Направление силы Ампера – кратко правило для определения направления действия

4.2

Средняя оценка: 4.2

Всего получено оценок: 287.

4.2

Средняя оценка: 4.2

Всего получено оценок: 287.

Опыты показывают, что на проводник с током, помещенный в магнитное поле, со стороны этого поля действует сила, называемая силой Ампера (по имени физика, открывшего ее). Поговорим о направлении силы Ампера.

Закон и сила Ампера

После того как в середине XIX в. Х. Эрстед открыл, что вокруг проводника появляется магнитное поле, многие исследователи стали изучать это явление. Выяснилось, что магнитное поле оказывает силовое действие не только на стрелку компаса, но и на проводник с электрическим током. Однако направление силы, с которой поле действует на проводник, не совпадало по направлению ни с направлением тока в проводнике, ни с направлением вектора магнитной индукции.

Наиболее глубокое исследование силы взаимодействия магнитного поля с электрическим током провел А. Ампер.

Рис. 1. А. Ампер.

Он установил закон, впоследствии названный его именем:

$$F= I |\overrightarrow B| Δl sin \alpha,$$

где:

  • $F$ — модуль силы, действующей на проводник;
  • $Δl$ — длина проводника;
  • $I$ — величина тока в проводнике;
  • $\overrightarrow B$ — вектор магнитной индукции;
  • $\alpha$ — угол между линиями магнитного поля и направлением тока в проводнике.

Сила, определяемая законом Ампера, также носит имя этого исследователя.

В дальнейшем оказалось, что в основе силы Ампера лежит действие магнитного поля на движущиеся заряды. Если носитель заряда двигается в магнитном поле, то со стороны этого поля на него начинает действовать сила Лоренца. В проводнике множество носителей заряда, и силы Лоренца, действующие на каждый из них, складываются в силу Ампера.

Правило левой руки

В отличие от кулоновских сил, которые направлены вдоль силовых линий поля, сила Ампера направлена иначе. Исследования показывают, что ее направление не совпадает ни с направлением линий магнитной индукции, ни с направлением тока в проводнике. Сила Ампера оказывается перпендикулярна обоим этим направлениям.

То есть, если ток в проводнике течет вперед, а магнитное поле направлено справа налево, то сила Ампера будет направлена вертикально вверх, перпендикулярно обоим направлениям. Если направить вектор магнитной индукции вверх (не меняя направление тока вперед), направление силы Ампера также изменится: она будет направлена слева направо. Наконец, если повернуть проводник так, чтобы ток двигался слева направо (вектор магнитной индукции оставить направленным вверх), то сила Ампера всё равно будет направлена перпендикулярно обоим направлениям, спереди назад.

Для определения направления силы Ампера вывели мнемоническое правило левой руки: если четыре вытянутых пальца левой руки указывают направление тока, а вектор магнитной индукции прокалывает ладонь (входит в ладонь), то отставленный большой палец укажет направление силы Ампера.

Рис. 2. Правило левой руки.

Действительно, отставленный большой палец всегда перпендикулярен как остальным четырем пальцам руки, так и направлению «прокола ладони».

При изменении направления движения тока на обратное сила Ампера также поменяет свое направление на обратное. Этим объясняется ориентирующее действие магнитного поля на рамку с током. В двух сторонах рамки ток течет вдоль одной прямой, но в разных направлениях. В результате сила Ампера, порожденная одним и тем же полем, будет также направлена вдоль одной прямой, но в разных направлениях. Следовательно, на рамку начнет действовать вращающий момент, и его действие прекратится лишь тогда, когда прямая действия силы Ампера не окажется в плоскости рамки.

Рис. 3. Ориентирующее действие магнитного поля на рамку.

Что мы узнали?

На проводник с током, помещенный в магнитное поле, действует сила Ампера. Ее величина зависит от силы тока, вектора индукции и определяется законом Ампера. Ее направление перпендикулярно и направлению тока в проводнике, и направлению вектора магнитной индукции. Оно определяется специальным мнемоническим правилом левой руки.

Тест по теме

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 287.


А какая ваша оценка?

Магнитная сила Ампера

Возьмем прямой проводник, изготовленный из алюминия, и подвесим его на тонких и гибких проводах таким образом, чтобы он находился между полюсами подковообразного постоянного магнита как на рисунке (а). Если в проводнике пропустить ток, проводник отклонится от положения равновесия — рисунок (б). Причиной такого отклонения является сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, французский физик, математик и химик Андре Мари Ампер. Именно поэтому это явление называют магнитной силой Ампера.

 

Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.

Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, которая расположена в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к ​​линиям магнитной индукции расположен проводник.

Значение силы Ампера (FA) вычисляют по формуле:

где В — магнитная индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Угол α — это угол между направлением вектора магнитной индукции и направлением тока в проводнике

Обратите внимание! Магнитное поле не будет действовать на проводник с током (FA= 0), если проводник расположен параллельно магнитным линиям поля (sin α = 0).

Определение
направления силы Ампера
по правилу левой руки

Чтобы определить направление силы Ампера, используют правило левой руки:

Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

На рисунке слева показано определения направления силы Ампера, действующая на проводник, расположенный в однородном магнитном поле. Давайте определим направление тока в проводнике, направление магнитной индукции и направление силы Ампера.

Получаем формулу для определения модуля магнитной индукции

Если проводник расположен перпендикулярно к линиям магнитной индукции (α = 90 °, sin α = 1), то поле действует на проводник с максимальной силой:

Отсюда получаем формулу для определения модуля магнитной индукции:

Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.

Например, если уменьшить силу тока в проводнике, то изменится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.

В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:

1Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.

Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ задачи:

Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.

Решение:

В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.

Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.

1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).

2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.

3) Приходим к выводу: проводник А привлекается к проводнику В.

Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).

2) Определим направление силы Ампера, действующая на проводник В.

3) Приходим к выводу: проводник В привлекается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.

Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?

Анализ задачи:

Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:

  1. сила Ампера будет направлена ​​противоположно силе тяжести (то есть вертикально вверх)
  2. значение силы Ампера равна значению силы тяжести FA =  Fтяж

Направление тока определим, воспользовавшись правилом левой руки.

Решение:

Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.

Учитываем, что FA =  FтяжFA= BIlsinα, где sin α = 1; Fтяж = mg

Из последнего выражения найдем силу тока: I = mg/Bl

Проверим единицу, найдем значение искомой величины.

Ответ: I = 8 А; Ток в направлении от нас.

Подводим итоги

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

Электромагнитные силы и поля

Магнитное поле природного магнетита слишком слабое, чтобы его можно было использовать в таких устройствах, как современные двигатели и генераторы; эти магнитные поля должны исходить от электрических токов. Магнитные поля воздействуют на движущиеся заряды, а движущиеся заряды создают магнитные поля; поэтому понятия магнетизма и электричества тесно переплетены.

Магнитные поля и силовые линии

Стержневой магнит притягивает к своим концам железные предметы, называемые полюсов . Один конец — это северный полюс , а другой — южный полюс . Если стержень подвешен так, что он может свободно двигаться, магнит выровняется так, что его северный полюс будет указывать на географический север Земли. Подвешенный стержневой магнит действует как компас в магнитном поле Земли. Если два стержневых магнита сблизить, то одноименные полюса будут отталкиваться, а разноименные притягиваться. (Примечание: по этому определению магнитный полюс под северным географическим полюсом Земли является южным полюсом магнитного поля Земли.)

Это магнитное притяжение или отталкивание можно объяснить как воздействие одного магнита на другой, или можно сказать, что один магнит создает магнитное поле вокруг себя, которое воздействует на другой магнит. Магнитное поле в любой точке является вектором. Направление магнитного поля ( B ) в указанной точке — это направление, которое северный конец стрелки компаса указывает на это положение. Линии магнитного поля , аналогичные силовым линиям электрического поля, описывают силу, действующую на магнитные частицы, помещенные в поле. Железные опилки будут выровнены, чтобы показать образцы линий магнитного поля.

Сила на движущийся заряд

Если заряд движется через магнитное поле под углом, на него действует сила. Уравнение имеет вид F = q v × B или F = qvB sin θ, где q — заряд, B — магнитное поле, v это скорость, и θ — угол между направлениями магнитного поля и скорости; таким образом, используя определение перекрестного произведения, определение магнитного поля равно

 

Магнитное поле выражается в единицах СИ как тесла (Тл), который также называется вебером на квадратный метр: 

Направление F определяется по правилу правой руки, показанному на рисунке 1.

Рисунок 1

Использование правила правой руки для определения направления магнитной силы на движущийся заряд.

Чтобы найти направление силы, действующей на заряд, направьте большой палец ладони в направлении скорости положительного заряда, а пальцы — в направлении магнитного поля. Направление силы выходит за пределы ладони. (Если движущийся заряд отрицателен, укажите большим пальцем направление, противоположное его движению.) Математически эта сила представляет собой перекрестное произведение вектора скорости и вектора магнитного поля.

Если скорость заряженной частицы перпендикулярна однородному магнитному полю, сила всегда будет направлена ​​к центру окружности радиусом r , как показано на рисунке 2. x символизирует магнитное поле в плоскость бумаги — хвост стрелы. (Точка обозначает вектор вне плоскости бумаги — кончик стрелки.)

Рисунок 2

Сила, действующая на заряд, движущийся перпендикулярно магнитному полю, направлена ​​к центру окружности.

Магнитная сила обеспечивает центростремительное ускорение: 

или

Радиус пути пропорционален массе заряда. Это уравнение лежит в основе работы масс-спектрометр , который может разделять одинаково ионизированные атомы немного разных масс. Однократно ионизированным атомам даны равные скорости, и поскольку их заряды одинаковы и они проходят через одни и те же B , они будут двигаться немного разными путями и затем могут быть разделены.

Сила, действующая на проводник с током

Заряды, закрепленные в проводах, также могут испытывать силу в магнитном поле. Ток (I) в магнитном поле ( B ) испытывает силу ( F ), определяемую уравнением направление тока. Направление силы можно найти по правилу правой руки, аналогичному показанному на рис. В этом случае укажите большим пальцем направление тока — направление движения положительных зарядов. Ток не будет испытывать силы, если он параллелен магнитному полю.

Крутящий момент в токовой петле

Петля с током в магнитном поле может испытывать крутящий момент, если она может свободно вращаться. На рисунке (а) изображена квадратная петля из проволоки в магнитном поле, направленном вправо. Представьте на рисунке (b), что ось провода повернута под углом (θ) к магнитному полю, и что вид смотрит вниз на верхнюю часть петли. x в круге изображает ток, перемещающийся на страницу от зрителя, а точка в круге изображает поток, выходящий из страницы к зрителю.

Рисунок 3

(a) Квадратная токовая петля в магнитном поле  B . (b) Вид с вершины текущей петли. (c) Если петля наклонена относительно B , возникает крутящий момент.

Правило правой руки определяет направление сил. Если петля поворачивается, эти силы создают крутящий момент, поворачивающий петлю. Величина этого крутящего момента равна t = Н I А × B , где Н — число витков петли, В — магнитное поле, I — ток, а А — площадь петли, представленная вектором, перпендикулярным петле.

Гальванометры, амперметры и вольтметры

Крутящий момент на токовой петле в магнитном поле обеспечивает основной принцип работы гальванометра , чувствительного устройства для измерения тока. К токовой катушке прикреплена игла — набор петель. Крутящий момент дает определенное отклонение стрелки, которое зависит от тока, и стрелка перемещается по шкале, чтобы можно было считывать показания в амперах.

Амперметр представляет собой прибор для измерения тока, состоящий из механизма гальванометра, соединенного параллельно с резистором. Амперметры изготавливаются для измерения различных диапазонов тока. Вольтметр состоит из механизма гальванометра, включенного последовательно с резистором. Вольтметр измеряет небольшую часть тока, а шкала показывает разность потенциалов — вольт — между двумя точками цепи.

Магнитное поле длинного прямого провода

Проводник с током создает магнитное поле магнитудой B по кругу вокруг провода. Уравнение для магнитного поля на расстоянии r от провода имеет вид

   

, где I — ток в проводе, а μ (греческая буква мю) — константа пропорциональности. Константа, называемая константой проницаемости , имеет значение

.

Направление поля задается вторым правилом правой руки, показанным на рис. 4.

Рисунок 4

Использование второго правила правой руки для определения направления магнитного поля, возникающего в результате тока.

Возьмитесь за провод так, чтобы большой палец указывал в направлении тока. Ваши пальцы будут скручиваться вокруг провода в направлении магнитного поля.

Закон Ампера

Закон Ампера позволяет рассчитывать магнитные поля. Рассмотрим круговой путь вокруг тока, показанный на рисунке. Путь разбивается на мелкие элементы длины (Δ l ). Обратите внимание на составляющую B , которая параллельна Δ l , и возьмите произведение этих двух величин как B Δ l . Закон Ампера гласит, что сумма этих произведений на замкнутом пути равна произведению тока и μ

Или в цельной форме 

Несколько аналогично тому, как закон Гаусса можно использовать для нахождения электрического поля для высокосимметричных зарядовых конфигураций, закон Ампера можно использовать для нахождения магнитных полей для токовых конфигураций с высокой симметрией. Например, закон Ампера можно использовать для получения выражения для магнитного поля, создаваемого длинным прямым проводом:

 

Магнитные поля контура, соленоида и тороида

Ток создает магнитное поле, и поле различается по мере того, как ток имеет форму (а) петли, (б) соленоида (длинной катушки провода) или (в) тороида (бубликообразной катушки из проволоки). проволока). Далее следуют уравнения для величин этих полей. Направление поля в каждом случае можно найти по второму правилу правой руки. На рис. 5 показаны поля для этих трех разных конфигураций.

Рисунок 5

Магнитное поле, создаваемое (а) токовой петлей, (б) соленоидом и (в) тороидом.

а. Поле в центре одной петли равно

.

, где r — радиус петли.

б. Поле, создаваемое соленоидом, равно B = μ 0 NI , где N — количество витков на единицу длины.

в. Поле, создаваемое тороидом, равно

.

, где R — радиус до центра тороида.

Сила Ампера: значение, формула и эксперимент

Мы знаем, что проводник с током создает магнитное поле и силу. Но как рассчитать эту силу и от чего она зависит. А что, если два токонесущих проводника расположить вплотную друг к другу. К счастью для нас, физик Андре-Мари Ампер обнаружил, что провод, по которому течет ток, притягивает или отталкивает другой провод, находящийся поблизости. Это единственное открытие привело к формированию того, что мы знаем сегодня как электромагнетизм. Основная единица тока была названа в честь Ампера в честь его работы. Его эксперименты и работа в области электромагнетизма привели к формулировке закона, называемого законом силы Ампера. Этот закон означает зависимость между индуцированной силой и другими факторами, такими как сила тока и длина провода. В этой статье мы рассмотрим закон силы Ампера и законы, которые легли в его основу. Мы также рассмотрим его уравнение и поработаем над несколькими примерами. Счастливого обучения!

Закон силы Ампера

Закон силы Ампера гласит, что сила F притяжения или отталкивания между двумя проводниками с током пропорциональна их длине и току, протекающему по ним.

Направление магнитной силы зависит от направления тока в обоих проводах, Wikimedia Commons CC-BY-SA-4.0

Если направление тока одинаково в обоих проводах, то сила привлекательна. Если ток течет в противоположных направлениях, то сила отталкивающая. Фундаментальную основу закона силы Ампера составляют следующие существовавшие ранее законы.

Правило большого пальца правой руки

Правило большого пальца правой руки изображено здесь; он показывает взаимосвязь между током, проходящим через провод, и создаваемым им магнитным полем, Wikimedia Commons CC-BY-SA-4. 0

Правило гласит, что если вы держите проводник с током, направив большой палец на поток тока , то направление, в котором скручиваются пальцы, будет представлять магнитное поле вокруг него.

Правило левой руки Флеминга


Правило левой руки Флеминга показывает направление тяги на проводник с током в магнитном поле, Wikimedia Commons CC-BY-SA-3.0

Правило гласит, что если мы растягиваем большой, средний палец и указательный палец левой руки так так, чтобы они составляли угол 90 градусов. Тогда большой палец будет указывать в направлении индуцированной силы (F), средний палец будет указывать в направлении тока (I), а указательный палец будет представлять направление магнитного поля (B)

Эксперимент с силой Ампера

Ампер впервые обнаружил явление силы, действующей между двумя проводами. Он заметил, что стрелка компаса отклоняется перпендикулярно, если ее приблизить к проводнику с током. Его следующие опыты заключались в изучении силы, действующей на два проводника с током путем изменения:

  • тока, проходящего по ним

  • направления токов

  • Расстояние между проводами и

  • Наконец, длина проводов

Он обнаружил, что два параллельных провода, по которым течет ток в одного направления будут притягиваться друг к другу и отталкиваться, если направления тока, проходящего через них, противоположны. А если две проволоки расположить перпендикулярно друг другу, то сила, действующая между ними, будет равна нулю.

Уравнение силы Ампера

Существует сложный математический вывод силы между двумя проводами, который вам не нужно знать для экзамена GCSE!

Мы знаем, что сила Ампера пропорциональна длине провода и протекающему по нему току. Сила Ампера между двумя параллельными проводами может быть получена следующим образом:

Сила Ампера между двумя параллельными проводами, Wikimedia Commons

Если мы поместим два провода с током 1 А параллельно друг другу на расстоянии 1 м. Тогда сила между ними будет равна 2×10-7Н. Это также можно использовать для определения значения 1A. Мы знаем, что ампер является стандартной единицей силы тока. 1А также может быть определен как ток, протекающий по параллельным проводам на расстоянии 1 м друг от друга, который создает силу 2×10-7Н.

Есть несколько интересных свойств силы Ампера.

  • Сила имеет притягательный характер, когда ток в обоих проводах течет в противоположном направлении.

  • Сила носит отталкивающий характер, когда ток течет в одном направлении.

  • Сила равна нулю, когда два провода перпендикулярны друг другу.

  • Сила увеличивается по мере увеличения величины тока в проводах.

  • Также обратно пропорционально расстоянию между проводами.

Продольная сила Ампера

Позже Ампер обнаружил дополнительную силу, которая действовала вдоль оси провода с током. Эта сила называется продольной силой Ампера .