Линейные неравенства, решение и примеры
Основные понятия
Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.
Неравенство — это алгебраическое выражение, в котором используются знаки ≠, <, >, ≤, ≥.
Линейные неравенства — это неравенства вида:
- ax + b < 0,
- ax + b > 0,
- ax + b ≥ 0,
- ax + b ≤ 0,
где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти все значения переменной, при которой неравенство верное.
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Типы неравенств
- Строгие — используют только больше (>) или меньше (<):
- a < b — это значит, что a меньше, чем b.
- a > b — это значит, что a больше, чем b.
- a > b и b < a означают одно и тоже, то есть равносильны.
- Нестрогие — используют сравнения ≥ (больше или равно) или ≤ (меньше или равно):
- a ≤ b — это значит, что a меньше либо равно b.
- a ≥ b — это значит, что a больше либо равно b.
- знаки ⩽ и ⩾ являются противоположными.
- Другие типы:
- a ≠ b — означает, что a не равно b.
- a ≫ b — означает, что a намного больше, чем b.
- a ≪ b — означает, что a намного меньше, чем b.
- знаки >> и << противоположны.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Линейные неравенства: свойства и правила
Вспомним свойства числовых неравенств:
- Если а > b , то b < а. Также наоборот: а < b, то b > а.
- Если а > b и b > c, то а > c. И также если а < b и b < c, то а < c.
- Если а > b, то а + c > b+ c (и а – c > b – c).
Если же а < b, то а + c < b + c (и а – c < b – c). К обеим частям можно прибавлять или вычитать одну и ту же величину.
- Если а > b и c > d, то а + c > b + d.
Если а < b и c < d, то а + c < b + d.
Два неравенства одинакового смысла можно почленно складывать. Но важно перепроверять из-за возможных исключений. Например, если из 12 > 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
- Если а > b и c < d, то а – c > b – d.
Если а < b и c > d, то а – c < b – d.
Из одного неравенства можно почленно вычесть другое противоположного смысла, оставляя знак того, из которого вычиталось.
- Если а > b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).
Если же а > b, n — отрицательное число, то nа < nb и
Обе части можно умножить или разделить на одно отрицательное число, при этом знак неравенства поменять на противоположный.
- Если а > b и c > d, где а, b, c, d > 0, то аc > bd.
Если а < b и c < d, где а, b, c, d > 0, то аc < bd.
Неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие данного правила или квадратный пример: если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2. На множестве положительных чисел обе части можно возвести в квадрат.
- Если а > b, где а, b > 0, то
Если а < b , то
Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.
Важно знать
Два неравенства можно назвать равносильными, если у них одинаковые решения.
Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.
Свойства выше помогут нам использовать следующие правила.
Правила линейных неравенств
|
Решение линейных неравенств
Линейные неравенства с одной переменной x выглядят так:
- ax + b < 0,
- ax + b > 0,
- ax + b ≤ 0,
- ax + b ≥ 0,
где a и b — действительные числа. А на месте x может быть обычное число.
Равносильные преобразования
Для решения ax + b < 0 (≤, >, ≥) нужно применить равносильные преобразования неравенства. Рассмотрим два случая: когда коэффициент равен и не равен нулю.
Алгоритм решения ax + b < 0 при a ≠ 0
- перенесем число b в правую часть с противоположным знаком,
- получим равносильное: ax < −b;
- произведем деление обеих частей на число не равное нулю.
Когда a положительное, то знак неравенства остается без изменений, если a — отрицательное, знак меняется на противоположный.
Рассмотрим пример: 4x + 16 ≤ 0.
Как решаем: В данном случае a = 4 и b = 16, то есть коэффициент при x не равен нулю. Применим вышеописанный алгоритм.
- Перенесем слагаемое 16 в другую часть с измененным знаком: 4x ≤ −16.
- Произведем деление обеих частей на 4. Не меняем знак, так как 4 — положительное число: 4x : 4 ≤ −16 : 4 ⇒ x ≤ −4.
- Неравенство x ≤ −4 является равносильным. То есть решением является любое действительное число, которое меньше или равно 4.
Ответ: x ≤ −4 или числовой промежуток (−∞, −4].
При решении ax + b < 0, когда а = 0, получается 0 * x + b < 0. На рассмотрение берется b < 0, после выясняется верное оно или нет.
Вернемся к определению решения неравенства. При любом значении x мы получаем числовое неравенство вида b < 0. При подстановке любого t вместо x, получаем 0 * t + b < 0 , где b < 0. Если оно верно, то для решения подойдет любое значение. Когда b < 0 неверно, тогда данное уравнение не имеет решений, так как нет ни одного значения переменной, которое может привести к верному числовому равенству.
Числовое неравенство вида b < 0 (≤, > , ≥) является верным, когда исходное имеет решение при любом значении. Неверно тогда, когда исходное не имеет решений.
Рассмотрим пример: 0 * x + 5 > 0.
Как решаем:
- Данное неравенство 0 * x + 5 > 0 может принимать любое значение x.
- Получается верное числовое неравенство 5 > 0. Значит его решением может быть любое число.
Ответ: промежуток (− ∞ , + ∞).
Метод интервалов
Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.
Метод интервалов заключается в следующем:
- вводим функцию y = ax + b;
- ищем нули для разбиения области определения на промежутки;
- отмечаем полученные корни на координатной прямой;
- определяем знаки и отмечаем их на интервалах.
Алгоритм решения ax + b < 0 (≤, >, ≥) при a ≠ 0 с использованием метода интервалов:
- найдем нули функции y = ax + b для решения уравнения ax + b = 0.
Если a ≠ 0, тогда решением будет единственный корень — х₀;
- начертим координатную прямую с изображением точки с координатой х₀, при строгом неравенстве точку рисуем выколотой, при нестрогом — закрашенной;
- определим знаки функции y = ax + b на промежутках.
Для этого найдем значения функции в точках на промежутке;
- если решение неравенства со знаками > или ≥ — добавляем штриховку над положительным промежутком на координатной прямой, если < или ≤ — над отрицательным промежутком.
Рассмотрим пример: −6x + 12 > 0.
Как решаем:
В соответствии с алгоритмом, сначала найдем корень уравнения − 6x + 12 = 0,
−6x = −12,
x = 2.
Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.
Определим знаки на промежутках.
Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.
Определяем знак на промежутке (2, + ∞) , тогда подставляем значение х = 3. Получится, что −6 * 3 + 12 = − 6, − 6 < 0 . Знак на промежутке является отрицательным.
Штриховку сделаем над положительным промежутком.
По чертежу делаем вывод, что решение имеет вид (−∞, 2) или x < 2.
Ответ: (−∞, 2) или x < 2.
Графический способ
Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.
Алгоритм решения y = ax + b графическим способом
- во время решения ax + b < 0 определить промежуток, где график изображен ниже оси Ох;
- во время решения ax + b ≤ 0 определить промежуток, где график изображается ниже Ох или совпадает с осью;
- во время решения ax + b > 0 определить промежуток, где график изображается выше Ох;
- во время решения ax + b ≥ 0 определить промежуток, где график находится выше оси Ох или совпадает.
Рассмотрим пример: −5 * x − √3 > 0.
Как решаем
- Так как коэффициент при x отрицательный, данная прямая является убывающей.
- Координаты точки пересечения с Ох равны (−√3 : 5; 0).
- Неравенство имеет знак >, значит нужно обратить внимание на промежуток выше оси Ох.
- Поэтому открытый числовой луч (−∞, −√3 : 5) будет решением.
Ответ: (−∞, −√3 : 5) или x < −√3 : 5.
Линейные неравенства в 8 классе — это маленький кирпич, который будет заложен в целый фундамент знаний. Мы верим, что у все получится!
Главная → Видеоуроки → ОГЭ (ГИА) по математике. Задача 8. Описание видеоурока: ОГЭ (ГИА) 2015 по математике. Модуль Алгебра. Задача №8. Условие задачи: На каком рисунке изображено множество решений неравенства 3-x >= 3x+5 00:02:06 Валерий Волков 9 28.01.2015 Будем рады, если Вы поделитесь ссылкой на этот видеоурок с друзьями! Новости образования | ЕГЭ по математике Профильный уровень Задание 1 Задание 2 Задание 3 Задание 4 Задание 5 Задание 6 Задание 7 Задание 8 Задание 9 Задание 10 Задание 11 Задание 12 Задание 13 Задание 14 Задание 15 Задание 16 Задание 17 Задание 18 Задание 19 Задание 20 Задание 21 ГИА по математике Задача 1 Задача 2 Задача 3 Задача 4 Задача 5 Задача 6 Задача 7 Задача 8 Задача 9 Задача 10 Задача 11 Задача 12 Задача 13 Задача 14 Задача 15 Задача 16 Задача 17 Задача 18 Задача 19 Задача 20 Задача 21 Задача 22 Задача 23 Задача 24 Задача 25 Задача 26 Демонстрационные варианты ОГЭ по математике Математика. 5 класс. Натуральные числа Обыкновенные дроби Десятичные дроби Проценты Математика. 6 класс. Делимость чисел Сложение и вычитание дробей с разными знаменателями Умножение и деление обыкновенных дробей Отношения и пропорции Положительные и отрицательные числа Измерение величин Математика. 7 класс. Преобразование выражений Многочлены Формулы сокращенного умножения Математика. 8 класс. Модуль числа. Уравнения и неравенства. Квадратные уравнения Квадратные неравенства Уравнения с параметром Задачи с параметром Математика. 9 класс. Функции и их свойства Прогрессии Векторы Комбинаторика, статистика и теория вероятностей Математика. 10 — 11 класс. Числовые функции Тригонометрические функции Тригонометрические уравнения Преобразование тригонометрических выражений Производная Степенные функции Показательная функция Логарифмические функции Первообразная и интеграл Уравнения и неравенства Комбинаторика Создаёте видеоуроки? Если Вы создаёте авторские видеоуроки для школьников и учителей и готовы опубликовать их, то просим Вас связаться с администратором портала. Актуально Физкультминутки для школьников и дошкольников Подготовка к ЕГЭ Подготовка к ОГЭ |
Решите неравенства с помощью Пошагового решения математических задач
В главе 2 мы установили правила решения уравнений с использованием арифметических чисел. Теперь, когда мы изучили операции над числами со знаком, мы будем использовать те же правила для решения уравнений, в которых участвуют отрицательные числа. Мы также изучим методы решения и построения графиков неравенств с одним неизвестным.
РЕШЕНИЕ УРАВНЕНИЙ, ВКЛЮЧАЮЩИХ ЧИСЛА СО ЗНАКОМ
ЗАДАЧИ
По завершении этого раздела вы должны уметь решать уравнения, содержащие числа со знаком.
Пример 1 Найдите х и проверьте: х + 5 = 3 для x и проверьте: — 3x = 12
Решение
Разделив каждую сторону на -3, мы получим
Всегда проверяйте исходное уравнение. |
Другой способ решения уравнения 3x — 4 = 7x + 8 будет сначала вычесть 3x с обеих сторон, получив -4 = 4x + 8, , затем вычесть 8 с обеих сторон и получить -12 = 4x. Теперь разделите обе части на 4, чтобы получить — 3 = x или x = — 3. |
Сначала удалите скобки. Затем следуйте процедуре, описанной в главе 2. |
ЛИТЕРАЛЬНЫЕ УРАВНЕНИЯ
ЗАДАЧИ
По завершении этого раздела вы сможете:
- Найдите буквальное уравнение.
- Применяйте ранее изученные правила для решения буквенных уравнений.
Уравнение, состоящее из более чем одной буквы, иногда называют буквальным уравнением . Иногда бывает необходимо решить такое уравнение для одной из букв через другие. Пошаговая процедура, рассмотренная и использованная в главе 2, по-прежнему действительна после удаления любых символов группировки.
Пример 1 Решить для c: 3(x + c) — 4y = 2x — 5c
Решение
Сначала удалите скобки.
Здесь мы отмечаем, что, поскольку мы решаем для c, мы хотим получить c с одной стороны и все остальные члены с другой стороны уравнения. Таким образом, мы получаем
Помните, abx это то же самое, что и 1abx. Делим на коэффициент при x, который в данном случае равен ab. |
Решите уравнение 2x + 2y — 9x + 9a, сначала вычитая 2.v из обеих частей. Сравните решение с полученным в примере. |
Иногда форма ответа может быть изменена. В этом примере мы могли бы умножить и числитель, и знаменатель ответа на (-l) (это не меняет значения ответа) и получить
Преимущество этого последнего выражения перед первым состоит в том, что много отрицательных знаков в ответе.
Умножение числителя и знаменателя дроби на одно и то же число является использованием фундаментального принципа дробей. |
Наиболее часто используемые буквенные выражения — это формулы из геометрии, физики, бизнеса, электроники и т. д.
Пример 4 – это формула площади трапеции. Решите для с.
Трапеция имеет две параллельные стороны и две непараллельные стороны. Параллельные стороны называются основаниями. Удаление скобок не означает просто их стирание. Мы должны умножить каждый член в скобках на множитель, стоящий перед скобками. Изменение формы ответа не обязательно, но вы должны уметь распознавать правильный ответ, даже если форма отличается. |
Пример 5 представляет собой формулу, определяющую проценты (I), полученные за период D дней, когда известны основная сумма долга (p) и годовая ставка (r). Найдите годовую ставку, если известны сумма процентов, основная сумма долга и количество дней.
Решение
Задача требует решения для r.
Обратите внимание, что в этом примере r оставлено справа, и поэтому вычисления упростились. Мы можем переписать ответ по-другому, если захотим.
ГРАФИЧЕСКИЕ НЕРАВЕНСТВА
ЦЕЛИ
По завершении этого раздела вы должны уметь:
- Используйте символ неравенства для представления относительного положения двух чисел на числовой прямой.
- Графические неравенства на числовой прямой.
Мы уже обсуждали набор из рациональные числа как те, которые могут быть выражены как отношение двух целых чисел. Существует также набор чисел, называемый иррациональными числами, , которые нельзя выразить как отношение целых чисел. В этот набор входят такие числа как и так далее. Множество, состоящее из рациональных и иррациональных чисел, называется действительных чисел.
Для любых двух действительных чисел a и b всегда можно сказать, что Много раз нас интересует только, равны ли два числа, но бывают ситуации, когда мы также хотим представить относительный размер чисел, которые не равны.
Символы представляют собой символы неравенства или отношений порядка и используются для отображения относительных размеров значений двух чисел. Обычно мы читаем этот символ как «больше чем». Например, a > b читается как «а больше, чем b». Обратите внимание, что мы заявили, что обычно читаем
Утверждение 2 |
a
Какое положительное число можно прибавить к 2, чтобы получить 5? |
Проще говоря, это определение утверждает, что а меньше b, если мы должны добавить что-то к а, чтобы получить b. Конечно, «что-то» должно быть положительным.
Если вы думаете о числовой строке, вы знаете, что добавление положительного числа эквивалентно перемещению вправо по числовой строке. Это приводит к следующему альтернативному определению, которое может быть легче визуализировать.
Пример 1 3
Мы могли бы также написать 6 > 3. |
Пример 2 — 4
Мы могли бы также написать 0 > — 4. |
Пример 3 4 > — 2, потому что 4 находится справа от -2 на числовой прямой.
Пример 4 — 6
Математическое утверждение x
Вы понимаете, почему невозможно найти наибольшее число меньше 3? |
На самом деле, назвать число x, которое является наибольшим числом меньше 3, невозможно. Однако это может быть указано в числовой строке. Для этого нам нужен символ, представляющий значение утверждения, такого как x
Символы ( и ), используемые на числовой прямой, указывают на то, что конечная точка не включена в набор.
Пример 5 График x
Решение
Обратите внимание, что на графике есть стрелка, указывающая, что линия продолжается без конца влево.
Этот график представляет каждое действительное число меньше 3. |
Пример 6 График x > 4 на числовой прямой. Пример 7
Решение
На этом графике представлены все действительные числа больше -5. |
Пример 8 Постройте линейный график, показывающий, что x > — 1 и x
Решение
Утверждение x > — 1 и x
На этом графике представлены все действительные числа от — 1 до 5. |
Пример 9 График — 3
Решение
Если мы хотим включить конечную точку в набор, мы используем другой символ, :. Мы читаем эти символы как «равно или меньше» и «равно или больше».
Пример 10 х >; 4 указывает число 4 и все действительные числа справа от 4 на числовой прямой.
Что означает x |
Символы [ и ], используемые в числовой строке, указывают, что конечная точка включена в набор.
Вы обнаружите, что такое использование скобок и квадратных скобок соответствует их использованию в будущих курсах по математике. |
Этот график представляет число 1 и все действительные числа больше 1. |
Leave A Comment