Ответы | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||
|
|
|
Посмотреть всех экспертов из раздела Учеба и наука
Похожие вопросы |
Решено
Имеются два сосуда объемом V. ..
Как решить задачу? Из 2 кг муки выходит 3 кг печёного хлеба. Сколько хлеба выйдет из 1 ц муки? Из 1 т муки?
Длина реки Волги 3690 км. Туристы прошли на лодках третью часть её длины. Сколько дней они плыли, если двигались со скоростью 6 км/ч и ежедневно находились в плавании по 5 ч
В треугольнике АВС медианы АА1…
Медиана равностороннего треугольника равна 13√3.Найдите его сторону. Решение плиз
Пользуйтесь нашим приложением
Вычисление площадей фигур, изображенных на клетчатой бумаге
При подготовке к основному государственному экзамену я встретился с заданиями, в которых требуется вычислить площадь фигуры, изображенной на клетчатом листе бумаги. Как правило, эти задания не вызывают больших затруднений, если фигура представляет собой трапецию, параллелограмм или треугольник.
Изучение специальной литературы и интернет источников, показало, что существует универсальная формула, позволяющая вычислить площадь фигуры, изображенной на клетке. Эта формула называется формулой Пика. Однако, в рамках школьной программы данная формула не рассматривается, несмотря на свою простоту в применении и получении результата. Более того, мною проведен опрос друзей и одноклассников (в двух формах: при личной беседе и в социальных сетях), в котором приняли участие 43 учащихся школ города Тобольска.
Пусть задана прямоугольная система координат. В этой системе рассмотрим многоугольник, который имеет целочисленные координаты. В учебной литературе точки с целочисленными координатами называются узлами. Причем многоугольник не обязательно должен быть выпуклым. И пусть требуется определить его площадь.
Возможны следующие случаи.
1. Фигура представляет собой треугольник, параллелограмм, трапецию:
1) подсчитывая клеточки нужно найти высоту, диагонали или стороны, которые требуются для вычисления площади;
2) подставить найденные величины в формулу площади.
Например, требуется вычислить площадь фигуры, изображенной на рисунке 1 с размером клетки 1см на 1 см.
Рис. 1. Треугольник
Решение. Подсчитываем клеточки и находим: . По формуле получаем: .
2 Фигура представляет собой многоугольник
Если фигура представляет собой многоугольник то возможно использовать следующие методы.
Метод разбиения:
1) разбить многоугольник на треугольники, прямоугольники;
2) вычислить площади полученных фигур;
3) найти сумму всех площадей полученных фигур.
Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом разбиения.
Рис. 2. Многоугольник
Решение. Способов разбиения существует множество. Мы разобьем фигуру на прямоугольные треугольники и прямоугольник как показано на рисунке 3.
Рис. 3. Многоугольник. Метод разбиения
Площади треугольников равны: , , , площадь прямоугольника — . Складывая площади всех фигур получим:
Метод дополнительного построения
1) достроить фигуру до прямоугольника
2) найти площади полученных дополнительных фигур и площадь самого прямоугольника
3) из площади прямоугольника вычесть площади всех «лишних» фигур.
Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом дополнительного построения.
Решение. Достроим нашу фигуру до прямоугольника как показано на рисунке 4.
Рис. 4. Многоугольник. Метод дополнения
Площадь большого прямоугольника равна , прямоугольника, расположенного внутри — , площади «лишних» треугольников — , , тогда площадь искомой фигуры .
При вычислении площадей многоугольников на клетчатой бумаге возможно использовать еще один метод, который носит название формула Пика по фамилии ученого ее открывшего.
Формула Пика
Пусть у многоугольника, изображённого на клетчатой бумаге только целочисленные вершины. Точки у которых обе координаты целые называются узлами решетки. Причем, многоугольник может быть как выпуклым, так и невыпуклым.
Площадь многоугольника с целочисленными вершинами равна , где B — количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.
Например, для многоугольника, изображенного на рисунке 5.
Рис. 5. Узлы в формуле Пика
Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см по формуле Пика.
Рис. 6. Многоугольник. Формула Пика
Решение. По рисунку 6: В=9, Г=10, тогда по формуле Пика имеем:
Ниже приведены примеры некоторых задач, разработанных автором на вычисление площадей фигур, изображенных на клетчатой бумаге.
1. В детском саду дети сделали аппликации родителям в подарок (рис.7). Найдите площадь аппликации. Размер каждой клетки равен 1см 1см.
Рис. 7. Условие задачи 1
2. Один гектар еловых насаждений может задерживать в год до 32 т пыли, сосновых — до 35 т, вяза — до 43 т, дуба — до 50 т. бука — до 68 т. Посчитайте, сколько тонн пыли задержит ельник за 5 лет. План ельника изображен на рисунке 8 (масштаб 1 см. — 200 м.).
Рис. 8. Условие задачи 2
3. В орнаментах хантов и манси, преобладают геометрические мотивы. Часто встречаются стилизованные изображения животных. На рисунке 9 изображен фрагмент мансийского орнамента «Заячьи ушки». Вычислите площадь закрашенной части орнамента.
Рис. 9. Условие задачи 3
4. Требуется покрасить стену заводского здания (рис. 10). Рассчитайте требуемое количество водоэмульсионной краски (в литрах). Расход краски: 1 литр на 7 кв. метров Масштаб 1см — 5м.
Рис. 10. Условие задачи 4
5. Звездчатый многоугольник — плоская геометрическая фигура, составленная из треугольных лучей, исходящих из общего центра, сливающихся в точке схождения. Особого внимания заслуживает пятиконечная звезда — пентаграмма. Пентаграмма — это символ совершенства, ума, мудрости и красоты. Это простейшая форма звезды, которую можно изобразить одним росчерком пера, ни разу не оторвав его от бумаги и при этом ни разу же не пройдя дважды по одной и той же линии. Нарисуйте пятиконечную звездочку не отрывая карандаша от листа клетчатой бумаги, так, чтобы все углы получившегося многоугольника находились в узлах клетки. Вычислите площадь полученной фигуры.
Проанализировав математическую литературу и разобрав большое количество примеров по теме исследования, я пришел к выводу, что выбор метода вычисления площади фигуры на клетчатой бумаге зависит от формы фигуры. Если фигура представляет собой треугольник, прямоугольник, параллелограмм или трапецию, то удобно воспользоваться всем известными формулами для вычисления площадей. Если фигура представляет собой выпуклый многоугольник, то возможно использовать как метод разбиения, так и дополнения (в большинстве случаях удобнее — метод дополнения). Если фигура представляет собой невыпуклый или звездчатый многоугольник, то удобнее применить формулу Пика.
Поскольку формула Пика является универсальной формулой для вычисления площадей (если вершины многоугольника находятся в узлах решетки), то ее можно использовать для любой фигуры. Однако, если многоугольник занимает достаточно большую площадь (или клетки мелкие), то велика вероятность допустить ошибку в подсчетах узлов решетки. Вообще, в ходе исследования, я пришел к выводу, что при решении подобных задач в ОГЭ лучше воспользоваться традиционными методами (разбиения или дополнения), а результат проверить по формуле Пика.
Литература:
- Вавилов В. В., Устинов А. В. Многоугольники на решетках. — М.: МЦНМО, 2006. — 72 с.
- Васильев И. Н. Вокруг формулы Пика// Научно-популярный физико-математический журнал «Квант». — 1974. — № 12. Режим доступа: http://kvant.mccme.ru/1974/12/vokrug_formuly_pika.htm
- Жарковская Н., Рисс Е. Геометрия клетчатой бумаги. Формула Пика. // Первое сентября. Математика. — 2009. -№ 23. — с.24,25.
Основные термины (генерируются автоматически): формула Пика, клетчатая бумага, площадь фигуры, фигура, вычисление площадей, многоугольник, площадь, размер клетки, условие задачи, универсальная формула.
2\кр &={16\более4}-{64\более3}+28-4-({1\более4}-{8\более3}+7-2)\кр &=23-{56\over3}-{1\over4}={49\over12}.\cr }$$ $\квадрат$Стоит рассмотреть эту проблему немного подробнее. Мы видели один из способов посмотрите на него, рассматривая желаемую область как большую область минус маленькую площади, что естественным образом приводит к различию между двумя интегралы. Но поучительно рассмотреть, как мы могли бы найти желаемая область напрямую. Мы можем аппроксимировать площадь, разделив площадь на тонкие срезы и аппроксимируя площадь каждого среза на прямоугольник, как показано на цифра 92 = 1$. Обратите внимание: $t$ фиксировано, плоскость $x$-$y$.
Пример 9.1.15 Докажите, что площадь $R$ равна $t$.
Компоненты вектора
Мы открыты — звоните!
Позвоните сейчас, чтобы записаться на обучение
(888) 736-0920
В двумерной системе координат любой вектор можно разбить на Икс -компонент и у -компонент.
в → «=» ⟨ в Икс , в у ⟩
Например, на рисунке ниже вектор в → распадается на две составляющие, в Икс и в у . Пусть угол между вектором и его Икс -компонент быть θ .
Вектор и его компоненты образуют прямоугольный треугольник, как показано ниже.
На приведенном выше рисунке компоненты можно быстро прочитать. Вектор в компонентной форме равен в → «=» ⟨ 4 , 5 ⟩ .
тригонометрические отношения дать отношение между величина вектора и компоненты вектора.
потому что θ «=» Соседняя сторона Гипотенуза «=» в Икс в
грех θ «=» Обратная сторона Гипотенуза «=» в у в
в Икс «=» в потому что θ
в у «=» в грех θ
Используя Теорема Пифагора в прямоугольном треугольнике с длинами в Икс и в у :
| в | «=» в Икс 2 + в у 2
Здесь показанные числа являются величинами векторов.
Дело 1: По данным компонентам вектора найдите модуль и направление вектора.
В этом случае используйте следующие формулы.
Величина вектора | в | «=» в Икс 2 + в у 2 .
Чтобы найти направление вектора, решите загар θ «=» в у в Икс для θ .
Случай 2: Зная величину и направление вектора, найдите компоненты вектора.
В этом случае используйте следующие формулы.
в Икс «=» в потому что θ
в у «=» в грех θ
Пример:
Величина вектора Ф → является 10 единицы, а направление вектора равно 60 ° с горизонталью.
Leave A Comment