Транспорт веществ

3

Транспорт веществ:

Перенос веществ через биол. мембраны сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии.

Различают несколько видов транспорта:

1. Юнипорт – это транспорт вещества через мембрану независимо от наличия и переноса других соединений.

2. Контранспорт – это перенос одного вещества сопряженного с транспортом другого: симпорт и антипорт

а) причем однонаправленный перенос называется симпортом – всасывание аминокислот через мембрану тонкого кишечника,

б) противоположно направленный — антипортом (натрий – калиевый насос).

Транспорт веществ может быть — пассивный и активный транспорт (перенос)

Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии (направленного движения) по концентрационным (из maс в сторону min), электрическим или гидростатическим градиентам. Вода перемещается по градиенту водного потенциала. Осмос — это перемещение воды через полупроницаемую мембрану.

Активный транспорт осуществляется против градиентов (из min в сторону maс), связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных белков переносчиков (АТФ — синтетазы).

Пассивный перенос может осуществляться:

а. Путем простой диффузии через липидный бислои мембраны, а также через специализированные образования — каналы. Путем диффузии через мембрану проникают в клетку:

  • незаряженные молекулы, хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства,

  • газы — кислород и углекислый газ.

  • ионы – они поступают через пронизывающие каналы мембраны, представляющие собой липопротеиновые структуры, Они служат для переноса определенных ионов (например, катионов – Na, K, Ca, анионов Cl, P,) и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

б. Облегчённой диффузии. В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

в. Осмоса – перемещения растворителя через мембрану

Активный транспорт

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин, например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума — 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма.

В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов например:

  • натрия и калия — натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса — Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия.

  • Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая — аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция.

  • К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ.

  • В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

  • Протонный насос в митохондриях и пластидах

  • секреция HCI в желудке,

  • поглощение ионов клетками корней растений

Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, — общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых

транспортных болезней, среди которых:

  • почечная гликозурия,

  • цистинурия,

  • нарушение всасывания глюкозы, галактозы и витамина В12,

  • наследственный сфероцитоз (гемолитическая анемия, эритроциты имеют форму шара, при этом уменьшается поверхность мембраны, падает содержание липидов, увеличивается проницаемость мембраны для натрия. Сфероциты удаляются из кровяного русла быстрее, чем нормальные эритроциты).

В особую группу активного транспорта выделяют перенос веществ (крупных частиц) путем — и эндо-

и экзоцитоза.

Эндоцитоз (от греч. эндо — внутри) поступление веществ в клетку, включает фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. Phagos — пожирающий) – процесс захватывания твёрдых частиц, инородных живых объектов(бактерий, фрагменты клеток) одноклеточными организмами или клетками многоклеточных, последние называются фагоцитами, или клетками-пожирателями. Фагоцитоз открыт И. И. Мечниковым. Обычно при фагоцитозе клетка образует выпя­чивания, цитоплазмы — псевдоподии, которые обтекают захватываемые частицы.

Но о6разование псевдоподий не обязательно.

Фагоцитоз играет важную роль в питании одноклеточных и низших мно­гоклеточных животных, которым свойственно внутриклеточное пищева­рение, а также характерен для клеток, играющих важную роль в явлениях иммунитета и метаморфоза. Такая форма поглощения свойственна клеткам соединительной ткани – фагоцитам, выполняющим защитную функцию, активно фагоцитируют клетки плаценты, клетки выстилающие полость тела, пигментный эпителий глаз.

В процессе фагоцитоза можно выделить четыре последовательные фазы. В первой (факультативной) фазе фагоцит сближается с объектом погло­щения. Здесь существенное значение имеет положительная реакция фагоцита на химическое раздражение хемотаксис. Во второй фазе наблюдается адсорбция поглощаемой частицы на поверхности фаго­цита. В третьей фазе плазматическая мембрана в виде мешочка обвола­кивает частицу, края мешочка смыкаются и отрываются от остальной мембраны, а образовавшаяся вакуоль оказывается внутри клетки. В чет­вертой фазе заглоченные объекты разрушаются и перевариваются внутри фагоцита. Разумеется, эти стадии не отграничены, а незаметно переходят одна в другую.

Клетки могут аналогичным способом поглощать также жидкости и крупномолекулярные соединения. Это явление получило название п и н о ц и т о з а (греч. рупо — пить и суtоз — клетка). Пиноцитоз сопровожда­ется энергичным движением цитоплазмы в поверхностном слое, приводящим к образованию впячивания клеточной мембраны, идущей от поверхности в виде канальца внутрь клетки. На конце канальца образуются вакуоли, которые отрываются и переходят в цитоплазму. Пиноцитоз наиболее акти­вен в клетках с интенсивным обменом веществ, в частности в клетках лимфа­тической системы, злокачественных опухолей.

Путем пиноцитоза в клетки проникают высокомолекулярные соедине­ния: питательные вещества из кровяного русла, гормоны, ферменты и дру­гие вещества, в том числе лекарственные. Электронно-микроскопические исследования показали, что путем пиноцитоза происходит всасывание жира эпителиальными клетками кишечника, фагоцитируют клетки почечных канальцев и растущие ооциты.

Инородные тела, попавшие в клетку путем фагоцитоза или пиноцитоза, подвергаются воздействию лизирующих ферментов внутри пищеваритель­ных вакуолей либо непосредственно в цитоплазме. Внутриклеточными ре­зервуарами этих ферментов являются лизосомы.

Функции эндоцитоза

  1. Осуществляются, питание (яй­цеклетки поглощают таким способом желточные белки: фагосомами являются пищеварительные вакуоли простейших)

  2. Защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобули­ны)

  3. Транспорт (почечные канальцы всасывают бел­ки из первичной мочи).

  4. Избирательный эндоцитоз определен­ных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфически­ми рецепторными участками на плазматической мембране.

Материалы, попадающие в клетку путем эндоцитоза, рас­щепляются («перевариваются»), накапливаются (напри­мер, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза («цитопемпсис»).

Экзоцитоз (от греч. экзо – вне, снаружи)— процесс, противоположный эндоцитозу: например, из эндоплазматического ретикулума, аппарата Гольджи, различные эндоцитозные пузырьки, лизосомы сливаются с плазматической мембраной, освобождая своё содержимоё наружу.

studfiles.net

Биология для студентов — 10. Механизмы пассивного и активного транспорта веществ в клетку. Их общебиологическое значение для клетки и организма

Пассивный транспорт перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (диффузия, осмос). Диффузия — пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос — пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят). Осмос заключается в переходе молекул воды через мембрану по направлениям ее концентрационных градиентов.

По пути простой диффузии частицы вещества перемещаются сквозь липидный бислой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2, N2, бензол) и полярные маленькие молекулы (CO2, h3O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Ограниченная диффузия — диффузия через мембранные каналы. Основная масса каналов специфична (пропускает только один вид ионов), другие или не- или частично специфичны, причем каналы заполнены водой. Это доказано экспериментально в наблюдениях на искусственном липидном бислое. Если на его поверхность поместить электролит, то прохождения ионов нет, если добавить каналообразующие белки, то возникает электрический ток.

Облегчённая диффузия. Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегчённой диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Скорость облегчённой диффузии зависит от ряда причин:

  • от трансмембранного концентрационного градиента переносимого вещества,
  • от количества переносчика, который связывается с переносимым веществом,
  • от скорости связывания вещества переносчиком на одной поверхности мембраны(например, на наружной),
  • от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны.

Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта.

Белки — переносчики — это трансмембранные белки, которые специфически связывают молекулу транспортируемого вещества и, изменяя конформацию, осуществляют перенос молекулы через липидный слой мембраны. В белках-переносчиках всех типов имеются определенные участки связывания для транспортируемой молекулы. Они могут обеспечивать как пассивный, так и активный мембранный транспорт.

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный активный транспорт) или через слой клеток (трансцеллюлярный активный транспорт), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Поток воды, вызванный в пористой мембране действием осмотических сил, аналогичен тому, который бы возник при приложении гидростатического давления к столбу воды, заполняющему пору. Рассмотрим мембрану, которая отделяет чистый растворитель от раствора, содержащего молекулы растворенного вещества. Стенки поры будут предохранять движущиеся через нее молекулы воды от бомбардировки молекулами растворенного вещества, что создает осмотическое давление. Следовательно, молекулы воды в поре, расположенные ближе к той стороне мембраны, которая контактирует с раствором, будут находиться под меньшим гидростатическим давлением, чем молекулы, расположенные, ближе к той стороне, которая обращена к чистому растворителю. Движение молекул чистого растворителя полностью передается молекулам, находящимся внутри поры, что и приводит к установлению разности гидростатического давления (разность эта обусловлена различиями в концентрации воды, каждой из которых соответствует определенная величина гидростатического давления). Таким образом, данная модель позволяет объяснить тот факт, что поток воды, обусловленный, действием осмотических сил, приблизительно в 2,4 раза больше диффузионного потока; эти данные позволяют также вычислить эффективный диаметр поры, который оказался равным 0,35 нм.

Мембранный транспорт активный: вещества переносятся через мембрану против концентрационного, электрического и других видов градиентов, на это тратится энергия клеточного метаболизма. Пассивный транспорт осуществляется главным образом тремя способами:

  • Вещества, находящиеся в водной фазе по одну сторону мембраны, растворяются в липидно-белковом слое мембраны, пересекают его и вновь переходят в водную фазу с противоположной стороны мембраны.
  • Вещества, которые перемещаются через поры или каналы мембраны, заполненные водой. В отношении воды было сделано предположение: она дополнительно диффундирует через поры мембраны. Это было доказано экспериментально: если брать синтетическую мембрану, но состоящую только из липидов, вода проходит через нее Þ еще одни механизм, связанный с динамическими свойствами липидов. Так как во время этих динамических движений образуются дефекты и очень подвижные молекулы воды успевают проникнуть через них через мембрану. Кинетика такого транспорта характеризует графическую зависимость скорости поступления через мембрану от концентрации вещества вне клетки. Эта прямая отражает кинетику без насыщения (то есть концентрация вещества может возрастать до бесконечности). Такая кинетика отличает простую диффузию от двух других механизмов пассивного транспорта.
  • Вещества в процессе диффузии проходят через поры мембраны – водорастворимые, полярные соединения и электролиты. Органические вещества проходят за счет растворения в липидах. Зависимость растворения веществ в липидах исследовалось Овертоном. Он показал если есть карбоксильные, гидроксильные и аминогруппы, то это ухудшает проникновение через мембрану. Присутствие же метиловых, этиловых и фенильных групп наоборот облегчает проникновение веществ в клетку. Они не полярные и это увеличивает растворения этих веществ в липидах.

Коэффициент распределения показывает отношение растворимости веществ в жирах к растворимости этих веществ в воде. Чем выше этот коэффициент, тем легче проникают вещества в клетку, вне зависимости от размеров молекулы. Если вещества имеют одинаковый коэффициент распределения, то более мелкие молекулы будут проникать легче чем крупные. Водорастворимые вещества проходят через поры мембран. Для того чтобы пройти через пору, вещество должно преодолеть определенные силы, которые препятствуют этому. Вещество должно освободится от водной или сольватной оболочки, раздвинуть поверхностный молекулярный слой на границе клетки и омывающего раствора, преодолеть взаимодействие своих полярных групп и полярных групп поры мембран, преодолеть энергетический барьер, создаваемый на поверхности цитоплазмы ионами и коллоидами.

vseobiology.ru

Транспорт веществ в клетке с участием переносчиков

БМ — биологическая мембрана

Гидрофильные вещества практически не перемещаются в БМ за счет процессов свободной диффузии. Транспорт многих гидрофильных веществ (моносахаридов, аминокислот, некоторых ионов) обеспечивают подвижные переносчики. В частности, пептид, имеющий циклическую структуру и находящийся в БМ, способен селективно переносить ионы. Облегчение трансмембранного переноса обусловлено тем, что вещество (например, глюкоза) преодолевает плазмолемму не путем свободной диффузии через липидный биослой, а при помощи переносчика. В этой связи, движение глюкозы сквозь мембрану эритроцита происходит быстрее, чем можно было бы ожидать при ее свободной диффузии в мембранных липидах. В плазматической мембране обнаружено несколько десятков транспортных белков, каждый из которых переносит только определенное вещество. Переносчики в БМ могут работать, используя различные виды перемещения:

— миграционный;
— ротационный;
— сдвиговый.

Среди мигрирующих переносчиков можно выделить две разновидности. Одни транспортеры мигрируют внутри мембран и взаимодействуют с переносимым веществом только на ее поверхности; этот механизм транспорта называют малой «каруселью». Другие мигрирующие переносчики способны покидать БМ и выходить в примембранное пространство в поисках транспортируемого вещества. Поиск направляется действием электростатических сил или химическим взаимодействием. Вместе с переносимым веществом, транспортер второго типа возвращается в БМ, проходит ее насквозь, выходит в противоположной пространство, оставляя там переносимое вещество. Такой механизм называется большой «каруселью». Тип «карусели» зависит от поверхности активных свойств и растворимости самого переносчика. Как правило, по механизму малой «карусели» работают транспортеры, плохо растворимые в воде и являющиеся ПАВ. Схематически работу малой «карусели» можно представить так:

Миграционный механизм присущ переносчикам, размеры которых меньше толщины БМ. Вместе с тем, транспортерами могут быть и более крупные белковые молекулы или их комплексы, которые пронизывают БМ насквозь. Они переносят вещества через БМ за счет поворота (ротации) или сдвига. Ротационный механизм заключается в повороте крупной молекулы переносчика вокруг оси, лежащей в плоскости мембраны. В результате чего, транспортируемые вещества (молекулы), посаженные на один конец такого переносчика, оказываются на противоположной стороне БМ. Ротационный механизм требует значительных затрат энергии и является эффективным только в том случае, если одна молекула переносчика одновременно транспортирует за один поворот много молекул переносимого вещества. Схематически работу ротационного механизма можно представить в следующем виде:

Более выгодным в энергетическом отношении является механохимический процесс в молекуле переносчика, заключенный не в полном ее повороте, а в сдвиге отдельных областей, относительно неподвижной части крупной молекулы. При этом, вместе с участником переносчика, уходящим с поверхности вглубь мембраны, передвигается транспортируемое вещество. Этот процесс напоминает движение лифта в шахте. Графически это можно представить следующим образом:



biofile.ru

Транспорт веществ

3

Транспорт веществ:

Перенос веществ через биол. мембраны сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии.

Различают несколько видов транспорта:

1. Юнипорт – это транспорт вещества через мембрану независимо от наличия и переноса других соединений.

2. Контранспорт – это перенос одного вещества сопряженного с транспортом другого: симпорт и антипорт

а) причем однонаправленный перенос называется симпортом – всасывание аминокислот через мембрану тонкого кишечника,

б) противоположно направленный — антипортом (натрий – калиевый насос).

Транспорт веществ может быть — пассивный и активный транспорт (перенос)

Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии (направленного движения) по концентрационным (из maс в сторону min), электрическим или гидростатическим градиентам. Вода перемещается по градиенту водного потенциала. Осмос — это перемещение воды через полупроницаемую мембрану.

Активный транспорт осуществляется против градиентов (из min в сторону maс), связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных белков переносчиков (АТФ — синтетазы).

Пассивный перенос может осуществляться:

а. Путем простой диффузии через липидный бислои мембраны, а также через специализированные образования — каналы. Путем диффузии через мембрану проникают в клетку:

  • незаряженные молекулы, хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства,

  • газы — кислород и углекислый газ.

  • ионы – они поступают через пронизывающие каналы мембраны, представляющие собой липопротеиновые структуры, Они служат для переноса определенных ионов (например, катионов – Na, K, Ca, анионов Cl, P,) и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

б. Облегчённой диффузии. В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

в. Осмоса – перемещения растворителя через мембрану

Активный транспорт

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин, например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума — 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма.

В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов например:

  • натрия и калия — натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса — Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия.

  • Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая — аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция.

  • К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ.

  • В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

  • Протонный насос в митохондриях и пластидах

  • секреция HCI в желудке,

  • поглощение ионов клетками корней растений

Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, — общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых почечная гликозурия, цистинурия, нарушение всасывания глюкозы, галактозы и витамина В12, наследственный сфероцитоз (гемолитическая анемия, эритроциты имеют форму шара, при этом уменьшается поверхность мембраны, падает содержание липидов, увеличивается проницаемость мембраны для натрия. Сфероциты удаляются из кровяного русла быстрее, чем нормальные эритроциты).

В особую группу активного транспорта выделяют перенос веществ (крупных частиц) путем — и эндо- и экзоцитоза.

Эндоцитоз (от греч. эндо — внутри) поступление веществ в клетку, включает фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. Phagos — пожирающий) – процесс захватывания твёрдых частиц, инородных живых объектов(бактерий, фрагменты клеток) одноклеточными организмами или клетками многоклеточных, последние называются фагоцитами, или клетками-пожирателями. Фагоцитоз открыт И. И. Мечниковым. Обычно при фагоцитозе клетка образует выпя­чивания, цитоплазмы — псевдоподии, которые обтекают захватываемые частицы.

Но о6разование псевдоподий не обязательно.

Фагоцитоз играет важную роль в питании одноклеточных и низших мно­гоклеточных животных, которым свойственно внутриклеточное пищева­рение, а также характерен для клеток, играющих важную роль в явлениях иммунитета и метаморфоза. Такая форма поглощения свойственна клеткам соединительной ткани – фагоцитам, выполняющим защитную функцию, активно фагоцитируют клетки плаценты, клетки выстилающие полость тела, пигментный эпителий глаз.

В процессе фагоцитоза можно выделить четыре последовательные фазы. В первой (факультативной) фазе фагоцит сближается с объектом погло­щения. Здесь существенное значение имеет положительная реакция фагоцита на химическое раздражение хемотаксис. Во второй фазе наблюдается адсорбция поглощаемой частицы на поверхности фаго­цита. В третьей фазе плазматическая мембрана в виде мешочка обвола­кивает частицу, края мешочка смыкаются и отрываются от остальной мембраны, а образовавшаяся вакуоль оказывается внутри клетки. В чет­вертой фазе заглоченные объекты разрушаются и перевариваются внутри фагоцита. Разумеется, эти стадии не отграничены, а незаметно переходят одна в другую.

Клетки могут аналогичным способом поглощать также жидкости и крупномолекулярные соединения. Это явление получило название п и н о ц и т о з а (греч. рупо — пить и суtоз — клетка). Пиноцитоз сопровожда­ется энергичным движением цитоплазмы в поверхностном слое, приводящим к образованию впячивания клеточной мембраны, идущей от поверхности в виде канальца внутрь клетки. На конце канальца образуются вакуоли, которые отрываются и переходят в цитоплазму. Пиноцитоз наиболее акти­вен в клетках с интенсивным обменом веществ, в частности в клетках лимфа­тической системы, злокачественных опухолей и др.

Путем пиноцитоза в клетки проникают высокомолекулярные соедине­ния: питательные вещества из кровяного русла, гормоны, ферменты и дру­гие вещества, в том числе лекарственные. Электронно-микроскопические исследования показали, что путем пиноцитоза происходит всасывание жира эпителиальными клетками кишечника, фагоцитируют клетки почечных канальцев и растущие ооциты.

Инородные тела, попавшие в клетку путем фагоцитоза или пиноцитоза, подвергаются воздействию лизирующих ферментов внутри пищеваритель­ных вакуолей либо непосредственно в цитоплазме. Внутриклеточными ре­зервуарами этих ферментов являются лизосомы.

Функции эндоцитоза

  1. Осуществляются, питание (яй­цеклетки поглощают таким способом желточные белки: фагосомами являются пищеварительные вакуоли простейших)

  2. Защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобули­ны)

  3. Транспорт (почечные канальцы всасывают бел­ки из первичной мочи).

  4. Избирательный эндоцитоз определен­ных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфически­ми рецепторными участками на плазматической мембране.

Материалы, попадающие в клетку путем эндоцитоза, рас­щепляются («перевариваются»), накапливаются (напри­мер, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза («цитопемпсис»).

Экзоцитоз (от греч. экзо – вне, снаружи)— процесс, противоположный эндоцитозу: например, из эндоплазматического ретикулума, аппарата Гольджи, различные эндоцитозные пузырьки, лизосомы сливаются с плазматической мембраной, освобождая своё содержимоё наружу.

studfiles.net

Транспорт веществ через плазматическую мембрану

Барьерно-транспортная функция поверхностного аппарата клетки обе­спечивается избирательным переносом ионов, молекул и надмолекулярных структур в клетку и из нее. Транспорт через мембраны обеспечивает доставку питательных веществ и удаление ко­нечных продуктов обмена из клетки, секрецию, создание ионных градиентов и трансмембранного потенциала, под­держание в клетке необходимых значе­ний pH и др.

Механизмы транспорта веществ в клетку и из нее зависят от химиче­ской природы переносимого вещества и его концентрации по обе стороны клеточной мембраны, а также от разме­ров транспортируемых частиц. Малые молекулы и ионы транспортируются через мембрану путем пассивного или активного транспорта. Пере­нос макромолекул и крупных частиц осуществляется посредством транспор­та в «мембранной упаковке», то есть за счет образования окруженных мембра­ной пузырьков.

Пассивным транспортом называет­ся перенос веществ через мембрану по градиенту их концентрации без затра­ты энергии. Такой транспорт осущест­вляется посредством двух основных механизмов: простой диффузии и об­легченной диффузии.

Путем простой диффузии транспор­тируются малые полярные и неполяр­ные молекулы, жирные кислоты и дру­гие низкомолекулярные гидрофобные органические вещества. Транспорт мо­лекул воды через мембрану, осущест­вляемый путем пассивной диффузии, получил название осмоса. Примером простой диффузии служит транспорт газов через плазматическую мембрану эндотелиальных клеток кровеносных капилляров в окружающую их ткане­вую жидкость и обратно.

Гидрофильные молекулы и ионы, не способные самостоятельно прохо­дить через мембрану, транспортируются с помощью специфических мембранных транспортных белков. Такой механизм транспорта получил назва­ние облегченной диффузии.

Существуют два основных клас­са мембранных транспортных белков: белки-переносчики и белки-каналы. Молекулы переносимого вещества, связы­ваясь с белком-переносчиком, вызыва­ют его конформационные изменения, результатом чего служит перенос ука­занных молекул через мембрану. Об­легченная диффузия отличается высо­кой избирательностью по отношению к транспортируемым веществам.

Белки-каналы формируют запол­ненные водой поры, пронизывающие липидный бислой. Когда эти поры от­крыты, неорганические ионы или мо­лекулы транспортируемых веществ проходят сквозь них и таким образом переносятся через мембрану. Ионные каналы обеспечивают перенос при­мерно 106 ионов в секунду, что более чем в 100 раз превышает скорость транспорта, осуществляемого белками-переносчиками.

Большинство белков-каналов име­ет «ворота», которые открываются на короткое время, а затем закрываются. В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом называ­ется перенос веществ через мембрану против их градиентов концентрации. Он осуществляется с помощью белков-переносчиков и требует затрат энергии, основным источником которой служит АТФ.

Примером активного транспорта, использующего энергию гидролиза АТФ для перекачки ионов Na+ и К+ че­рез мембрану клетки, служит работа натриево-калиевого насоса, обеспечи­вающего создание мембранного по­тенциала на плазматической мембране клеток.

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ. В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

В зависимости от способности транспортных белков переносить один или несколько видов молекул и ионов пассивный и активный транспорт под­разделяются на унипорт и копорт, или сопряженный транспорт.

Унипорт — это транспорт, при кото­ром белок-переносчик функционирует только в отношении молекул или ионов одного вида. При копорте, или сопря­женном транспорте, белок-переносчик способен транспортировать одновре­менно два или более видов молекул или ионов. Такие белки-переносчики получили название копортеров, или сопряженных переносчиков. Различают два вида копорта: симпорт и антипорт. В случае симпорта молекулы или ионы транспортируются в одном направле­нии, а при антипорте — в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na+ из клеток, а ионы К+ внутрь клеток против их электрохимических градиентов. Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na+ всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа+-канал, что сопровожда­ется переносом ионов Na+ из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na+, в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na+: из первичной мочи внутрь клетки. В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na+, создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na+, позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Благодаря избирательному транс­порту заряженных ионов плазмалемма почти всех клеток несет на своей наруж­ной стороне положительный, а на вну­тренней цитоплазматической стороне — отрицательный заряды. В результате этого между обеими сторонами мембра­ны создается разность потенциалов.

Формирование трансмембранного потенциала достигается в основном за счет работы встроенных в плазмалемму транспортных систем: натриево­калиевого насоса и белков-каналов для ионов К+.

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na+, а внутри — избыток ионов К+. Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К+ выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К+— каналами содержит многочисленные Nа+-каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов. Открытие Nа+-каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

Транспортные белки, которые ге­нерируют разность потенциалов на мембране, называются электрогенными насосами. Натриево-калиевый насос служит главной электрогенной помпой клеток.

Транспорт в мембранной упаковкехарактеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной. В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом называется процесс поглощения клеткой макромолекул и более крупных частиц (вирусов, бак­терий, фрагментов клеток). Эндоцитоз осуществляется путем фагоцитоза и пиноцитоза.

Фагоцитоз — процесс активного за­хвата и поглощения клеткой твердых микрочастиц, размер которых состав­ляет более 1 мкм (бактерий, фрагмен­тов клеток и др.). В ходе фагоцитоза клетка с помощью специальных ре­цепторов распознает специфические молекулярные группировки фагоци­тируемой частицы.

Затем в месте кон­такта частицы с мембраной клетки образуются выросты плазмалеммы — псевдоподии, которые обволакивают микрочастицу со всех сторон. В резуль­тате слияния псевдоподий такая части­ца оказывается заключенной внутри пузырька, окруженного мембраной, который называется фагосомой. Обра­зование фагосом — энергозависимый процесс и протекает с участием актомиозиновой системы. Фагосома, погру­жаясь в цитоплазму, может сливаться с поздней эндосомой или лизосомой, в результате чего поглощенная клеткой органическая микрочастица, например бактериальная клетка, переваривает­ся. У человека к фагоци­тозу способны только немногие клетки: например, макрофаги соединительной ткани и лейкоциты крови. Эти клетки поглощают бактерии, а также разнооб­разные твердые частицы, попавшие в организм, и тем самым защищают его от болезнетворных микроорганизмов и посторонних частиц.

Пиноцитоз — поглощение клеткой жидкости в виде истинных и коллоид­ных растворов и суспензий. Этот про­цесс в общих чертах сходен с фагоцито­зом: капля жидкости погружается в об­разовавшееся углубление клеточной мембраны, окружается ею и оказывает­ся заключенной в пузырек диаметром 0,07—0,02 мкм, погруженный в гиало­плазму клетки.

Механизм пиноцитоза весьма сло­жен. Этот процесс осуществляется в специализированных областях по­верхностного аппарата клетки, назы­ваемых окаймленными ямками, ко­торые занимают около 2% клеточной поверхности. Окаймленные ямки пред­ставляют собой небольшие впячивания плазмалеммы, рядом с которыми в пе­риферической гиалоплазме находится большое количество белка клатрина. В области окаймленных ямок на по­верхности клеток располагаются также многочисленные рецепторы, способные специфически распознавать и связы­вать транспортируемые молекулы. При связывании рецепторами указанных молекул происходит полимеризация клатрина, и плазмалемма впячивается. В результате образуется окаймленный пузырек, несущий в себе транспортируе­мые молекулы. Свое название такие пу­зырьки получили благодаря тому, что клатрин на их поверхности под элек­тронным микроскопом выглядит как неровная каемка. После отделения от плазмалеммы окаймленные пузырьки теряют клатрин и приобретают способ­ность сливаться с другими пузырьками. Процессы полимеризации и деполи­меризации клатрина требуют затрат энергии и блокируются при недостатке АТФ.

Пиноцитоз, благодаря высокой кон­центрации рецепторов в окаймленных ямках, обеспечивает избирательность и эффективность транспорта специфи­ческих молекул. Например, концен­трация молекул транспортируемых ве­ществ в окаймленных ямках в 1000 раз превышает концентрацию их в окру­жающей среде. Пиноцитоз — основной способ транспорта в клетку белков, ли­пидов и гликопротеинов. Посредством пиноцитоза клетка поглощает за сутки количество жидкости, равное своему объему.

Экзоцитоз — процесс выведения веществ из клетки. Вещества, подлежа­щие выведению из клетки, сначала за­ключаются в транспортные пузырьки, наружная поверхность которых, как правило, покрыта белком клатрином, затем такие пузырьки направляются к клеточной мембране. Здесь мембрана пузырьков сливается с плазмалеммой, а содержимое их изливается за пределы клетки либо, сохраняя связь с плазма­леммой, включается в гликокаликс.

Существуют два типа экзоцитоза: кон­ститутивный (основной) и регулируемый.

Конститутивный экзоцитоз непре­рывно протекает во всех клетках орга­низма. Он служит основным механиз­мом выведения из клетки продуктов метаболизма и постоянного восстанов­ления клеточной мембраны.

Регулируемый экзоцитоз осущест­вляется лишь в специальных клетках, выполняющих секреторную функцию. Выделяемый секрет накапливается в секреторных пузырьках, а экзоцитоз происходит только после получения клеткой соответствующего химическо­го или электрического сигнала. Напри­мер, β-клетки островков Лангерганса пожелудочной железы выделяют свой секрет в кровь лишь при повышении в крови концентрации глюкозы.

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой. При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз, или рекреция, — это транспорт, при котором происходит пе­ренос отдельных молекул через клетку. Указанный вид транспорта достигается за счет сочетания эндо- и экзоцитоза. Примером трансцитоза служит транс­порт веществ через клетки сосудистых стенок капилляров человека, который может осуществляться как в одном, так и в другом направлениях.

 


Похожие статьи:

poznayka.org

Транспорт веществ в клетке: как зарождается чудо

Живые клетки, будь то растительные или животные, нуждаются в постоянной подпитке энергией, иначе они просто не смогут существовать. Природа подарила им функцию, которую ученые считают фундаментальной способностью – транспорт веществ в клетке.

Что такое транспорт в клетке?

По сути – это не что иное, как перенос компонентов, проще говоря, обмен веществ, а также энергии с окружающей клетку средой. Эти взаимодействия становятся причиной того, что постепенно концентрация переносимых веществ изменяется, причем различна она как внутри, так и снаружи клетки. Различие в концентрациях между тем, может поддерживаться, только если клетки отделены от окружающей их среды мембранами. Не только ограничение клетки от межклеточного пространства, но и создание архитектуры органелл, как написано в соответствующей статье, является предназначением мембраны.

Транспорт веществ в клетке происходит благодаря специальным белкам – рецепторам Аппарата Гольджи. В зависимости от того, требуется ли мембране затратить дополнительно некоторое количество энергии на выполнение транспорта, этот процесс подразделяется на активный, который требует энергии и пассивный или самопроизвольный, который затрачивает лишь энергетический потенциал самой клетки.

Пассивный и активный процессы: особенности

Пассивная транспортировка происходит в большей степени благодаря процессу диффузии, а также липидные домены. В свою очередь диффузия делится на нейтральную и облегченную. Если она нейтральна, то незаряженные молекулы проходят все каналы плазмолеммы. Облегченная работает за счет белков — переносчиков, связывающих переносимое вещество и перемещают его через клеточную мембрану Активный же, нуждается в затрате энергии из дополнительного источника, которыми служат различные макроэргические соединения. Осуществляется исключительно благодаря специфическим белкам – переносчикам, которые имеются в мембранных структурах. Энергия в частности поставляется за счет гидролиза АТФ, а также благодаря разности потенциалов, который регулируется и поддерживается силами калиево – натриевого насоса.

Белок – активный переносчик – это не что иное, как фермент, производный от АТФ. Он переносит ионы К в клетку, а иона Na – во внеклеточное пространство. АТФ же принимает активное участие в перемещении различных аминокислот и сахара.

Рассмотрев транспорт веществ в клетке с точки зрения сложного биохимического процесса, становится понятно, что даже мельчайшая структура способна поддерживать жизненные процессы. Все органеллы и химические вещества включаются в сложный круговорот, который и заставляет организмы развиваться.

Транспорт белков — видео

life-students.ru

Анатомия человека — Транспорт веществ в клетке и через мембраны

Транспорт веществ в клетке и через мембраны

 
В клетке вещества перемещаются преимущественно в мембранных «контейнерах». Обеспечивают этот процесс специальные белки — рецепторы мембран комплекса Гольджи. Транспорт веществ через биологические мембраны, в частности через плазмолему, является одной из важнейших функций живых клеток. Существует два типа такого транспорта — пассивный и активный. Пассивный транспорт веществ осуществляется без затрат энергии, активный транспорт является энергозависимые.
Пассивный транспорт нейтральных молекул осуществляется по градиенту концентрации путем диффузии, когда вещество перемещается из зоны с ее высокой концентрацией в зону низкой концентрации. Диффузия может быть нейтральной, когда незаряженные молекулы проходят везде каналы (поры) плазмолемы. Облегченная диффузия происходит при участии специфических мембранных белков — переносчиков, связывающих вещество и перемещают ее через клеточную мембрану. Такая диффузия значительно быстрее, чем нейтральная. Пассивный транспорт заряженных молекул и ионов зависит от разности потенциалов на поверхностях плазмолемы. Преимущественно внутренняя поверхность плазмолемы имеет отрицательный заряд, что способствует проникновению в клетку положительно заряженных ионов.

Активный транспорт молекул через биологические мембраны осуществляют только специальные белки — переносчики, которые вмонтированы в мембраны. Для этого процесса расходуется энергия, высвобождается при гидролизе АТФ, а также за счет разности потенциалов на противоположных поверхностях мембраны. Активный транспорт веществ через биологические мембраны проходит против градиента концентрации. Разница мембранного потенциала поддерживается с помощью калиево — натриевого насоса. Активным белком — переносчиком в этом процессе является фермент АТФ-аза, которая переносит против градиента концентрации ионы калия в клетку, а ионы натрия — в внеклеточный пространство. АТФ-аза также активно переносит аминокислоты и сахара.


anatomia.ucoz.com