процессы, этапы и последовательность синтеза клеточных белков
В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каждая клетка синтезирует необходимые ей вещества. Этот процесс называется биосинтезом.
Биосинтез — это процесс создания сложных органических веществ в ходе биохимических реакций, протекающих с помощью ферментов. Биосинтез необходим для выживания — без него клетка умрёт.
Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах.
Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.
Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.
<<Форма демодоступа>>
Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.
Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция.
Этапы синтеза белка в клетке
Транскрипция — первый этап биосинтеза белка
Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.
Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.
Специальный фермент находит ген и раскручивает участок двойной спирали ДНК. Фермент перемещается вдоль цепи ДНК и строит цепь информационной РНК в соответствии с принципом комплементарности. По мере движения фермента растущая цепь РНК матрицы отходит от молекулы, а двойная цепь ДНК восстанавливается. Когда фермент достигает конца копирования участка, то есть доходит до участка, называемого стоп-кодоном, молекула РНК отделяется от матрицы, то есть от молекулы ДНК. Таким образом, транскрипция — это первый этап биосинтеза белка. На этом этапе происходит считывание информации путём синтеза информационной РНК.
Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.
После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.
Транскрипция пошагово:
- РНК полимераза садится на 3’ конец транскрибируемой цепи ДНК.
- Начинается элонгация — полимераза «скользит» по ДНК в сторону 5’ конца и строит цепь иРНК, комплементарную ДНК.
- Полимераза доходит до конца гена, «слетает» с ДНК и отпускает иРНК.
- После этого происходит процесс созревания РНК — процессинг.
Трансляция — второй этап биосинтеза белка
Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот.
Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Главным поставщиком энергии при трансляции служит молекула АТФ — аденозинтрифосфорная кислота.
Во время трансляции нуклеотидные последовательности информационной РНК переводятся в последовательность аминокислот в молекуле полипептидной цепи. Этот процесс идёт в цитоплазме на рибосомах. Образовавшиеся информационные РНК выходят из ядра через поры и отправляются к рибосомам. Рибосомы — уникальный сборочный аппарат. Рибосома скользит по иРНК и выстраивает из определённых аминокислот длинную полимерную цепь белка. Аминокислоты доставляются к рибосомам с помощью транспортных РНК. Для каждой аминокислоты требуется своя транспортная РНК, которая имеет форму трилистника. У неё есть участок, к которому присоединяется аминокислота и другой триплетный антикодон, который связывается с комплементарным кодоном в молекуле иРНК.
Цепочка информационной РНК обеспечивает определённую последовательность аминокислот в цепочке молекулы белка. Время жизни информационной РНК колеблется от двух минут (как у некоторых бактерий) до нескольких дней (как, например, у высших млекопитающих). Затем информационная РНК разрушается под действием ферментов, а нуклеотиды используются для синтеза новой молекулы информационной РНК. Таким образом, клетка контролирует количество синтезируемых белков и их тип.
Трансляция пошагово:
- Рибосома узнаёт КЭП, садится на иРНК.
- На Р-сайт рибосомы приходит первая тРНК с аминокислотой.
- На А-сайт рибосомы приходит вторая тРНК с аминокислотой.
- АК образуют пептидную связь.
- Рибосома делает шаг длиною в один триплет.
- На освободившийся А-сайт приходит следующая тРНК.
- АК образуют пептидную связь.
- Процессы 5–7 продолжаются, пока рибосома не встретит стоп-кодон.
- Рибосома разбирается, отпускает полипептидную цепь.
По промокоду
BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!Резюме
Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза.
Синтез белка состоит из двух этапов: транскрипции (образование информационной РНК по матрице ДНК, протекает в ядре клетки) и трансляции (эта стадия проходит в цитоплазме клетки на рибосомах). Эти этапы сменяют друг друга и состоят из последовательных процессов.
Органоиды клетки, подготовка к ЕГЭ по биологии
Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и многие другие.
Органоиды клетки подразделяются на:
- Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные — пластиды, митохондрии
Ядро не включается в понятие «органоиды клетки», является структурой клетки, однако также будет рассмотрено нами в этой статье.
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки, имеются также поверхностно лежащие белки — периферические.
Белки принимают участие в:
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.
Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:
- Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
- Транспортная
- Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии или облегченной (с участием белка-переносчика) диффузии.
- Активный
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина — удаляются из клетки во внешнюю среду.
Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку. Выделяется два вида транспорта:
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу.
Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:
- Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида (нуклеоид — ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют — сине-зеленые водоросли).
Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное ядро. Растения, животные, грибы — относятся к эукариотам.
Немембранные органоиды
- Рибосома
- Микротрубочки и микрофиламенты
- Клеточный центр (центросома, от греч. soma — тело)
- Реснички и жгутики
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.
Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка — флагеллина) и ресничек.
Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме, служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках низших грибов (мукор) и высших растений отсутствует. Клеточный центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления, располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
- Комплекс (аппарат) Гольджи
- Лизосома (греч. lisis — растворение + soma — тело)
- Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
- Вакуоли
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы. Лизосому можно ассоциировать с «клеточным желудком».
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.
Двумембранные органоиды
- Митохондрия
- Пластиды (др.-греч. πλαστός — вылепленный)
- Хлоропласт (греч. chlōros — зелёный)
- Хромопласты (греч. chromos – краска)
- Лейкопласты (др.-греч. λευκός — белый )
Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы) получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и нуждаются в большом количестве энергии.
Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:
Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая (светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.
Ядро («ядро» по лат. — nucleus, по греч. — karyon)
Важнейшая структура эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько ядрышек.
Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
АТФ-синтаза – Полное руководство
АТФ-синтаза Определение
АТФ-синтаза – это фермент, непосредственно генерирующий аденозинтрифосфат (АТФ) в процессе клеточного дыхания. АТФ является основной энергетической молекулой, используемой в клетках. АТФ-синтаза образует АТФ из аденозиндифосфата (АДФ) и неорганического фосфата (P i ) посредством окислительного фосфорилирования, в ходе которого ферменты окисляют питательные вещества с образованием АТФ. АТФ-синтаза присутствует во всех формах жизни и обеспечивает все виды клеточной активности.
Функция АТФ-синтазы
Функция АТФ-синтазы заключается в производстве АТФ. АТФ необходим для питания всех клеточных процессов, поэтому он постоянно используется клетками и должен постоянно производиться. Каждая АТФ-синтаза может производить около 100 молекул АТФ каждую секунду. У эукариот, таких как растения, животные и грибы, есть органеллы, называемые митохондриями, которые в основном функционируют как производители АТФ. У растений также есть хлоропласты, которые содержат АТФ-синтазу и могут производить АТФ из солнечного света и углекислого газа. Бактерии и археи, составляющие прокариот, не имеют митохондрий, но продуцируют АТФ посредством сходных процессов клеточного дыхания в своей плазматической мембране. Во всех формах жизни АТФ-синтаза имеет в основном одинаковую структуру и функцию. Поэтому считается, что он развился на ранней стадии эволюции жизни и был обнаружен у последнего общего предка всей жизни на Земле.
Структура АТФ-синтазы
АТФ-синтаза состоит из двух частей. Часть, встроенная в мембрану митохондрий (у эукариот), тилакоидную мембрану хлоропласта (только у растений) или плазматическую мембрану (у прокариот), называется F O . Это двигатель, который приводится в действие ионами H + , протекающими через мембрану. Часть внутри митохондрий, стромы хлоропласта или внутри бактериальной или архейной клетки называется F 1 -АТФазой. Это еще один мотор, который используется для выработки АТФ. Считается, что эти две части были двумя отдельными структурами с двумя разными функциями, которые в конечном итоге превратились в АТФ-синтазу. Ф Область O похожа на геликазы ДНК (ферменты, расщепляющие ДНК, чтобы ее можно было использовать в качестве матрицы для размножения), а область F 1 -ATPase похожа на моторы H + , которые позволяют жгутикам, рукам — как придатки у некоторых бактерий, чтобы двигаться. F 1 -АТФаза имеет центральный стержень и ротор, который при вращении превращает АДФ и P i в АТФ.
Это визуализация структуры АТФ-синтазы. F O показан синим и фиолетовым цветом, а F 1 -АТФаза показана красным цветом.
Синтез АТФ
АТФ производится различными способами: при клеточном дыхании в митохондриях, при фотосинтезе в хлоропластах растений, через внутреннюю мембрану бактерий и архей, не имеющих митохондрий. Хотя методы производства АТФ различаются у разных типов организмов, все они следуют одной и той же базовой процедуре.
В митохондриях эукариот молекулы НАДН и ФАДН 2 , которые являются продуктами цикла лимонной кислоты, передают электроны по цепи переноса электронов, где они проходят через три различных белковых комплекса. Этот процесс высвобождает энергию, и эта энергия позволяет протонам (ионам H + ) перемещаться по протонному градиенту через белковые комплексы, которые действуют как протонные насосы. Поток этих протонов вниз по градиенту поворачивает ротор и ножку АТФ-синтазы, что позволяет фосфатной группе соединиться с аденозиндифосфатом (АДФ), образуя АТФ. В хлоропластах процесс аналогичен, за исключением того, что световая энергия — это тип энергии, который возбуждает электроны, заставляя их течь по электрон-транспортной цепи и активировать H + ионов проходят через мембрану в хлоропласте. Эти методы сходны у очень разных организмов, поскольку способность генерировать АТФ существовала у общего предка всех живых организмов.
- Аденозинтрифосфат (АТФ) – Основная молекула энергии, используемая клеткой.
- Эукариоты – Организмы, содержащие эукариотические клетки, представляющие собой сложные клетки с настоящим ядром и органеллами.
- Митохондрии – Органелла в клетках эукариот, вырабатывающая АТФ.
- Хлоропласт – Органелла в растительных клетках, которая помимо митохондрий вырабатывает АТФ посредством фотосинтеза.
Тест
1. Какие организмы не имеют митохондрий?
A. Бактерии
B. Животные
C. Растения
D. Грибы
Верно Бактерии не имеют митохондрий и вместо этого производят АТФ через молекулы АТФ-синтазы, которые находятся в их внутренних мембранах. Археи, не перечисленные выше, также не имеют митохондрий; археи и бактерии являются прокариотами и не имеют настоящего ядра или других клеточных органелл.
2. Какой компонент не участвует в процессе синтеза АТФ?
A. Электронная транспортная цепь
B. Proton Gradient
C. Планировка
D. Ротор и стебель ATP Synthase
Ответ на вопрос #2
C
. Варианты A, B и D — все этапы синтеза АТФ. Жгутики — это придатки, похожие на руки, которые есть у некоторых бактерий; они позволяют бактериям двигаться. Жгутики имеют H + моторы, аналогичные F 1 -АТФаза, один из компонентов АТФ-синтазы.
3. Какая часть АТФ-синтазы является моторной?
A. F O
B. F 1 -ATPASE
C. Оба
D. Ни один
Ответ на вопрос #3
C
. Обе части АТФ-синтазы, F O и F 1 -АТФазы, являются моторами. F O представляет собой двигатель, который приводится в действие градиентом протонов через мембрану, что происходит из-за того, что цепь переноса электронов высвобождает энергию. Ф 1 -АТФаза также является двигателем; он подобен моторам в жгутиках некоторых бактерий. Действие F O превращает F 1 -АТФазу в генератор АТФ.
Рибосомы, митохондрии и пероксисомы | Биология для специальностей I
Результаты обучения
- Описать структуру и функцию рибосом
- Опишите структуру и функцию митохондрий
- Опишите структуру и функцию пероксисом
Рибосомы
Рис. 1. Рибосомы состоят из большой субъединицы (вверху) и малой субъединицы (внизу). Во время синтеза белка рибосомы собирают аминокислоты в белки.
Рибосомы представляют собой клеточные структуры, ответственные за синтез белка. Под электронным микроскопом рибосомы выглядят либо как скопления (полирибосомы), либо как отдельные крошечные точки, свободно плавающие в цитоплазме. Они могут быть прикреплены к цитоплазматической стороне плазматической мембраны или к цитоплазматической стороне эндоплазматического ретикулума и внешней мембране ядерной оболочки. Электронная микроскопия показала нам, что рибосомы, представляющие собой большие комплексы белка и РНК, состоят из двух субъединиц, удачно названных большой и малой (рис. 1). Рибосомы получают свои «заказы» на синтез белка из ядра, где ДНК транскрибируется в информационную РНК (мРНК). мРНК перемещается к рибосомам, которые переводят код, представленный последовательностью азотистых оснований в мРНК, в определенный порядок аминокислот в белке. Аминокислоты являются строительными блоками белков.
Поскольку синтез белков является важной функцией всех клеток, рибосомы находятся практически в каждой клетке. Рибосомы особенно многочисленны в клетках, синтезирующих большое количество белка. Например, поджелудочная железа отвечает за создание нескольких пищеварительных ферментов, а клетки, производящие эти ферменты, содержат много рибосом. Таким образом, мы видим еще один пример формы, следующей за функцией.
Митохондрии
Митохондрии (единственное число = митохондрия ) часто называют «электростанциями» или «энергетическими фабриками» клетки, потому что они отвечают за производство аденозинтрифосфата (АТФ), основной молекулы, несущей энергию в клетке. АТФ представляет собой краткосрочную запасенную энергию клетки. Клеточное дыхание — это процесс производства АТФ с использованием химической энергии, содержащейся в глюкозе и других питательных веществах. В митохондриях этот процесс использует кислород и производит углекислый газ в качестве побочного продукта. На самом деле углекислый газ, который вы выдыхаете при каждом вдохе, образуется в результате клеточных реакций, в результате которых в качестве побочного продукта образуется углекислый газ.
Продолжая нашу тему о том, что форма следует за функцией, важно отметить, что мышечные клетки имеют очень высокую концентрацию митохондрий, производящих АТФ. Ваши мышечные клетки нуждаются в большом количестве энергии, чтобы ваше тело двигалось. Когда ваши клетки не получают достаточного количества кислорода, они не производят много АТФ. Вместо этого небольшое количество АТФ, которое они производят в отсутствие кислорода, сопровождается производством молочной кислоты.
Рис. 2. На этой электронной микрофотографии показана митохондрия, видимая с помощью просвечивающего электронного микроскопа. Эта органелла имеет наружную мембрану и внутреннюю мембрану. Внутренняя мембрана содержит складки, называемые кристами, которые увеличивают площадь ее поверхности. Пространство между двумя мембранами называется межмембранным пространством, а пространство внутри внутренней мембраны называется митохондриальным матриксом. Синтез АТФ происходит на внутренней мембране. (кредит: модификация работы Мэтью Бриттона; данные масштабной линейки от Мэтта Рассела)
Митохондрии представляют собой органоиды овальной формы с двойной мембраной (рис. 2), которые имеют собственную ДНК и рибосомы (о них мы поговорим позже!). Каждая мембрана представляет собой бислой фосфолипидов, окруженный белками. Внутренний слой имеет складки, называемые кристами. Область, окруженная складками, называется митохондриальным матриксом. Кристы и матрикс играют разные роли в клеточном дыхании.
Пероксисомы
Пероксисомы представляют собой небольшие круглые органеллы, окруженные одиночными мембранами. Они осуществляют реакции окисления, расщепляющие жирные кислоты и аминокислоты. Они также обезвреживают многие яды, которые могут попасть в организм. Многие из этих реакций окисления выделяют перекись водорода H 2 O 2 , которые могут повредить клетки; однако, когда эти реакции ограничиваются пероксисомами, ферменты безопасно расщепляют H 2 O 2 на кислород и воду. Например, алкоголь детоксицируется пероксисомами в клетках печени. Глиоксисомы, которые являются специализированными пероксисомами растений, отвечают за преобразование накопленных жиров в сахара.
Попробуйте
Внесите свой вклад!
У вас есть идеи по улучшению этого контента? Мы будем признательны за ваш вклад.
Leave A Comment