2

Как найти область определения функции?

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так:

y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох. Чтобы обозначить область определения некоторой функции y, используют запись D(y).

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

  • Например, область значений функции y = x2 — это все числа больше либо равные нулю. Это можно записать так: Е (у): у ≥ 0.

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

 
  1. Через точку с запятой указываем два числа: левую и правую границы промежутка.

  2. Если граница входит в промежуток, ставим возле нее квадратную скобку, если не входит — круглую.

  3. Если у промежутка нет правой границы, записываем так: +∞. Если нет левой границы, пишем -∞.

  4. Если нужно описать множество, состоящее из нескольких промежутков, ставим между ними знак объединения: ∪.

Например, все действительные числа от 2 до 5 включительно можно записать так:

  • [2; 5].

Все положительные числа можно описать так:

  • (0; +∞).

Ноль не положительное число, поэтому скобка возле него круглая.

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x

2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.  

Смысл функции — в том, что каждому значению аргумента соответствует значение функции, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

Например:

  • Область определения постоянной функции y = -3 — это множество всех действительных чисел: D(y) = (−∞, +∞) или D(y) = R.
     
  • Областью определения функции y = 3√9 является множество R.

Для тех, кто учится в 7 классе, материала выше достаточно, чтобы подготовиться к контрольной работе. А вот старшеклассникам нужно разбираться в теме несколько глубже — поэтому продолжаем.

Еще больше наглядных примеров и практики — на курсах по математике в онлайн-школе Skysmart!

Область определения функции с корнем

Функцию с корнем можно определить так: y = n√x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

  • Если n — четное число, то есть, n = 2m, где m ∈ N, то ее область определения есть множество всех неотрицательных действительных чисел:
  • Если показатель корня нечетное число больше единицы, то есть n = 2m+1, при этом m принадлежит к N, то область определения корня — множество всех действительных чисел:

Значит, область определения каждой из функций y = √x, y = 4√x, y = 6√x,… есть числовое множество [0, +∞). А область определения функций y = 3√x, y = 5√x, y = 7√x,… — множество (−∞, +∞).

Пример 

Найти область определения функции:

Как решаем:

Подкоренное выражение должно быть неотрицательным, но поскольку оно стоит в знаменателе, то равняться нулю не может. Следовательно, для нахождения области определения необходимо решить неравенство x

2 + 4x + 3 > 0.

Для этого решим квадратное уравнение x2 + 4x + 3 = 0. Находим дискриминант:

D = 16 — 12 = 4 > 0

Дискриминант положительный. Ищем корни:


Значит парабола f(x) = x2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x2 + 4x + 3 < 0), а другая часть — выше оси (неравенство x2 + 4x + 3 > 0).

Поскольку коэффициент a = 1 > 0, то ветви параболы смотрят вверх. Можно сделать вывод, что на интервалах (−∞, -3) ∪ (−1, +∞) выполнено неравенство x

2 + 4x + 3 > 0 (ветви параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке (-3; -1) ниже оси абсцисс, что соответствует неравенству x2 + 4x + 3 < 0.


Ответ: область определения: D(f) = (−∞, -3) ∪ (−1, +∞).

Если в знаменателе функции стоит выражение, зависящее от х, то для того, чтобы найти область определения данной функции, нам нужно исключить точки, которые обращают знаменатель в ноль.

Область определения степенной функции

Степенная функция выглядит так: y = xa, то есть, f(x) = xa, где x — переменная в основании степени, a — некоторое число в показателе степени.

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

  • Если a — положительное целое число, то область определения функции есть множество действительных чисел: (−∞, +∞).
  • Для нецелых действительных положительных показателей степени: D(f) = [0, +∞).
  • Если a — отрицательное целое число, то область определения функции представляет собой множество (−∞, 0) ∪ (0, +∞).
  • Для остальных действительных отрицательных a область определения степенной функции — числовой промежуток (0, +∞).

При a = 0 степенная функция y = xa определена для всех действительных значений x, кроме x = 0. Это связано с тем, что мы не определяли 00. А любое отличное от нуля число в нулевой степени равно единице. То есть, при a = 0 функция приобретает вид y = x0 = 1 на области определения (−∞, 0) ∪ (0, +∞).

Рассмотрим несколько примеров.

 

  1. Область определения функций y = x
    5
    , y = x12 — множество R, так как показатели степени целые положительные.

  2. Степенные функции определены на интервале [0, +∞), так как их показатели положительные, но не целые.

  3. Область определения функции y = x−2, как и функции y = x−5 — это множество (−∞, 0) ∪ (0, +∞), так как показатели степени целые отрицательные.

  4. Область определения степенных функций y = x-√19, y = x-3e, — открытый числовой луч (0, +∞), так как их показатели не целые и отрицательные.

Область определения показательной функции

Показательную функцию можно задать формулой y = ax, где переменная x — показатель степени, а — больше нуля и не равно единице.

Область определения показательной функции — это множество R.

Примеры показательных функций:

  • y = ex
  • y = (√15)x
  • y = 13x.

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

  • D (ln) = (0, +∞) и D (lg) = (0, +∞).

Рассмотрим примеры логарифмических функций: 

  • y = log7x
  • y = lnx

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции:

Как решаем:

Составим и решим систему:


Графическое решение:


Ответ: область определения: D(f) = (−3, -2) ∪ (−2, +∞).

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

  • Функция, которая задается формулой y = sinx, называется синусом, обозначается sin и определяется на множестве всех действительных чисел. Область определения синуса — это множество всех действительных чисел, то есть, D(sin) = R.
  • Функция, которая задана формулой y = cosx, называется косинусом, обозначается cos и определяется на множестве R. Область определения функции косинус — множество всех действительных чисел: D(cos) = R.
  • Функции, которые заданы формулами y = tgx и y = ctgx, называются тангенсом и котангенсом и обозначаются tg и ctg. Область определения тангенса — это множество всех действительных чисел, кроме чисел . Область определения котангенса — это множество всех действительных чисел, кроме чисел πk, k ∈ Z.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что и x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Как решаем:

Так как a(x) = 2x, то в область определения не войдут следующие точки:


Перенесем 2 из левой части в знаменатель правой части:


В результате . Отразим графически:


Ответ: область определения: .

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

  • Функция, которая задается формулой y = arcsinx и рассматривается на отрезке [−1, 1], называется арксинусом и обозначается arcsin.

    Область определения арксинуса — это множество [−1, 1], то есть, D(arcsin) = [−1, 1].

  • Функция, которая задается формулой y = arccosx и рассматривается на отрезке [−1, 1], называется арккосинусом и обозначается arccos.

    Область определения функции арккосинус — отрезок [−1, 1], то есть, D(arccos) = [−1, 1].

  • Функции, которые задаются формулами вида y = arctgx и y = arcctgx и рассматриваются на множестве всех действительных чисел, называются арктангенсом и арккотангенсом и обозначаются arctg и arcctg.

    Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните. 

Функция

Область определения функции

Постоянная

y = C

 

R

Корень

y = n√x 

 

[0 ; +∞) , если n — четное;

(-∞; +∞) , если n  — нечетное.

Степенная

y = xa 

 

(-∞; +∞) , если a > 0, a ∈ Z;

[0 ; +∞), если a > 0, a ∈ R, a ∉ Z;

(-∞; 0) ∪ (0; +∞) , если a < 0, a ∈ Z;

(0; +∞), если a ∈ R, a ≠ Z;

(-∞; 0) ∪ (0, +∞), если a = 0.

Показательная

y = ax 

 

R

Логарифмическая

y = lognx

 

(0; +∞) 

Тригонометрические

y = sin(x)

y = cos(x)

y = tg(x)

y = ctg(x)

 

R

R

x ∈ R, x ≠ π/2 + πk, k ∈ Z

x ∈ R, x ≠ πk, k ∈ Z

Обратные тригонометрические

y = arcsin(x)

y = arccos(x)

y = arctg(x)

y = arcctg(x)

 

[-1; 1]

[-1; 1]

R

R  

3-8 9 Оценить квадратный корень из 12 10 Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92+5x-1=0 Tiger Algebra Solver

Пошаговое решение :

Шаг 1 :

Попытка разложить на множители путем разделения среднего члена ,  x
2  его коэффициент равен 1 .
Средний член равен  +5 x , его коэффициент равен 5 .
Последний член, «константа», равен  -1 

Шаг-1: Умножьте коэффициент первого члена на константу   1 • -1 = -1 

Шаг-2: Найдите два множителя -1, сумма которых равен коэффициенту среднего члена, который равен   5 .

-1+ 1 = 0


Наблюдение: не можно найти два таких фактора !!
Вывод: Трехчлен нельзя разложить на множители

Уравнение в конце шага 1 :
 x  2  + 5x - 1 = 0
 

Шаг 2 :

Парабола, поиск вершины :

 2.1      Найти вершину   y = x 2 +5x-1

Параболы имеют самую высокую или самую низкую точку, называемую вершиной. Наша парабола раскрывается и, соответственно, имеет низшую точку (абсолютный минимум). Мы знаем это еще до того, как начертили «у», потому что коэффициент первого члена, 1 , положителен (больше нуля).

 Каждая парабола имеет вертикальную линию симметрии, проходящую через ее вершину. Из-за этой симметрии линия симметрии, например, будет проходить через середину двух точек пересечения x (корней или решений) параболы. То есть, если парабола действительно имеет два действительных решения.

 Параболы могут моделировать многие реальные жизненные ситуации, например, высоту над землей объекта, брошенного вверх через некоторый период времени. Вершина параболы может предоставить нам такую ​​информацию, как максимальная высота, на которую может подняться объект, брошенный вверх. По этой причине мы хотим иметь возможность найти координаты вершины.

 Для любой параболы, Ax 2 +Bx+C, x-координата вершины определяется как -B/(2A) . В нашем случае координата x равна -2,5000  

 Подставив в формулу параболы -2,5000 вместо x, мы можем вычислить координату y:
  y = 1,0 * -2,50 * -2,50 + 5,0 * -2,50 — 1,0
или      = -7,250

Graphing Vertex and X Graphing Vertex, X -Пересечения:

Корневой график для:  y = x 2 +5x-1
Ось симметрии (пунктирная)  {x}={-2,50} 
Вершина в  {x,y} = {-2,50,-7,25}
 x -Пересечения (корни):
Корень 1 в точке {x,y} = {-5,19, 0,00} 
Корень 2 в точке {x,y} = {0,19, 0,00} 

Решить квадратное уравнение, заполнив квадрат

 2. 2     Решение   x 2 +5x-1 = 0, заполнив квадрат.

 Добавьте 1 к обеим частям уравнения:
   x 2 +5x = 1

Теперь немного хитрости: возьмите коэффициент при x, равный 5, разделите на два, получив 5/2, и, наконец, возведите его в квадрат. что дает  25/4 

Прибавьте  25/4  к обеим частям уравнения:
  В правой части мы получим:
   1  +  25/4    или, (1/1)+(25/4) 
  Общим знаменателем двух дробей является 4 Сложение (4/4)+(25/4) дает 29/4
 Таким образом, складывая обе части, мы окончательно получаем:
   x 2 +5x+(25/4) = 29 /4

Добавление 25/4 завершило левую часть в полный квадрат:
   x 2 +5x+(25/4)  =
   (x+(5/2)) • (x+(5/2)) =
  (x+(5/2)) 2
Вещи, равные одной и той же вещи, также равны друг другу. Поскольку
   x 2 +5x+(25/4) = 29/4 и
   x 2 +5x+(25/4) = (x+(5/2)) 2
тогда по закону транзитивности
   (x+(5/2)) 2 = 29/4

Мы будем называть это уравнение уравнением #2.