Логарифмические уравнения на примерах

Логарифмическими называются уравнения содержащие неизвестную величину под знаком логарифма или в основании логарифма (или в обоих местах одновременно). Их легко свести к квадратным или степенным уравнениям относительно переменной если знать свойства логарифма. Например, логарифмическими будут следующие уравнения


Необходимо отметить что во время решения логарифмических уравнений необходимо учитывать область допустимых значений ( ОДЗ ) : под знаком логарифма могут находиться только положительные величины, в основе логарифмов — положительные, отличные от единицы. Однако нахождения ОДЗ порой может быть очень громоздким и на практике имеем возможность или искать ОДЗ, или сделать проверку подстановкой корней уравнения.

Простейшим логарифмическим уравнением называют уравнение вида

Его решение вычисляется потенцированием (нахождение числа или выражения по его логарифму)

В некоторых случаях, решая логарифмические уравнения, целесообразно производить замену переменной. Например в уравнении

удобно сделать замену и мы приходим к квадратному уравнению. Причем оба корни этого квадратного уравнения можно подставить в замену чтобы найти подходящее х.

Стоит запомнить что десятичный логарифм от единицы со следующими нулями равно количеству нулей в записи этого числа.

Для десятичного логарифма от единицы с предыдущими нулями правило подобное. Он равен количеству всех нулей в записи этого числа, включая и ноль целых, взятых со знаком минус. Для примера

На этом необходимый теоретический материал рассмотрен и можно переходить к рассмотрению практических примеров. Внимательно рассмотрите их решения это позволит усвоить некоторые правила логарифмов и увеличит практическую базу, которая пригодится при прохождении ВНО , контрольных, тестах и т.д.

Пример 1. Решить уравнение.

Решение. Используя свойство логарифмов переписываем уравнение в виде

Делаем замену

и переписываем

Умножаем на переменную и записываем в виде квадратного уравнения

Вычисляем дискриминант

Корни уравнения приобретут значения

Возвращаемся к замене и находим


Уравнение имеет два решения

 

Пример 2. Решить уравнение.

Решение. Раскрываем скобки и записываем в виде суммы логарифмов

Учитывая что уравнение примет вид

Переносим слагаемое за знаком равенства в правую сторону


Оба множители приравниваем к нулю и находим

 

Пример 3. Решить уравнение.

Решение. Перепишем правую сторону в виде квадрата и прологарифмируем по основанию 10 обе части уравнения

делаем замену

и сводим уравнение к квадратному

Дискриминант такого уравнения принимает нулевое значение — уравнение имеет два одинаковых решения

Возвращаемся к замене которую делали выше

 

Пример 4. Решить уравнение.

Решение. Выполним некоторые преобразования с слагаемыми уравнения



Логарифмическое уравнение упростится до следующего

Поскольку логарифмы имеют одинаковые основания то значение под знаком логарифма тоже равны. На основе этого имеем

Расписываем и решаем с помощью дискриминанта



Второй корень не может быть решением, поскольку никакое положительное число при возведены в степени не даст в результате -1. Итак x=2 – единственное решение уравнения.

 

Пример 5. Найти решение уравнения .

Решение. Выполняем упрощения уравнения




По свойству переходим ко второй основы во втором логарифме



По правилу логарифмирования имеем

Сводим уравнение к квадратному и решаем его


Дискриминант равен нулю, следовательно имеем один корень кратности два

 

Пример 6. Найти решение уравнения.

Решение. Заданное уравнение и подобные ему решаются путем сведения к общей основе. Для этого преобразуем правую сторону уравнения к виду

и подставим в уравнение

Поскольку основы логарифмов ровны переходим до показательного уравнения

Выполняем замену и сводим к квадратному уравнению



Возвращаемся к замене и вычисляем

 

Пример 7. Найти решение уравнения.

Решение. Не пугайтесь подобных задач, если делать все по правилам то решение получается без труда. Забегая вперед скажу что корни в скобках к примеру отношения не имеют. Они для того чтобы напугать простых математиков.
Упростим сначала второй логарифм

Дальше выполняем подстановку и сведения слагаемых под один логарифм

Приравниваем к правой части уравнения и упрощаем




Как видите — решение оказалось проще чем выглядело до решения, а результат x=100 только подтверждает это.

При решении логарифмических уравнений важно хорошо знать свойства логарифмов. Все остальные действия сводятся, как правило, к решению квадратных уравнений или степенных зависимостей относительно неизвестных. Поэтому практикуйте самостоятельно и не имейте проблем с логарифмическими уравнениями.

Решение логарифмических уравнений. Как решать, на примерах.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции. Решение логарифмических уравнений подразумевает, что вы уже знакомы с понятием и видами логарифмов и основными формулами.
Как решать логарифмические уравнения?

Самое простое уравнение имеет вид logax = b, где a и b -некоторые числа,x — неизвестное.
Решением логарифмическое уравнения является x = a b при условии: a > 0, a 1.

Следует отметить, что если х будет находиться где-нибудь вне логарифма, например log2х = х-2, то такое уравнение уже называется смешанным и для его решения нужен особый подход.

Идеальным случаем является ситуация, когда Вам попадется уравнение, в котором под знаком логарифма находятся только числа, например х+2 = log22. Здесь достаточно знать свойства логарифмов для его решения. Но такая удача случается не часто, поэтому приготовьтесь к более сложным вещам.

Но сначала, все-таки, начнём с простых уравнений. Для их решения желательно иметь самое общее представление о логарифме.

Решение простейших логарифмических уравнений

К таковым относятся уравнения типа log2х = log216. Невооруженным глазом видно, что опустив знак логарифма получим х = 16.

Для того, чтобы решить более сложное логарифмическое уравнение, его обычно приводят к решению обычного алгебраического уравнения или к решению простейшего логарифмического уравнения logax = b. В простейших уравнениях это происходит в одно движение, поэтому они и носят название простейших.

Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. В математике эта операция носит название потенцирования. Существуют определенные правила или ограничения для подобного рода операций:

  • одинаковые числовые основания у логарифмов
  • логарифмы в обоих частях уравнения находятся свободно, т.е. без каких бы то ни было коэффициентов и других разного рода выражений.

Скажем в уравнении log2х = 2log2 (1- х) потенцирование неприменимо — коэффициент 2 справа не позволяет. В следующем примере log2х+log2 (1 — х) = log2 (1+х) также не выполняется одно из ограничений — слева логарифма два. Вот был бы один – совсем другое дело!

Вообщем, убирать логарифмы можно только при условии, что уравнение имеет вид:

loga (…) = loga (…)

В скобках могут находится совершенно любые выражения, на операцию потенцирования это абсолютно никак не влияет. И уже после ликвидации логарифмов останется более простое уравнение – линейное, квадратное, показательное и т.п., которое Вы уже, надеюсь, умеете решать.

Возьмем другой пример:

log3 (2х-5) = log3х

Применяем потенцирование, получаем:

2х-5 = х

х=5

Пойдем дальше. Решим следующий пример:

log3 (2х-1) = 2

Исходя из определения логарифма, а именно, что логарифм — это число, в которое надо возвести основание, чтобы получить выражение, которое находится под знаком логарифма, т.е. (4х-1), получаем:

3 2 = 2х-1

Дальше уже дело техники:

2х-1 = 9

х =5

Опять получили красивый ответ. Здесь мы обошлись без ликвидации логарифмов, но потенцирование применимо и здесь, потому как логарифм можно сделать из любого числа, причем именно такой, который нам надо.

Этот способ очень помогает при решении логарифмических уравнений и особенно неравенств.

Решим наше логарифмическое уравнение log3 (2х-1) = 2 с помощью потенцирования:

Представим число 2 в виде логарифма, например, такого log39, ведь 3 2=9.

Тогда log3 (2х-1) = log39 и опять получаем все то же уравнение 2х-1 = 9. Надеюсь, все понятно.

Вот мы и рассмотрели как решать простейшие логарифмические уравнения, которые на самом деле очень важны, ведь

решение логарифмических уравнений, даже самых страшных и закрученных, в итоге всегда сводится к решению простейших уравнений.

Во всем, что мы делали выше, мы упускали из виду один очень важный момент, который в последующем будет иметь решающую роль. Дело в том, что решение любого логарифмического уравнения, даже самого элементарного, состоит из двух равноценных частей. Первая – это само решение уравнения, вторая — работа с областью допустимых значений (ОДЗ). Вот как раз первую часть мы и освоили. В вышеприведенных примерах ОДЗ на ответ никак не влияет, поэтому мы ее и не рассматривали.

А вот возьмем другой пример:

log3 2-3) = log3 (2х)

Внешне это уравнение ничем не отличается от элементарного, которое весьма успешно решается. Но это не совсем так. Нет, мы конечно же его решим, но скорее всего неправильно, потому что в нем кроется небольшая засада, в которую сходу попадаются и троечники, и отличники. Давайте рассмотрим его поближе.

Допустим необходимо найти корень уравнения или сумму корней, если их несколько:

log3 2-3) = log3 (2х)

Применяем потенцирование, здесь оно допустимо. В итоге получаем обычное квадратное уравнение.

х

2-3 = 2х

х 2-2х-3 = 0

Находим корни уравнения:

х1= 3

х2= -1

Получилось два корня.

Ответ: 3 и -1

С первого взгляда все правильно. Но давайте проверим результат и подставим его в исходное уравнение.

Начнем с х1= 3:

log36 = log36

Проверка прошла успешно, теперь очередь х2= -1:

log3 (-2) = log3 (-2)

Так, стоп! Внешне всё идеально. Один момент — логарифмов от отрицательных чисел не бывает! А это значит, что корень х = -1 не подходит для решения нашего уравнения. И поэтому правильный ответ будет 3, а не 2, как мы написали.

Вот тут-то и сыграла свою роковую роль ОДЗ, о которой мы позабыли.

Напомню, что под областью допустимых значений принимаются такие значения х, которые разрешены или имеют смысл для исходного примера.

Без ОДЗ любое решение, даже абсолютно правильное, любого уравнения превращается в лотерею — 50/50.

Как же мы смогли попасться при решении, казалось бы, элементарного примера? А вот именно в момент потенцирования. Логарифмы пропали, а с ними и все ограничения.

Что же в таком случае делать? Отказываться от ликвидации логарифмов? И напрочь отказаться от решения этого уравнения?

Нет, мы просто, как настоящие герои из одной известной песни, пойдем в обход!

Перед тем, как приступать к решению любого логарифмического уравнения, будем записывать ОДЗ. А вот уж после этого можно делать с нашим уравнением все, что душа пожелает. Получив ответ, мы просто выбрасываем те корни, которые не входят в нашу ОДЗ, и записываем окончательный вариант.

Теперь определимся, как же записывать ОДЗ. Для этого внимательно осматриваем исходное уравнение и ищем в нем подозрительные места, вроде деления на х, корня четной степени и т.п. Пока мы не решили уравнение, мы не знаем – чему равно х, но твердо знаем, что такие х, которые при подстановке дадут деление на 0 или извлечение квадратного корня из отрицательного числа, заведомо в ответ не годятся. Поэтому такие х неприемлемы, остальные же и будут составлять ОДЗ.

Воспользуемся опять тем же уравнением:

log3 2-3) = log3 (2х)

log3 2-3) = log3 (2х)

Как видим, деления на 0 нет, квадратных корней также нет, но есть выражения с х в теле логарифма. Тут же вспоминаем, что выражение, находящееся внутри логарифма, всегда должно быть >0. Это условие и записываем в виде ОДЗ:

Т.е. мы еще ничего не решали, но уже записали обязательное условие на всё подлогарифменное выражение. Фигурная скобка означает, что эти условия должны выполняться одновременно.

ОДЗ записано, но необходимо еще и решить полученную систему неравенств, чем и займемся. Получаем ответ х > v3. Теперь точно известно – какие х нам не подойдут. А дальше уже приступаем к решению самого логарифмического уравнения, что мы и сделали выше.

Получив ответы х1= 3 и х2= -1, легко увидеть, что нам подходит лишь х1= 3, его и записываем, как окончательный ответ.

На будущее очень важно запомнить следующее: решение любого логарифмического уравнения делаем в 2 этапа. Первый — решаем само уравнение, второй – решаем условие ОДЗ. Оба этапа выполняются независимо друг от друга и только лишь при написании ответа сопоставляются, т.е. отбрасываем все лишнее и записываем правильный ответ.

Для закрепления материала настоятельно рекомендуем посмотреть видео:

На видео другие примеры решения лог. уравнений и отработка метода интервалов на практике.

На это по вопросу, как решать логарифмические уравнения, пока всё. Если что то по решению лог. уравнений осталось не ясным или непонятным, пишите свои вопросы в комментариях.

Заметка: Академия социального образования (КСЮИ) — готова принять новых учащихся.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

логарифмических уравнений | Колледж Алгебра

Результаты обучения

  • Алгебраическое решение логарифмического уравнения.
  • Графически решить логарифмическое уравнение.
  • Используйте свойство логарифмов «один к одному» для решения логарифмического уравнения.
  • Решите задачу о радиоактивном распаде.
    {3}.\hfill \\ \text{ }18=6x\hfill & \text{Прибавьте 10 к обеим сторонам}.\hfill \\ \text{ }x=3\hfill & \text{Разделите обе стороны на 6}.\hfill \end{массив }[/латекс] 9{c}=S[/latex]

    Пример: Использование алгебры для решения логарифмического уравнения

    Решите [latex]2\mathrm{ln}x+3=7[/latex].

    Показать решение

    Попробуйте

    Решите [латекс]6+\mathrm{ln}x=10[/латекс].

    Показать решение

    Пример: использование алгебры до и после использования определения натурального логарифма

    Решите [латекс]2\mathrm{ln}\left(6x\right)=7[/latex].

    Показать решение

    Попробуйте

    Решите [латекс]2\mathrm{ln}\left(x+1\right)=10[/latex]. 9{x}=1000[/latex] до 2 знаков после запятой.

    Показать решение

    Использование свойства «один к одному» логарифмов для решения логарифмических уравнений

    Как и в случае показательных уравнений, мы можем использовать свойство «один к одному» для решения логарифмических уравнений. Свойство взаимно однозначности логарифмических функций говорит нам, что для любых действительных чисел x > 0, S > 0, T > 0 и любого положительного вещественного числа b , где [латекс]b\ пе 1[/латекс],

    [латекс] {\ mathrm {log}} _ {b} S = {\ mathrm {log}} _ {b} T \ text { тогда и только тогда, когда} S = T [/latex]

    Например,

    [латекс]\текст{Если}}{\mathrm{log}}_{2}\left(x — 1\right)={\mathrm{log}}_{2}\left(8\right),\ text{then }x — 1=8[/latex]

    Итак, если [latex]x — 1=8[/latex], то мы можем вычислить x и получить x = 9. Чтобы проверить, мы можем подставить x = 9 в исходное уравнение: (8\справа)=3[/латекс]. Другими словами, когда логарифмическое уравнение имеет одинаковое основание с каждой стороны, аргументы должны быть равны. Это также применимо, когда аргументы являются алгебраическими выражениями. Поэтому, когда у нас есть уравнение с логарифмами одинакового основания на каждой стороне, мы можем использовать правила логарифмирования, чтобы переписать каждую сторону как один логарифм. Затем мы используем тот факт, что логарифмические функции являются взаимно однозначными, чтобы установить аргументы равными друг другу и найти неизвестное.

    Например, рассмотрим уравнение [латекс]\mathrm{log}\left(3x — 2\right)-\mathrm{log}\left(2\right)=\mathrm{log}\left(x+4 \справа)[/латекс]. Чтобы решить это уравнение, мы можем использовать правила логарифмирования, чтобы переписать левую часть как одиночный логарифм, а затем применить свойство «один к одному» для решения для x :

    [латекс]\begin{array}{l }\mathrm{log}\left(3x — 2\right)-\mathrm{log}\left(2\right)=\mathrm{log}\left(x+4\right)\hfill & \hfill \\ \text{}\mathrm{log}\left(\frac{3x — 2}{2}\right)=\mathrm{log}\left(x+4\right)\hfill & \text{Применить правило отношения логарифмов}.\hfill \\ \text{}\frac{3x — 2}{2}=x+4\hfill & \text{Применить свойство один к одному}.\hfill \\ \text{} 3x — 2=2x+8\hfill & \text{Умножьте обе части уравнения на }2.\hfill \\ \text{}x=10\hfill & \text{Вычтите 2}x\text{ и прибавьте 2 }. \hfill \end{массив}[/latex]

    Чтобы проверить результат, подставьте x = 10 в [латекс]\mathrm{log}\left(3x — 2\right)-\mathrm{log}\left(2\right)=\mathrm{log} \влево(х+4\вправо)[/латекс].

    [латекс]\begin{array}{l}\mathrm{log}\left(3\left(10\right)-2\right)-\mathrm{log}\left(2\right)=\mathrm {log}\left(\left(10\right)+4\right)\hfill & \hfill \\ \text{}\mathrm{log}\left(28\right)-\mathrm{log}\left( 2\right)=\mathrm{log}\left(14\right)\hfill & \hfill \\ \text{}\mathrm{log}\left(\frac{28}{2}\right)=\mathrm {log}\left(14\right)\hfill & \text{Решение проверяет}.\hfill \end{массив}[/latex]

    Общее примечание: Использование свойства логарифмов «один к одному» для решения логарифмических уравнений [/латекс],

    [латекс]{\mathrm{log}}_{b}S={\mathrm{log}}_{b}T\text{ тогда и только тогда, когда}S=T[/latex]

    Обратите внимание: при решении уравнения с логарифмами всегда проверяйте, правильный ли ответ или это постороннее решение.

    Как: Решите уравнение, содержащее логарифмы, используя свойство один к одному.

    mathrm{log}}_{b}S={\mathrm{log}}_{b}T[/латекс].
  • Используйте свойство «один к одному», чтобы установить аргументы равными друг другу.
  • Решите полученное уравнение S = T для неизвестного.
  • Пример. Решение уравнения с использованием свойства однозначности логарифмов 9{2}\right)=\mathrm{ln}1[/latex].

    Показать решение

    Поддержите!

    У вас есть идеи по улучшению этого контента? Мы будем признательны за ваш вклад.

    Улучшить эту страницуПодробнее

    Экспоненциальные и логарифмические уравнения

    Экспоненциальное уравнение — это уравнение, в котором переменная входит в показатель степени. Логарифмическое уравнение — это уравнение, включающее логарифм выражения, содержащего переменную. Чтобы решить показательные уравнения, сначала посмотрите, можете ли вы записать обе части уравнения в виде степеней одного и того же числа. Если вы не можете, возьмите десятичный логарифм обеих частей уравнения, а затем примените свойство 7.

    Пример 1

    Решите следующие уравнения.

    1. 3 x = 5
    2. 6 x – 3 = 2
    3. 2 3 x – 1 = 3 2 x – 2 
    4. Деление обеих сторон на бревно 3,
    5. Использование калькулятора для приближения, 
    6. Деление обеих сторон на бревно 6,
    7. Использование калькулятора для приближения, 

    Используя распределительное свойство,

    3 x log 2 – log 2 = 2 x log 3 – 2 log 3 

    Сбор всех членов, включающих переменную, на одной стороне уравнения, 

    8 x 9002 журнал 2 – 2 x журнал 3 = журнал 2 – 2 журнал 3 

    Разложение на множители x

    x (3 log 2 – 2 log 3) = log 2 – 2 log 3

    Разделив обе части на 3 log 2 – 2 log 3, 

    Использование калькулятора для приближения,

    x ≈ 12,770 

    Чтобы решить уравнение, содержащее логарифмы, используйте свойства логарифмов, чтобы записать уравнение в форме log b M = N , а затем преобразовать это в экспоненциальную форму2, M = 9007, б Н .

    Пример 2

    Решите следующие уравнения.

    1. log 4 (3 x – 2) = 2
    2. логарифм 3 x + логарифм 3 ( x – 6) = 3
    3. log 2 (5 + 2 x ) – log 2 (4 – x ) = 3 
    4. log 5 (7 x – 9) = log 5 ( x 2 x – 29)
    5. журнал 4 (3 x – 2) = 2

    Переход к экспоненциальной форме.

    Проверьте ответ.

    Это верное утверждение. Следовательно, решение x = 6. 

    Перейдите к экспоненциальной форме.

    Проверьте ответы.

    Поскольку логарифм отрицательного числа не определен, единственным решением будет x = 9. 

    1. log 2 (5 + 2 x ) – log 2 (4 – x ) = 3 

    Переход к экспоненциальной форме.