Mathway | Популярные задачи

1Оценить с использованием заданного значенияквадратный корень из 50
2Оценить с использованием заданного значенияквадратный корень из 45
3Вычислить5+5
4Вычислить7*7
5Разложить на простые множители24
6Преобразовать в смешанную дробь52/6
7Преобразовать в смешанную дробь93/8
8Преобразовать в смешанную дробь34/5
9Графикy=x+1
10Оценить с использованием заданного значенияквадратный корень из 128
11Найти площадь поверхностисфера (3)
12Вычислить54-6÷2+6
13
График
y=-2x
14Вычислить8*8
15Преобразовать в десятичную форму5/9
16Оценить с использованием заданного значенияквадратный корень из 180
17Графикy=2
18Преобразовать в смешанную дробь7/8
19Вычислить9*9
20Risolvere per CC=5/9*(F-32)
21Упростить1/3+1 1/12
22Графикy=x+4
23Графикy=-3
24
Графикx+y=3
25Графикx=5
26Вычислить6*6
27Вычислить2*2
28Вычислить4*4
29Вычислить1/2+(2/3)÷(3/4)-(4/5*5/6)
30Вычислить1/3+13/12
31Вычислить5*5
32Risolvere per d2d=5v(o)-vr
33Преобразовать в смешанную дробь3/7
34Графикy=-2
35Определить наклонy=6
36Перевести в процентное соотношение9
37Графикy=2x+2
38Графикy=2x-4
39Графикx=-3
40Решить, используя свойство квадратного корняx^2+5x+6=0
41Преобразовать в смешанную дробь1/6
42Преобразовать в десятичную форму9%
43Risolvere per n12n-24=14n+28
44Вычислить16*4
45Упроститькубический корень из 125
46Преобразовать в упрощенную дробь43%
47Графикx=1
48Графикy=6
49Графикy=-7
50Графикy=4x+2
51Определить наклонy=7
52Графикy=3x+4
53Графикy=x+5
54График3x+2y=6
55Решить, используя свойство квадратного корняx^2-5x+6=0
56Решить, используя свойство квадратного корняx^2-6x+5=0
57Решить, используя свойство квадратного корняx^2-9=0
58Оценить с использованием заданного значенияквадратный корень из 192
59Оценить с использованием заданного значенияквадратный корень из 25/36
60Разложить на простые множители14
61Преобразовать в смешанную дробь7/10
62Risolvere per a(-5a)/2=75
63Упроститьx
64Вычислить6*4
65Вычислить6+6
66Вычислить-3-5
67Вычислить-2-2
68Упроститьквадратный корень из 1
69Упроститьквадратный корень из 4
70Найти обратную величину1/3
71Преобразовать в смешанную дробь11/20
72Преобразовать в смешанную дробь7/9
73Найти НОК11 , 13 , 5 , 15 , 14 , , , ,
74Решить, используя свойство квадратного корняx^2-3x-10=0
75Решить, используя свойство квадратного корняx^2+2x-8=0
76График3x+4y=12
77График3x-2y=6
78Графикy=-x-2
79Графикy=3x+7
80Определить, является ли полиномом2x+2
81Графикy=2x-6
82Графикy=2x-7
83Графикy=2x-2
84Графикy=-2x+1
85Графикy=-3x+4
86Графикy=-3x+2
87Графикy=x-4
88Вычислить(4/3)÷(7/2)
89График2x-3y=6
90Графикx+2y=4
91Графикx=7
92Графикx-y=5
93Решить, используя свойство квадратного корняx^2+3x-10=0
94Решить, используя свойство квадратного корняx^2-2x-3=0
95Найти площадь поверхностиконус (12)(9)
96Преобразовать в смешанную дробь3/10
97Преобразовать в смешанную дробь7/20
98Преобразовать в смешанную дробь2/8
99Risolvere per wV=lwh
100Упростить6/(5m)+3/(7m^2)

Решение неравенств через метод интервалов

Поможем понять и полюбить математику

Начать учиться

254. 7K

Если вы спросите, какой способ решения неравенств самый универсальный, мы ответим — метод интервала. Особенно эффективно его использовать для квадратных неравенств с одной переменной. В этой статье расскажем подробный алгоритм и разберем парочку готовых примеров.

Определение квадратного неравенства

Неравенство — алгебраическое выражение, в котором используются знаки ≠, <, >, ≤, ≥.

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

где x — переменная,

a, b, c — числа,

при этом а ≠ 0.

Квадратное неравенство можно решить двумя способами:

  • графический метод;
  • метод интервалов.

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:


  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;

  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два различных корня;

  3. D < 0. Если дискриминант меньше нуля, тогда у квадратного уравнения нет корней.

В зависимости от полученных корней и знака коэффициента a, возможно одно из шести расположений графика функции у = ax2 + bx + c.


Если требуется найти числовой промежуток, на котором квадратный трехчлен ax2 + bx + c больше нуля, то этот числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если нужно найти числовой промежуток, на котором квадратный трехчлен ax2 + bx + c меньше нуля — это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток. А если строгое — не входят.

Обучение на курсах по математике в онлайн-школе Skysmart сделает сложные темы понятными, а высокий балл на экзаменах — достижимым!

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, <, ≤, ≥.

Сейчас мы узнаем про интервалы в контексте решения квадратных неравенств.

Интервал — это некий промежуток числовой прямой, то есть все возможные числа, заключенные между двумя числами — концами интервала. Представить эти промежутки не так просто, поэтому интервалы принято рисовать.

Алгоритм решения квадратных неравенств методом интервалов:


  1. Найти нули квадратного трехчлена ax2 + bx + c из левой части квадратного неравенства.

  2. Изобразить координатную прямую и при наличии корней отметить их на ней.

    Если неравенство строгое, нужно отметить корни пустыми (выколотыми) точками. Если нестрогое — обычными точками. Именно эти точки разбивают координатную ось на промежутки.



  3. Определить, какие знаки имеют значения трехчлена на каждом промежутке (если на первом шаге нашли нули) или на всей числовой прямой (если нулей нет). И проставить над этими промежутками + или − в соответствии с определенными знаками.

  4. Если квадратное неравенство со знаком > или ≥ — наносим штриховку над промежутками со знаками +.

    Если неравенство со знаком < или ≤, то наносим штриховку над промежутками со знаком −.

    В результате получаем геометрический образ некоторого числового множества — это и есть решение неравенства.

    Либо вместо штриховки можно нарисовать «арки» для интервалов. Справа налево, начиная с +, проставить чередуя знаки + и −.



  5. Выбрать необходимые интервалы и записать ответ.

Расскажем подробнее про третий шаг алгоритма. Существует несколько подходов для определения знаков на промежутках.

Для примера возьмем трехчлен x2 + 4x — 5, его корнями являются числа -5 и 1, они разбивают числовую ось на три промежутка: (-∞, -5), (-5, 1) и (1, +∞).

Определим знак трехчлена x2 + 4x — 5 на промежутке (1, +∞). Для этого вычислим значение данного трехчлена при некотором значении x из этого промежутка. Можно брать любое значение переменной, главное — чтобы вычисления были простыми. В нашем случае, возьмем x = 2. Подставим его в трехчлен вместо переменной x:

  • 22 + 4 * 2 — 5 = 4 + 8 — 5 = 7.

7 — положительное число. Это значит, что любое значение квадратного трехчлена на интервале (1, +∞) будет положительным. Так мы определили знак плюс.

Определим знаки на оставшихся двух промежутках. Начнем с интервала (-5, 1). Из этого интервала можем взять x = 0 и вычислить значение квадратного трехчлена при этом значении переменной:

  • 02 + 4 * 0 — 5 = 0 + 0 — 5 = -5.

Так как -5 — отрицательное число, то на этом интервале все значения трехчлена будут отрицательными. Так мы определили знак минус.

Осталось определиться со знаком на промежутке (-∞, -5). Возьмем x = -6, подставляем:

  • (-6)2
    + 4 * (-6) — 5 = 36 — 24 — 5 = 7.

Следовательно, искомый знак — плюс.

Можно расставить знаки быстрее, если запомнить эти факты:

Плюс или минус: как определить знаки

Можно сделать вывод о знаках по значению старшего коэффициента a:

если a > 0, последовательность знаков: +, −, +,

если a < 0, последовательность знаков: −, +, −.

Можно также сделать вывод о знаках по значению старшего коэффициента a:

если a > 0, последовательность знаков: +, +,

если a < 0, последовательность знаков: −, −.

Например -4x2 — 7 не имеет корней и на промежутке (−∞, +∞) его значения отрицательны, так как коэффициент при x2 есть отрицательное число -4, и свободный член -7 тоже отрицателен.