.1757812510
Ответ: E8F.2D16 = 3727.1757812510

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421

Проверка: 4·82+2·81+1·80 = 256+16+1 = 273 = 273, результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 — целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 — вторая цифра результата), 0.5·2 = 1.0 (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012


programforyou.ru

Перевод чисел из одной системы счисления в другую онлайн

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

 Результат уже получен!

 

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число
6 3 7 2
позиция 3 2 1 0

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·103+3·102+7·101+2·100.

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число 1 2 8 7 . 9 2 3
позиция 3 2 1 0   -1 -2 -3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.

В общем случае формулу можно представить в следующем виде:

Цn·snn-1·sn-1+…+Ц1·s10·s0-1·s-1-2·s-2+…+Д-k·s-k

(1)

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

 

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

159 2            
158 79 2          
1 78 39 2        
  1 38 19 2      
    1 18 9 2    
      1 8 4 2  
        1 4 2 2
          0 2 1
            0  

Рис. 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

15910=100111112.

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

615 8    
608 76 8  
7 72 9 8
  4 8 1
    1  

Рис. 2

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

61510=11478.

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16    
19664 1229 16  
9 1216 76 16
  13 64 4
    12  

Рис. 3

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

    0.214
  x 2
0   0.428
  x 2
0   0.856
  x 2
1   0.712
  x 2
1   0.424
  x 2
0   0.848
  x 2
1   0.696
  x 2
1   0.392

Рис. 4

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.

Следовательно можно записать:

0.21410=0.00110112.

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

    0.125
  x 2
0   0.25
  x 2
0   0.5
  x 2
1   0.0

Рис. 5

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.12510=0.0012.

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

    0.214
  x 16
3   0.424
  x 16
6   0.784
  x 16
12   0.544
  x 16
8   0.704
  x 16
11   0.264
  x 16
4   0.224

Рис. 6

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.21410=0.36C8B416.

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

    0.512
  x 8
4   0.096
  x 8
0   0.768
  x 8
6   0.144
  x 8
1   0.152
  x 8
1   0.216
  x 8
1   0.728

Рис. 7

Получили:

0.51210=0.4061118.

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.12510=10011111.0012.

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

19673.21410=4CD9.36C8B416.

matworld.ru