Синтез липидов из углеводов

Если количество углеводов, поглощенных с пищей за один прием, больше того, чем может быть запасено в виде гликогена, то избыток углеводов превращается в жиры. Начальная последовательность реакций совпадает при этом с обычным окислительным путем, т.е. сначала из глюкозы образуется ацетил-КоА, который используется в цитоплазме клетки для синтеза длинноцепочечных жирных кислот. Затем жирные кислоты запасаются в виде нейтральных жиров (триглицеридов), которые откладываются в разных частях тела. Когда требуется энергия, нейтральные жиры подвергаются гидролизу и жирные кислоты поступают в кровь, адсорбируются молекулами плазменных белков (альбуминов и глобулинов) и затем поглощаются различными клетками.

Циклы Кори и аланина

В клетках, не содержащих митохондрий (например, в эритроцитах), или в тканях при недостаточном снабжении кислородом (например, в активно работающих мышцах) АТФ (АТР) синтезируется за счет процесса превращений глюкозы в лактат (

анаэробного гликолиза).

Лактат переносится кровью в печень, где в процессе глюконеогенеза с затратой АТФ вновь конвертируется в глюкозу (цикл Кори).

При интенсивной работе мышц максимально активируется гликолиз. Продукт гликолиза, пировиноградная кислота (пируват) накапливается в цитоплазме и недостаточно быстро поступает в митохондрии, если они из-за недостатка кислорода не готовы к окислению пирувата. В анаэробных условиях пируват в реакции, катализируемой лактатдегидрогеназой (заключительный этап гликолиза) восстанавливается до лактата. Одновременно НАДН (NADH), кофермент лактатдегидрогеназы, окисляется до НАД+ (NAD+), который вновь используется на окислительном этапе гликолитического пути. Этой реакции способствует относительно высокое отношение НАДН/НАД

+ в мышечной ткани. Лактат диффундирует в кровь и поступает в печень, где конвертируется в глюкозу. Таким образом, образование лактата временно заменяет аэробный метаболизм глюкозы и частично переносит этот процесс из мышц в печень.

Обратная связь, подобная циклу Кори, существует в глюкозо-аланиновом цикле, в котором также участвует пируват. Глюкозо-аланиновый цикл берет начало с протеолиза белков. Образующиеся аминокислоты в результате трансаминирования в присутствии ферментов превращаются в α-кетокислоты, которые в основном включаются в цикл трикарбоновых кислот (цитратный цикл). Одновременно в реакции, катализируемой аланинтрансаминазой, аминогруппы из разных аминокислот переносятся на имеющийся субстрат, пируват. Образующийся аланин поступает в кровь и переносится в печень. Таким образом, цикл аланина служит каналом передачи азота и предшественников глюкозы в печень, которая является местом синтеза конечных продуктов азотистого обмена, например мочевины.

Роль инсулина в регуляции обмена веществ

Инсулин участвует в регуляции всех видов обмена веществ. Это основной гормон, обладающий гипогликемическим действием (снижению сахара крови также способствует соматостатин).

Он является полипептидным гормоном, образующимся в β-клетках поджелудочной железы. Главным стимулятором синтеза и секреции инсулина является глюкоза. Образующийся инсулин поступает в сосудистое русло, где он частично остается в свободном виде, а частично образует комплексы с белками крови.

Инсулин опосредует поступление и метаболизм глюкозы в ткани, имеющие рецепторы к инсулину (инсулинзависимые ткани), рис. 7.

Рис. 7. Инсулин-зависимые и инсулин-независимые органы.

К инсулинзависимым тканям относятся мышечная, жировая ткань, печень и островковый аппарат поджелудочной железы. В эти ткани глюкоза поступает путем пассивного переноса или облегченной диффузии. Остальные ткани являются инсулиннезависимыми и поступление глюкозы в них происходит без участия инсулина по градиенту концентрации.

Активируя гексокиназу, в клетках инсулинзависимых тканей инсулин обеспечивает фосфорилирование глюкозы, превращение ее в Гл-6-фосфат и дальнейшее превращение. Инсулин стимулирует гликолиз, цикл Кребса, пентозофосфатный путь обмена глюкозы и угнетает глюконеогенез. Инсулин усиливает гликогенез в результате активации гликоген-синтетазы и тормозит гликогенолиз.

Кроме глюкозы инсулин также опосредует поступление в клетки аминокислот и электролитов. Он активирует синтез белка, жира и тормозит их распад, препятствует избыточному холестерол- и кетообразованию. Инсулин также участвует в регуляции водно-электролитного обмена (обладает водо- и солесберегающим действием), участвует в регуляции кислотно-основного состояния (препятствует развитию ацидоза).

Суточная потребность в инсулине – 40 единиц, а его содержание в поджелудочной железе здорового человека составляет 150-250 Ед. Инактивация инсулина происходит преимущественно в печени и почках под влиянием инсулиназы.

По влиянию на уровень глюкозы другие гормоны (глюкагон, соматотропный гормон (СТГ), пролактин, адреналин и норадреналин, глюкокортикоиды) относятся к группе контринсулярных гормонов. Глюкагон синтезируется в α-клетках поджелудочной железы. Механизм гипергиликемического действия глюкагона связан с усилением гликогенолиза в печени. Аналогичным действием обладают СТГ, пролактин, адреналин и норадреналин. Гипергликемическое действие глюкокортикоидов преимущественно связано с их стимулирующим влиянием на глюконеогенез.

10 класс. Биология. Строение клетки. Комплекс Гольджи. Эндоплазматическая сеть. Лизосомы. Клеточные включения — Строение клетки. Комплекс Гольджи. Эндоплазматическая сеть. Лизосомы. Клеточные включения

Комментарии преподавателя

Мы про­дол­жа­ем изу­чать ор­га­но­и­ды клет­ки.

Все ор­га­но­и­ды де­лят­ся на мем­бран­ные и немем­бран­ные.

Немем­бран­ные ор­га­но­и­ды мы рас­смот­ре­ли на преды­ду­щем за­ня­тии, на­пом­ним, что к ним от­но­сят­ся ри­бо­со­мы, кле­точ­ный центр и ор­га­но­и­ды дви­же­ния.

Среди мем­бран­ных ор­га­но­и­дов раз­ли­ча­ют од­но­мем­бран­ные и дву­мем­бран­ные.

В этой части курса мы рас­смот­рим од­но­мем­бран­ные ор­га­но­и­ды: эн­до­плаз­ма­ти­че­скую сеть, ап­па­рат Голь­д­жи и ли­зо­со­мы.

Кроме этого, мы рас­смот­рим вклю­че­ния – непо­сто­ян­ные об­ра­зо­ва­ния клет­ки, ко­то­рые воз­ни­ка­ют и ис­че­за­ют в про­цес­се жиз­не­де­я­тель­но­сти клет­ки.

Эн­до­плаз­ма­ти­че­ская сеть

Одним из самых важ­ных от­кры­тий, сде­лан­ных с по­мо­щью элек­трон­но­го мик­ро­ско­па, было об­на­ру­же­ние слож­ной си­сте­мы мем­бран, про­ни­зы­ва­ю­щей ци­то­плаз­му всех эу­ка­ри­о­ти­че­ских кле­ток. Эта сеть мем­бран в даль­ней­шем по­лу­чи­ла на­зва­ние ЭПС (эн­до­плаз­ма­ти­че­ской сети) (рис. 1) или ЭПР (эн­до­плаз­ма­ти­че­ско­го ре­ти­ку­лу­ма). ЭПС пред­став­ля­ет си­сте­му тру­бо­чек и по­ло­стей, про­ни­зы­ва­ю­щей ци­то­плаз­му клет­ки.

Рис. 1. Эн­до­плаз­ма­ти­че­ская сеть

Слева – среди дру­гих ор­га­но­и­дов клет­ки. Спра­ва – от­дель­но вы­де­лен­ная

Мем­бра­ны ЭПС (рис. 2) имеют такое же стро­е­ние, как и кле­точ­ная или плаз­ма­ти­че­ская мем­бра­на (плаз­ма­лем­ма). ЭПС за­ни­ма­ет до 50% объ­е­ма клет­ки. Она нигде не об­ры­ва­ет­ся и не от­кры­ва­ет­ся в ци­то­плаз­му.

Раз­ли­ча­ют глад­кую ЭПС и ше­ро­хо­ва­тую, или гра­ну­ляр­ную ЭПС (рис. 2). На внут­рен­них мем­бра­нах ше­ро­хо­ва­той ЭПС рас­по­ла­га­ют­ся ри­бо­со­мы – здесь идет син­тез бел­ков.

Рис. 2. Виды ЭПС

Ше­ро­хо­ва­тая ЭПС (слева) несет на мем­бра­нах ри­бо­со­мы и от­ве­ча­ет за син­тез белка в клет­ке. Глад­кая ЭПС (спра­ва) не со­дер­жит ри­бо­сом и от­ве­ча­ет за син­тез уг­ле­во­дов и ли­пи­дов.

На по­верх­но­сти глад­кой ЭПС (рис. 2) идет син­тез уг­ле­во­дов и ли­пи­дов. Ве­ще­ства, син­те­зи­ро­ван­ные на мем­бра­нах ЭПС, пе­ре­но­сят­ся в тру­боч­ки и затем транс­пор­ти­ру­ют­ся к ме­стам на­зна­че­ния, где де­по­ни­ру­ют­ся или ис­поль­зу­ют­ся в био­хи­ми­че­ских про­цес­сах.

Ше­ро­хо­ва­тая ЭПС лучше раз­ви­та в клет­ках, ко­то­рые син­те­зи­ру­ют белки для нужд ор­га­низ­ма, на­при­мер, бел­ко­вые гор­мо­ны эн­до­крин­ной си­сте­мы че­ло­ве­ка. А глад­кая ЭПС – в тех клет­ках, ко­то­рые син­те­зи­ру­ют са­ха­ра и ли­пи­ды.

В глад­кой ЭПС на­кап­ли­ва­ют­ся ионы каль­ция (важ­ные для ре­гу­ля­ции всей функ­ций кле­ток и це­ло­го ор­га­низ­ма).

Струк­ту­ру, из­вест­ную се­год­ня как ком­плекс или ап­па­рат Голь­д­жи (АГ) (рис. 3), впер­вые об­на­ру­жил в 1898 году ита­льян­ский уче­ный Ка­мил­ло Голь­д­жи (Ис­точ­ник).

По­дроб­но изу­чить стро­е­ние ком­плек­са Голь­д­жи уда­лось зна­чи­тель­но позже с по­мо­щью элек­трон­но­го мик­ро­ско­па. Эта струк­ту­ра со­дер­жит­ся прак­ти­че­ски во всех эу­ка­ри­о­ти­че­ских клет­ках, и пред­став­ля­ет собой стоп­ку упло­щен­ных мем­бран­ных ме­шоч­ков, т. н. ци­стерн, и свя­зан­ную с ними си­сте­му пу­зырь­ков, на­зы­ва­е­мых пу­зырь­ка­ми Голь­д­жи.

 

Рис. 3. Ком­плекс Голь­д­жи

Слева – в клет­ке, среди дру­гих ор­га­но­и­дов.

Спра­ва – ком­плекс Голь­д­жи с от­де­ля­ю­щи­ми­ся от него мем­бран­ны­ми пу­зырь­ка­ми

Во внут­ри­кле­точ­ных ци­стер­нах на­кап­ли­ва­ют­ся ве­ще­ства, син­те­зи­ро­ван­ные клет­кой, т. е. белки, уг­ле­во­ды, ли­пи­ды.

В этих же ци­стер­нах ве­ще­ства, по­сту­пив­шие из ЭПС, пре­тер­пе­ва­ют даль­ней­шие био­хи­ми­че­ские пре­вра­ще­ния, упа­ко­вы­ва­ют­ся в мем­бран­ные пу­зырь­ки и до­став­ля­ют­ся к тем ме­стам клет­ки, где они необ­хо­ди­мы. Они участ­ву­ют в до­строй­ке кле­точ­ной мем­бра­ны или вы­де­ля­ют­ся на­ру­жу (сек­ре­ти­ру­ют­ся) из клет­ки.

Ком­плекс Голь­д­жи по­стро­ен из мем­бран и рас­по­ло­жен рядом с ЭПС, но не со­об­ща­ет­ся с её ка­на­ла­ми.

Все ве­ще­ства, син­те­зи­ро­ван­ные на мем­бра­нах ЭПС (рис. 2), пе­ре­но­сят­ся в ком­плекс Голь­д­жи в мем­бран­ных пу­зырь­ках, ко­то­рые от­поч­ко­вы­ва­ют­ся от ЭПС и сли­ва­ют­ся затем с ком­плек­сом Голь­д­жи, где они пре­тер­пе­ва­ют даль­ней­шие из­ме­не­ния.

Одна из функ­ций ком­плек­са Голь­д­жи – сбор­ка мем­бран. Ве­ще­ства, из ко­то­рых со­сто­ят мем­бра­ны – белки и ли­пи­ды, как вы уже зна­е­те, – по­сту­па­ют в ком­плекс Голь­д­жи из ЭПС.

В по­ло­стях ком­плек­са со­би­ра­ют­ся участ­ки мем­бран, из ко­то­рых об­ра­зу­ют­ся осо­бые мем­бран­ные пу­зырь­ки (рис. 4), они пе­ре­дви­га­ют­ся по ци­то­плаз­ме в те места, где необ­хо­ди­ма до­строй­ка мем­бра­ны.

Рис. 4. Син­тез мем­бран в клет­ке ком­плек­сом Голь­д­жи (см. видео)

В ком­плек­се Голь­д­жи син­те­зи­ру­ют­ся прак­ти­че­ски все по­ли­са­ха­ри­ды, необ­хо­ди­мые для по­стро­е­ния кле­точ­ной стен­ки кле­ток рас­те­ний и гри­бов. Здесь они упа­ко­вы­ва­ют­ся в мем­бран­ные пу­зырь­ки, до­став­ля­ют­ся к кле­точ­ной стен­ке и сли­ва­ют­ся с ней.

Таким об­ра­зом, ос­нов­ные функ­ция ком­плек­са (ап­па­ра­та) Голь­д­жи – хи­ми­че­ское пре­вра­ще­ние син­те­зи­ро­ван­ных в ЭПС ве­ществ, син­тез по­ли­са­ха­ри­дов, упа­ков­ка и транс­порт ор­га­ни­че­ских ве­ществ в клет­ке, фор­ми­ро­ва­ние ли­зо­со­мы.

Ли­зо­со­мы (рис. 5) об­на­ру­же­ны у боль­шин­ства эу­ка­ри­о­ти­че­ских ор­га­низ­мов, но осо­бен­но много их в клет­ках, ко­то­рые спо­соб­ны к фа­го­ци­то­зу. Они пред­став­ля­ют собой од­но­мем­бран­ные ме­шоч­ки, на­пол­нен­ные гид­ро­ли­ти­че­ски­ми или пи­ще­ва­ри­тель­ны­ми фер­мен­та­ми, та­ки­ми как ли­па­зы, про­те­азы и нук­ле­азы, т. е. фер­мен­ты, ко­то­рые рас­щеп­ля­ют жиры, белки и нук­ле­и­но­вые кис­ло­ты.

Рис. 5. Ли­зо­со­ма – мем­бран­ный пу­зы­рек, со­дер­жа­щий гид­ро­ли­ти­че­ские фер­мен­ты

Со­дер­жи­мое ли­зо­сом имеет кис­лую ре­ак­цию – для их фер­мен­тов ха­рак­те­рен низ­кий оп­ти­мум pH. Мем­бра­ны ли­зо­со­мы изо­ли­ру­ют гид­ро­ли­ти­че­ские фер­мен­ты, не давая им раз­ру­шать дру­гие ком­по­нен­ты клет­ки. В клет­ках жи­вот­ных ли­зо­со­мы имеют округ­лую форму, их диа­метр – от 0,2 до 0,4 мик­рон.

В рас­ти­тель­ных клет­ках функ­цию ли­зо­сом вы­пол­ня­ют круп­ные ва­ку­о­ли. В неко­то­рых рас­ти­тель­ных клет­ках, осо­бен­но по­ги­ба­ю­щих, можно за­ме­тить неболь­шие тель­ца, на­по­ми­на­ю­щие ли­зо­со­мы.

Скоп­ле­ние ве­ществ, ко­то­рые клет­ка де­по­ни­ру­ет, ис­поль­зу­ет для своих нужд, или хра­нит для вы­де­ле­ния вовне, на­зы­ва­юткле­точ­ны­ми вклю­че­ни­я­ми.

Среди них зерна крах­ма­ла (за­пас­ной уг­ле­вод рас­ти­тель­но­го про­ис­хож­де­ния) или гли­ко­ге­на (за­пас­ной уг­ле­вод жи­вот­но­го про­ис­хож­де­ния), капли жира, а также гра­ну­лы бел­ков.

Эти за­пас­ные пи­та­тель­ные ве­ще­ства рас­по­ла­га­ют­ся в ци­то­плаз­ме сво­бод­но и не от­де­ле­ны от неё мем­бра­ной.

Функ­ции ЭПС

Одна из самых важ­ных функ­ций ЭПС – син­тез ли­пи­дов. По­это­му ЭПС обыч­но пред­став­ле­на в тех клет­ках, где ин­тен­сив­но про­ис­хо­дит этот про­цесс.

Как про­ис­хо­дит син­тез ли­пи­дов? В клет­ках жи­вот­ных ли­пи­ды син­те­зи­ру­ют­ся из жир­ных кис­лот и гли­це­ри­на, ко­то­рые по­сту­па­ют с пищей (в клет­ках рас­те­ний они син­те­зи­ру­ют­ся из глю­ко­зы). Син­те­зи­ро­ван­ные в ЭПС ли­пи­ды пе­ре­да­ют­ся в ком­плекс Голь­д­жи, где «до­зре­ва­ют».

ЭПС пред­став­ле­на в клет­ках коры над­по­чеч­ни­ков и в по­ло­вых же­ле­зах, по­сколь­ку здесь син­те­зи­ру­ют­ся сте­ро­и­ды, а сте­ро­и­ды – гор­мо­ны ли­пид­ной при­ро­ды. К сте­ро­и­дам от­но­сит­ся муж­ской гор­мон те­сто­сте­рон, и жен­ский гор­мон эст­ра­диол.

Ещё одна функ­ция ЭПС – уча­стие в про­цес­сах де­ток­си­ка­ции. В клет­ках пе­че­ни ше­ро­хо­ва­тая и глад­кая ЭПС участ­ву­ют в про­цес­сах обез­вре­жи­ва­ния вред­ных ве­ществ, по­сту­па­ю­щих в ор­га­низм. ЭПС уда­ля­ет яды из на­ше­го ор­га­низ­ма.

В мы­шеч­ных клет­ках при­сут­ству­ют осо­бые формы ЭПС – сар­ко­плаз­ма­ти­че­ский ре­ти­ку­лум. Сар­ко­плаз­ма­ти­че­ский ре­ти­ку­лум – один из видов эн­до­плаз­ма­ти­че­ской сети, ко­то­рый при­сут­ству­ет в по­пе­реч­но­по­ло­са­той мы­шеч­ной ткани. Его ос­нов­ной функ­ци­ей яв­ля­ет­ся хра­не­ние ионов каль­ция, и вве­де­ние их в сар­ко­плаз­му – среду мио­фиб­рилл.

Сек­ре­тор­ная функ­ция ком­плек­са Голь­д­жи

Функ­ци­ей ком­плек­са Голь­д­жи яв­ля­ет­ся транс­порт и хи­ми­че­ская мо­ди­фи­ка­ция ве­ществ. Осо­бен­но хо­ро­шо это видно в сек­ре­тор­ных клет­ках.

В ка­че­стве при­ме­ра можно при­ве­сти клет­ки под­же­лу­доч­ной же­ле­зы, син­те­зи­ру­ю­щие фер­мен­ты пан­кре­а­ти­че­ско­го сока, ко­то­рый затем вы­хо­дит в про­ток же­ле­зы, от­кры­ва­ю­щий­ся в две­на­дца­ти­перст­ную же­ле­зу.

Ис­ход­ным суб­стра­том для фер­мен­тов слу­жат белки, по­сту­па­ю­щие в ком­плекс Голь­д­жи из ЭПС. Здесь с ними про­ис­хо­дят био­хи­ми­че­ские пре­вра­ще­ния, они кон­цен­три­ру­ют­ся, упа­ко­вы­ва­ют­ся в мем­бран­ные пу­зырь­ки и пе­ре­ме­ща­ют­ся к плаз­ма­ти­че­ской мем­бране сек­ре­тор­ной клет­ки. Затем они вы­де­ля­ют­ся на­ру­жу по­сред­ством эк­зо­ци­то­за.

Фер­мен­ты под­же­лу­доч­ной же­ле­зы сек­ре­ти­ру­ют­ся в неак­тив­ной форме, чтобы они не раз­ру­ша­ли клет­ку, в ко­то­рой об­ра­зу­ют­ся. Неак­тив­ная форма фер­мен­та на­зы­ва­ет­ся про­фер­мен­том или эн­зи­мо­ге­ном. На­при­мер, фер­мент трип­син, об­ра­зу­ет­ся в неак­тив­ной форме в виде трип­си­но­ге­на в под­же­лу­доч­ной же­ле­зе и пе­ре­хо­дит в свою ак­тив­ную форму – трип­син в ки­шеч­ни­ке.

Ком­плек­сом Голь­д­жи син­те­зи­ру­ет­ся также важ­ный гли­ко­про­те­ин – муцин. Муцин син­те­зи­ру­ет­ся бо­ка­ло­вид­ны­ми клет­ка­ми эпи­те­лия, сли­зи­стой обо­лоч­ки же­лу­доч­но-ки­шеч­но­го трак­та и ды­ха­тель­ных путей. Муцин слу­жит ба­рье­ром, за­щи­ща­ю­щим рас­по­ло­жен­ные под ним эпи­те­ли­аль­ные клет­ки от раз­ных по­вре­жде­ний, в первую оче­редь, ме­ха­ни­че­ских.

В же­лу­доч­но-ки­шеч­ном трак­те эта слизь за­щи­ща­ет неж­ную по­верх­ность эпи­те­ли­аль­ных кле­ток от дей­ствия гру­бо­го комка пищи. В ды­ха­тель­ных путях и же­лу­доч­но-ки­шеч­ном трак­те муцин за­щи­ща­ет наш ор­га­низм от про­ник­но­ве­ния па­то­ге­нов – бак­те­рий и ви­ру­сов.

В клет­ках кон­чи­ка корня рас­те­ний ком­плекс Голь­д­жи сек­ре­ти­ру­ет му­ко­по­ли­са­ха­рид­ную слизь, ко­то­рая об­лег­ча­ет про­дви­же­ние корня в почве.

В же­ле­зах на ли­стьях на­се­ко­мо­яд­ных рас­те­ний, ро­сян­ки и жи­рян­ки (рис. 6), ап­па­рат Голь­д­жи про­из­во­дит клей­кую слизь и фер­мен­ты, с по­мо­щью ко­то­рых эти рас­те­ния ловят и пе­ре­ва­ри­ва­ют до­бы­чу.

Рис. 6. Клей­кие ли­стья на­се­ко­мо­яд­ных рас­те­ний

В клет­ках рас­те­ний ком­плекс Голь­д­жи также участ­ву­ет в об­ра­зо­ва­нии смол, ка­ме­дей и вос­ков.

Ав­то­лиз

Ав­то­лиз – это са­мо­раз­ру­ше­ние кле­ток, воз­ни­ка­ю­щее вслед­ствие вы­сво­бож­де­ния со­дер­жи­мо­го ли­зо­сом внут­ри клет­ки.

Бла­го­да­ря этому ли­зо­со­мы в шутку на­зы­ва­ют «ору­ди­я­ми са­мо­убий­ства». Ав­то­лиз пред­став­ля­ет собой нор­маль­ное яв­ле­ние он­то­ге­не­за, он может рас­про­стра­нять­ся как на от­дель­ные клет­ки, так и на всю ткань или орган, как это про­ис­хо­дит при ре­з­орб­ции хво­ста го­ло­ва­сти­ка во время ме­та­мор­фо­за, т. е. при пре­вра­ще­нии го­ло­ва­сти­ка в ля­гуш­ку (рис. 7).

Рис. 7. Ре­з­орб­ция хво­ста ля­гуш­ки бла­го­да­ря ав­то­ли­зу в ходе он­то­ге­не­за

Ав­то­лиз про­ис­хо­дит в мы­шеч­ной ткани, оста­ю­щей­ся долго без ра­бо­ты.

Кроме этого, ав­то­лиз на­блю­да­ет­ся у кле­ток после ги­бе­ли, по­это­му вы могли на­блю­дать, как про­дук­ты пи­та­ния сами пор­тят­ся, если они не были за­мо­ро­же­ны.

Таким об­ра­зом, мы рас­смот­ре­ли ос­нов­ные од­но­мем­бран­ные ор­га­но­и­ды клет­ки: ЭПС, ком­плекс Голь­д­жи и ли­зо­со­мы, вы­яс­ни­ли их функ­ции в про­цес­сах жиз­не­де­я­тель­но­сти от­дель­ной клет­ки и ор­га­низ­ма в целом. Уста­но­ви­ли связь между син­те­зом ве­ществ в ЭПС, транс­пор­том их в мем­бран­ных пу­зырь­ках в ком­плекс Голь­д­жи, «до­зре­ва­ни­ем» ве­ществ в ком­плек­се Голь­д­жи и вы­де­ле­ни­ем их из клет­ки при по­мо­щи мем­бран­ных пу­зырь­ков, в том числе ли­зо­сом. Также мы го­во­ри­ли о вклю­че­ни­ях – непо­сто­ян­ных струк­ту­рах клет­ки, ко­то­рые пред­став­ля­ют собой скоп­ле­ния ор­га­ни­че­ских ве­ществ (крах­ма­ла, гли­ко­ге­на, ка­пель масла или гра­нул белка). Из при­ве­ден­ных в тек­сте при­ме­ров мы можем сде­лать вывод о том, что про­цес­сы жиз­не­де­я­тель­но­сти, ко­то­рые про­ис­хо­дят на кле­точ­ном уровне, от­ра­жа­ют­ся на функ­ци­о­ни­ро­ва­нии це­ло­го ор­га­низ­ма (син­тез гор­мо­нов, ав­то­лиз, на­коп­ле­ние пи­та­тель­ных ве­ществ).

источник конспекта — http://interneturok.ru/ru/school/biology/10-klass/bosnovy-citologii-b/stroenie-kletki-kompleks-goldzhi-endoplazmaticheskaya-set-lizosomy-kletochnye-vklyucheniya

источник видео — http://www.youtube.com/watch?v=ROvPqrK8LCw

источник видео — http://www.youtube.com/watch?v=paGe-9Dpee8

источник видео — http://www.youtube.com/watch?v=n-RlcLRuJfM

источник видео — http://www.youtube.com/watch?v=WSdDlT9CrGc

источник видео — http://www.youtube.com/watch?v=k1xbMzVe7Zo

источник видео — http://www.youtube.com/watch?v=v8Fkks2A7js

источник видео — http://www.youtube.com/watch?v=9VeNL-wVTZU

источник видео — http://www.youtube.com/watch?v=8Ku4D_4B9hk

источник презентации — http://www. myshared.ru/slide/151741

4.12: Эндомембранная система и белки — эндоплазматический ретикулум

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    12722
    • Boundless (теперь LumenLearning)
    • Безбрежный
    Цели обучения
    • Описать структуру эндоплазматического ретикулума и его роль в синтезе и метаболизме

    Эндоплазматический ретикулум

    Эндоплазматический ретикулум (ЭР) представляет собой серию взаимосвязанных мембранных мешочков и канальцев, которые совместно модифицируют белки и синтезируют липиды. Однако эти две функции выполняются в отдельных областях ЭР: шероховатой ЭР и гладкой ЭР. Полая часть канальцев ЭПР называется просветом или цистернальным пространством. Мембрана ER, представляющая собой двойной слой фосфолипидов, окруженный белками, непрерывна с ядерной оболочкой.

    Шероховатый ER

    Шероховатый эндоплазматический ретикулум (RER) назван так потому, что рибосомы, прикрепленные к его цитоплазматической поверхности, придают ему шиповатый вид при рассмотрении в электронном микроскопе. Рибосомы переносят свои вновь синтезированные белки в просвет RER, где они претерпевают структурные модификации, такие как сворачивание или приобретение боковых цепей. Эти модифицированные белки будут включены в клеточные мембраны — мембраны ER или других органелл — или секретироваться из клетки (например, белковые гормоны, ферменты и т. д.). RER также производит фосфолипиды для клеточных мембран. Если фосфолипидам или модифицированным белкам не суждено остаться в RER, они достигнут места назначения через транспортные везикулы, которые отпочковываются от мембраны RER. Поскольку RER участвует в модификации белков (таких как, например, ферменты), которые будут секретироваться из клетки, RER в избытке присутствует в клетках, секретирующих белки. Так обстоит дело, например, с клетками печени.

    Рисунок \(\PageIndex{1}\): Шероховатый эндоплазматический ретикулум: На этой трансмиссионной электронной микрофотографии показан шероховатый эндоплазматический ретикулум и другие органеллы в клетке поджелудочной железы.

    Smooth ER

    Гладкий эндоплазматический ретикулум (SER) является продолжением RER, но на его цитоплазматической поверхности имеется мало или совсем нет рибосом. Функции SER включают синтез углеводов, липидов и стероидных гормонов; дезинтоксикация от лекарств и ядов; и хранения ионов кальция. В мышечных клетках специализированный SER, называемый саркоплазматическим ретикулумом, отвечает за хранение ионов кальция, которые необходимы для запуска скоординированных сокращений мышечных клеток.

    Ключевые моменты

    • Если к эндоплазматическому ретикулуму (ЭР) прикреплены рибосомы, он называется шероховатым ЭР; если это не так, то это называется гладким ER.
    • Белки, вырабатываемые шероховатой эндоплазматической сетью, предназначены для использования вне клетки.
    • Функции гладкой эндоплазматической сети включают синтез углеводов, липидов и стероидных гормонов; дезинтоксикация от лекарств и ядов; и хранения ионов кальция.

    Основные термины

    • просвет : полость или канал внутри трубки или трубчатого органа.
    • ретикулум : Сеть

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или страница
        Автор
        Безграничный
        Количество столбцов печати
        Два
        Печать CSS
        Плотный
        Лицензия
        CC BY-SA
        Версия лицензии
        4,0
        Показать оглавление
        нет
      2. Теги
        1. эндоплазматический ретикулум

      Клетка.

      3. Клеточная мембрана. Углеводы. Атлас гистологии растений и животных.

      Темный

      Домашний / Клетка / Клеточная мембрана / Углеводы

      Содержание сайта
      Клетка
      Типы ячеек
      Ткани животных
      Ткани растений
      Органы животных
      Органы растений
      Гистологические методы
      Виртуальная микроскопия
        • СОДЕРЖАНИЕ. КЛЕТКА.
          1. Введение
          Разнообразие клеток
          Открытие клеток
          Клеточная теория
          Происхождение клетки
          Происхождение эукариот
          Эндосимбиоз
          2. Внеклеточный матрикс
          Структурные белки
          Углеводы
          гликопротеины
          Типы
          3. Клеточная мембрана
          Липиды
          Белки
          Углеводы
          Проницаемость, текучесть
          Асимметрия, ремонт
          Синтез
          Транспорт
          Адгезия
          Клеточные соединения
          4. Ядро
          Ядерная оболочка
          Ядерная пора
          хроматин
          ядрышко
          5. Везикулярный трафик
          Эндоплазматический ретикулум
          От ретикулума к Гольджи
          аппарат Гольджи
          экзоцитоз
          эндоцитоз
          эндосомы
          лизосомы
          В растительных клетках
          Вакуоли
          6. Невезикулярный
          пероксисомы
          Митохондрии
          пластиды
          Хлоропласты
          Липидные капли
          7. Цитозоль
          Цитоскелет
          Актиновые филаменты
          Микротрубочки
          Промежуточные филаменты
          8. Клеточный цикл
          Фаза G1
          S-фаза
          Фаза G2
          М фаза. Митоз.
          9. Мейоз
          Больше информации
          Викторины
          Глоссарий
          Библиография

      УГЛЕВОДЫ

      Мембранные углеводы химически связаны с липидами, образуя гликолипиды, и с белками, образуя гликопротеины. Другими мембранными углеводами являются гликозаминогликаны в составе протеогликанов, которые встраивают свою аминокислотную цепь в липидные цепи жирных кислот (рис. 1). Хотя некоторые углеводы можно обнаружить во внутриклеточных мембранах, большинство из них находится во внешнем полуслое плазматической мембраны, обращенном во внеклеточное пространство. Синтез мембранных углеводов начинается в эндоплазматическом ретикулуме, но именно в аппарате Гольджи, где они модифицируются и выращиваются путем добавления множества новых мономеров с образованием сложных углеводных полимеров.

      Рисунок 1. Углеводы в плазматической мембране. Гликолипиды в основном представляют собой сфинголипиды с различным углеводным составом. Некоторые протеогликаны имеют часть своей аминокислотной последовательности, вставленную среди цепей липидов жирных кислот. Большинство углеводов химически связаны с белками, известными как гликопротеины, либо посредством О-гликозилирования (через сериновую аминокислоту), либо посредством N-гликозилирования (через аминокислоту аспарагина) (с изменениями из Fuster and Esko, 2005).

      В мембранах обнаружены три типа гликолипидов: гликосфинголипиды, наиболее распространенные в клетках животных, гликоглицеролипиды и гликофосфатидилинозитол. Гликоглицеролипиды чаще встречаются в плазматической мембране растительных клеток. Однако большинство мембранных углеводов связаны с белками, известными как гликопротеины. Почти все мембранные белки содержат углеводы, но только 5 % липидов составляют гликолипиды. Углеводы плазматической мембраны в целом называются гликокаликсом. В некоторых типах клеток гликокаликс развит настолько, что его можно наблюдать в электронный микроскоп. Например, в энтероцитах гликокаликс может простираться более чем на 1 мкм в длину от поверхности плазмы. Таким образом, клетка покрывается оболочкой из углеводов, которая может составлять от 2 до 10 % массы мембраны. Развитие гликокаликса зависит от типа клеток.

      Мембранные углеводы являются местами клеточного узнавания и адгезии, либо межклеточного узнавания, либо межклеточного взаимодействия с патогеном. Например, группы крови определяются углеводами клеточной поверхности эритроцитов, и они также обладают способностью запускать иммунологические реакции. После инфекции эндотелиальные клетки вблизи поврежденной ткани высвобождают в своих плазматических мембранах тип белков, известных как селектины. Селектины распознают и связывают углеводы плазматической мембраны лимфоцитов, циркулирующих в кровотоке. Таким образом, лимфоциты прикрепляются к стенкам кровеносных сосудов, могут преодолевать эндотелий и перемещаться к очагу инфекции. Углеводы как распознающие молекулы важны во время развития эмбриона. Они также играют структурную роль в качестве физического барьера.

      Иногда мембранные углеводы модифицируются. Например, раковые клетки демонстрируют различный углеводный набор, и тип раковой клетки можно идентифицировать по различному поверхностному набору углеводов. Эти углеводы могут модулировать способность раковой клетки получать и понимать молекулярную информацию, поступающую от других клеток. Кроме того, тандемное повторение сиаловой кислоты усиливает злокачественные признаки раковых клеток, такие как пролиферация, инвазия, миграция, адгезия и метастазирование. Ганглиозид GD3 обнаружен в меланомах и является мишенью для лечения.

      Углеводы плазматической мембраны являются основными местами распознавания и прикрепления патогенов во время инфекции.