2

Системы уравнений. Способы решения систем уравнений

  • Способ подстановки
  • Способ сравнения
  • Способ сложения или вычитания

Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

 x — 4y = 2
3x — 2y = 16

Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

Способ подстановки

Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

Рассмотрим решение системы уравнений:

 x — 4y = 2
3x — 2y = 16

Сначала найдём, чему равен  x  в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное  x,  в правую часть:

x — 4y = 2;

x = 2 + 4y.

Так как  x,  на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

3x — 2y = 16;
3(2 + 4y) — 2y = 16.

Решаем полученное уравнение, чтобы найти, чему равен  y.  Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

3(2 + 4y) — 2y = 16;
6 + 12y — 2y = 16;
6 + 10y = 16;
10y = 16 — 6;
10y = 10;
 y = 10 : 10;
 y = 1.

Мы определили что  y = 1.  Теперь, для нахождения численного значения  x,  подставим значение  y  в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен  x:

x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

Ответ:  x = 6,  y = 1.

Способ сравнения

Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

Например, для решение системы:

 x — 4y = 2
3x — 2y = 16

найдём в обоих уравнениях, чему равен  y  (можно сделать и наоборот — найти, чему равен  x):

x — 4y = 23x — 2y = 16
-4y = 2 — x-2y = 16 — 3x
y = (2 — x) : — 4      y = (16 — 3x) : -2

Составляем из полученных выражений уравнение:

2 — x = 16 — 3x
-4-2

Решаем уравнение, чтобы узнать значение  x:

2 — x · (-4) = 16 — 3x · (-4)
-4-2
2 — x = 32 — 6
x
x + 6x = 32 — 2
5x = 30
x = 30 : 5
x = 6

Теперь подставляем значение  x  в первое или второе уравнение системы и находим значение  y:

x — 4y = 23x — 2y = 16
6 — 4y = 23 · 6 — 2y = 16
-4y = 2 — 6      -2y = 16 — 18
-4y = -4-2y = -2
 y = 1 y = 1

Ответ:  x = 6,  y = 1.

Способ сложения или вычитания

Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

Рассмотрим систему:

 x — 4y = 2
3x — 2y = 16

Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

(3x — 2y) · -2 = 16 · -2

-6x + 4y = -32

Получим:

 x — 4y = 2
-6x + 4y = -32

Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

+x  —  4y = 2
 -6x + 4y = -32
 -5x         = -30

Находим значение  x  (x = 6).   Теперь, подставив значение  x  в любое уравнение системы, найдём  y = 1.

Если уравнять коэффициенты у  x,  то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

Уравняем коэффициенты при неизвестном  x,  умножив все члены первого уравнения на  3:

(x — 4y) · 3 = 2 · 3

3x — 12y = 6

Получим:

 3x — 12y = 6
3x — 2y = 16

Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

3x  —  12y = 6
  3x  —   2y = 16
          -10y = -10

Находим значение  y  (y = 1).  Теперь, подставив значение  y  в любое уравнение системы, найдём 

x = 6:

3x — 2y = 16
3x — 2 · 1 = 16
3x — 2 = 16
3x = 16 + 2
3x = 18
x = 18 : 3
x = 6

Ответ:  x = 6,  y = 1.