Мономер ДНК. Какие мономеры образуют молекулу ДНК?

Нуклеиновые кислоты, особенно ДНК, достаточно хорошо известны в науке. Объясняется это тем, что они являются веществами клетки, от которых зависит хранение и передача её наследственной информации. ДНК, открытое еще в 1868 году Ф. Мишером, представляет собой молекулы с ярко выраженными кислотными свойствами. Ученый выделил её из ядер лейкоцитов – клеток иммунной системы. В течение последующих 50 лет исследования нуклеиновых кислот проводились эпизодически, так как большинство ученых биохимиков считали главными органическими веществами, отвечающими в том числе и за наследственные признаки, белки.

С момента расшифровки строения ДНК, проведенной Уотсоном и Криком в 1953 году, начинаются серьёзные исследования, выяснившие что, дезоксирибонуклеиновая кислота – это полимер, а мономерами ДНК служат нуклеотиды. Их виды и строение будут изучены нами в данной работе.

Нуклеотиды как структурные единицы наследственной информации

Одно из фундаментальных свойств живой материи – это сохранение и передача информации о строении и функциях как клетки, так и всего организма в целом. Эту роль выполняет дезоксирибонуклеиновая кислота, а мономеры ДНК – нуклеотиды представляют собой своеобразные «кирпичики», из которых и построена уникальная конструкция вещества наследственности. Рассмотрим, какими же признаками руководствовалась живая природа, создавая суперспираль нуклеиновой кислоты.

Как образуются нуклеотиды

Чтобы ответить на этот вопрос, нам понадобятся некоторые знания из области химии органических соединений. В частности, мы напомним, что в природе существует группа азотсодержащих гетероциклических гликозидов, соединенных с моносахаридами – пентозами (дезоксирибозой или рибозой). Они называются нуклеозидами. Например, аденозин и другие виды нуклеозидов присутствуют в цитозоле клетки. Они вступают в реакцию этерификации с молекулами ортофосфорной кислоты. Продуктами этого процесса и будут нуклеотиды. Каждый мономер ДНК, а их четыре вида, имеет название, например, гуаниновый, тиминовый и цитозиновый нуклеотид.

Пуриновые мономеры ДНК

В биохимии принята классификация, разделяющая мономеры ДНК и их строение на две группы: так, пуриновыми являются адениновый и гуаниновый нуклеотиды. Они содержат в своем составе производные пурина – органического вещества, имеющего формулу C5H4N4. Мономер ДНК – гуаниновый нуклеотид, также содержит пуриновое азотистое основание, соединенное с дезоксирибозой N-гликозидной связью, находящейся в бетоконфигурации.

Пиримидиновые нуклеотиды

Азотистые основания, называемые цитидином и тимидином, являются производными органического вещества пиримидина. Его формула C4H4N2. Молекула представляет собой шестичленный плоский гетероцикл, содержащий два атома нитрогена. Известно, что вместо тиминового нуклеотида в молекулах рибонуклеиновой кислоты, таких как рРНК, тРНК, иРНК, содержится урациловый мономер. В процессе транскрипции, во время списывания информации с гена ДНК на молекулу иРНК, тиминовый нуклеотид замещается на адениновый, а адениновый нуклеотид – на урациловый в синтезируемой цепи иРНК. То есть справедливой будет следующая запись: А – У, Т – А.

Правило Чаргаффа

В предыдущем разделе мы уже частично коснулись принципов соответствия мономеров в цепях ДНК и в комплексе ген-иРНК. Известный биохимик Э. Чаргафф установил совершенно уникальное свойство молекул дезоксирибонуклеиновой кислоты, а именно, что количество адениновых нуклеотидов в ней всегда равно тиминовым, а гуаниновых – цитозиновым. Главной теоретической базой принципов Чаргаффа послужили исследования Уотсона и Крика, установившие, какие мономеры образуют молекулу ДНК и какую пространственную организацию они имеют. Еще одна закономерность, выведенная Чаргаффом и названная принципом комплементарности, указывает на химическое родство пуриновых и пиримидиновых оснований и их способность при взаимодействии между собой образовывать водородные связи. Это значит, что расположение мономеров в обеих цепях ДНК строго детерминировано: так, напротив А первой цепи ДНК может находиться только Т другой и между ними возникают две водородные связи. Напротив гуанинового нуклеотида может располагаться только цитозиновый. В этом случае между азотистыми основаниями образуются три водородные связи.

Роль нуклеотидов в генетическом коде

Для осуществления реакции биосинтеза белка, происходящей в рибосомах, существует механизм перевода информации об аминокислотном составе пептида из последовательности нуклеотидов иРНК в последовательность аминокислот. Оказалось, что три рядом расположенных мономера несут в себе информацию об одной из 20 возможных аминокислот. Это явление получило название генетический код. В решении задач по молекулярной биологии его применяют для определения как аминокислотного состава пептида, так и для выяснения вопроса: какие мономеры образуют молекулу ДНК, иными словами, каков состав соответствующего гена. Например, триплет (кодон) ААА в гене кодирует аминокислоту фенилаланин в молекуле белка, а в генетическом коде ей будет соответствовать триплет UUU в цепи иРНК.

Взаимодействие нуклеотидов в процессе редупликации ДНК

Как было выяснено ранее, структурные единицы, мономеры ДНК – это нуклеотиды. Их определенная последовательность в цепях является матрицей для процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты. Это явление происходит в S-стадии интерфазы клетки. Последовательность нуклеотидов новой молекулы ДНК собирается на материнских цепях под действием фермента ДНК-полимеразы с учетом принципа комплементарности (А – Т, Д – С). Репликация относится к реакциям матричного синтеза. Это значит, что мономеры ДНК и их строение в материнских цепях служат основой, то есть матрицей для её дочерней копии.

Может ли изменяться строение нуклеотида

К слову скажем, что дезоксирибонуклеиновая кислота – это очень консервативная структура клеточного ядра. Этому есть логическое объяснение: наследственная информация, хранящаяся в хроматине ядра, должна быть неизменной и копироваться без искажений. Ну а клеточный геном постоянно находится «под прицелом» факторов внешней среды. Например, таких агрессивных химических соединений, как алкоголь, лекарственное средство, радиоактивное излучение. Все они являются так называемыми мутагенами, под воздействием которых любой мономер ДНК может изменить свое химическое строение. Такое искажение в биохимии называют точковой мутацией. Частота возникновения их в геноме клетки достаточно высока. Мутации исправляются хорошо отлаженной работой клеточной репарационной системы, включающей в себя набор ферментов.

Одни из них, например рестриктазы, «вырезают» поврежденные нуклеотиды, полимеразы обеспечивают синтез нормальных мономеров, лигазы «сшивают» восстановленные участки гена. Если же вышеописанный механизм по какой-то причине в клетке не срабатывает и дефектный мономер ДНК остается в её молекуле, мутация подхватывается процессами матричного синтеза и фенотипически проявляется в виде белков с нарушенными свойствами, неспособных выполнять необходимые функции, присущие им в клеточном обмене веществ. Это является серьёзным негативным фактором, снижающим жизнеспособность клетки и сокращающим продолжительность её жизни.

fb.ru

Мономер ДНК. Какие мономеры образуют молекулу ДНК?

Нуклеиновые кислоты, особенно ДНК, достаточно хорошо известны в науке. Объясняется это тем, что они являются веществами клетки, от которых зависит хранение и передача её наследственной информации. ДНК, открытое еще в 1868 году Ф. Мишером, представляет собой молекулы с ярко выраженными кислотными свойствами. Ученый выделил её из ядер лейкоцитов – клеток иммунной системы. В течение последующих 50 лет исследования нуклеиновых кислот проводились эпизодически, так как большинство ученых биохимиков считали главными органическими веществами, отвечающими в том числе и за наследственные признаки, белки.

С момента расшифровки строения ДНК, проведенной Уотсоном и Криком в 1953 году, начинаются серьёзные исследования, выяснившие что, дезоксирибонуклеиновая кислота – это полимер, а мономерами ДНК служат нуклеотиды. Их виды и строение будут изучены нами в данной работе.

Нуклеотиды как структурные единицы наследственной информации

Одно из фундаментальных свойств живой материи – это сохранение и передача информации о строении и функциях как клетки, так и всего организма в целом. Эту роль выполняет дезоксирибонуклеиновая кислота, а мономеры ДНК – нуклеотиды представляют собой своеобразные «кирпичики», из которых и построена уникальная конструкция вещества наследственности. Рассмотрим, какими же признаками руководствовалась живая природа, создавая суперспираль нуклеиновой кислоты.

Как образуются нуклеотиды

Чтобы ответить на этот вопрос, нам понадобятся некоторые знания из области химии органических соединений. В частности, мы напомним, что в природе существует группа азотсодержащих гетероциклических гликозидов, соединенных с моносахаридами – пентозами (дезоксирибозой или рибозой). Они называются нуклеозидами. Например, аденозин и другие виды нуклеозидов присутствуют в цитозоле клетки. Они вступают в реакцию этерификации с молекулами ортофосфорной кислоты. Продуктами этого процесса и будут нуклеотиды. Каждый мономер ДНК, а их четыре вида, имеет название, например, гуаниновый, тиминовый и цитозиновый нуклеотид.

Пуриновые мономеры ДНК

В биохимии принята классификация, разделяющая мономеры ДНК и их строение на две группы: так, пуриновыми являются адениновый и гуаниновый нуклеотиды. Они содержат в своем составе производные пурина – органического вещества, имеющего формулу C5H4N4. Мономер ДНК – гуаниновый нуклеотид, также содержит пуриновое азотистое основание, соединенное с дезоксирибозой N-гликозидной связью, находящейся в бетоконфигурации.

Пиримидиновые нуклеотиды

Азотистые основания, называемые цитидином и тимидином, являются производными органического вещества пиримидина. Его формула C4H4N2. Молекула представляет собой шестичленный плоский гетероцикл, содержащий два атома нитрогена. Известно, что вместо тиминового нуклеотида в молекулах рибонуклеиновой кислоты, таких как рРНК, тРНК, иРНК, содержится урациловый мономер. В процессе транскрипции, во время списывания информации с гена ДНК на молекулу иРНК, тиминовый нуклеотид замещается на адениновый, а адениновый нуклеотид – на урациловый в синтезируемой цепи иРНК. То есть справедливой будет следующая запись: А – У, Т – А.

Правило Чаргаффа

В предыдущем разделе мы уже частично коснулись принципов соответствия мономеров в цепях ДНК и в комплексе ген-иРНК. Известный биохимик Э. Чаргафф установил совершенно уникальное свойство молекул дезоксирибонуклеиновой кислоты, а именно, что количество адениновых нуклеотидов в ней всегда равно тиминовым, а гуаниновых – цитозиновым. Главной теоретической базой принципов Чаргаффа послужили исследования Уотсона и Крика, установившие, какие мономеры образуют молекулу ДНК и какую пространственную организацию они имеют. Еще одна закономерность, выведенная Чаргаффом и названная принципом комплементарности, указывает на химическое родство пуриновых и пиримидиновых оснований и их способность при взаимодействии между собой образовывать водородные связи. Это значит, что расположение мономеров в обеих цепях ДНК строго детерминировано: так, напротив А первой цепи ДНК может находиться только Т другой и между ними возникают две водородные связи. Напротив гуанинового нуклеотида может располагаться только цитозиновый. В этом случае между азотистыми основаниями образуются три водородные связи.

Роль нуклеотидов в генетическом коде

Для осуществления реакции биосинтеза белка, происходящей в рибосомах, существует механизм перевода информации об аминокислотном составе пептида из последовательности нуклеотидов иРНК в последовательность аминокислот. Оказалось, что три рядом расположенных мономера несут в себе информацию об одной из 20 возможных аминокислот. Это явление получило название генетический код. В решении задач по молекулярной биологии его применяют для определения как аминокислотного состава пептида, так и для выяснения вопроса: какие мономеры образуют молекулу ДНК, иными словами, каков состав соответствующего гена. Например, триплет (кодон) ААА в гене кодирует аминокислоту фенилаланин в молекуле белка, а в генетическом коде ей будет соответствовать триплет UUU в цепи иРНК.

Взаимодействие нуклеотидов в процессе редупликации ДНК

Как было выяснено ранее, структурные единицы, мономеры ДНК – это нуклеотиды. Их определенная последовательность в цепях является матрицей для процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты. Это явление происходит в S-стадии интерфазы клетки. Последовательность нуклеотидов новой молекулы ДНК собирается на материнских цепях под действием фермента ДНК-полимеразы с учетом принципа комплементарности (А – Т, Д – С). Репликация относится к реакциям матричного синтеза. Это значит, что мономеры ДНК и их строение в материнских цепях служат основой, то есть матрицей для её дочерней копии.

Может ли изменяться строение нуклеотида

К слову скажем, что дезоксирибонуклеиновая кислота – это очень консервативная структура клеточного ядра. Этому есть логическое объяснение: наследственная информация, хранящаяся в хроматине ядра, должна быть неизменной и копироваться без искажений. Ну а клеточный геном постоянно находится «под прицелом» факторов внешней среды. Например, таких агрессивных химических соединений, как алкоголь, лекарственное средство, радиоактивное излучение. Все они являются так называемыми мутагенами, под воздействием которых любой мономер ДНК может изменить свое химическое строение. Такое искажение в биохимии называют точковой мутацией. Частота возникновения их в геноме клетки достаточно высока. Мутации исправляются хорошо отлаженной работой клеточной репарационной системы, включающей в себя набор ферментов.

Одни из них, например рестриктазы, «вырезают» поврежденные нуклеотиды, полимеразы обеспечивают синтез нормальных мономеров, лигазы «сшивают» восстановленные участки гена. Если же вышеописанный механизм по какой-то причине в клетке не срабатывает и дефектный мономер ДНК остается в её молекуле, мутация подхватывается процессами матричного синтеза и фенотипически проявляется в виде белков с нарушенными свойствами, неспособных выполнять необходимые функции, присущие им в клеточном обмене веществ. Это является серьёзным негативным фактором, снижающим жизнеспособность клетки и сокращающим продолжительность её жизни.

autogear.ru

что является мономерами нуклеиновых кислот?

В ДНК используется четыре нуклеотида — аденин (А) , гуанин (G), цитозин (С) , тимин (T) В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе).

Надо пояснить, что нуклеиновые кислоты (НК) — дезоксирибонулеиновая (ДНК) и рибонуклеиновые (РНК) являются полимерами. Т. е. состоят из длинной цепочки одинаковых или схожих элементов. Так вот они состоят из нуклеотидов. Каких — написали выше. Если много — это полимер, то один — это мономер. &gt^.^&lt

В действительности всё несколько сложнее. Мономер нуклеиновых кислот состоит из трёх частей: 1) Молекула сахара (в ДНК – дезоксирибоза, в РНК – рибоза) ; 2) Одно из пяти азотистых оснований: для ДНК – аденин (А) , гуанин (G), цитозин (С) , тимин (T) для РНК – аденин (А) , гуанин (G), цитозин (С) , урацил (У) 3) Остаток фосфорной кислоты Механическую основу ДНК/РНК составляют молекулы сахара. Эти молекулы соединены в цепочку остатками фосфорной кислоты. К каждому звену цепочки присоединено азотистое основание, которое несёт информационную функцию.

Мономерами в нуклеиновых кислотах служат нуклеотиды.

Аденин, тимин, гуанин, цитозин — нуклеотиды

touch.otvet.mail.ru

Мономер ДНК. Какие мономеры образуют молекулу ДНК?

Образование 14 декабря 2016

Нуклеиновые кислоты, особенно ДНК, достаточно хорошо известны в науке. Объясняется это тем, что они являются веществами клетки, от которых зависит хранение и передача её наследственной информации. ДНК, открытое еще в 1868 году Ф. Мишером, представляет собой молекулы с ярко выраженными кислотными свойствами. Ученый выделил её из ядер лейкоцитов – клеток иммунной системы. В течение последующих 50 лет исследования нуклеиновых кислот проводились эпизодически, так как большинство ученых биохимиков считали главными органическими веществами, отвечающими в том числе и за наследственные признаки, белки.

С момента расшифровки строения ДНК, проведенной Уотсоном и Криком в 1953 году, начинаются серьёзные исследования, выяснившие что, дезоксирибонуклеиновая кислота – это полимер, а мономерами ДНК служат нуклеотиды. Их виды и строение будут изучены нами в данной работе.

Нуклеотиды как структурные единицы наследственной информации

Одно из фундаментальных свойств живой материи – это сохранение и передача информации о строении и функциях как клетки, так и всего организма в целом. Эту роль выполняет дезоксирибонуклеиновая кислота, а мономеры ДНК – нуклеотиды представляют собой своеобразные «кирпичики», из которых и построена уникальная конструкция вещества наследственности. Рассмотрим, какими же признаками руководствовалась живая природа, создавая суперспираль нуклеиновой кислоты.

Как образуются нуклеотиды

Чтобы ответить на этот вопрос, нам понадобятся некоторые знания из области химии органических соединений. В частности, мы напомним, что в природе существует группа азотсодержащих гетероциклических гликозидов, соединенных с моносахаридами – пентозами (дезоксирибозой или рибозой). Они называются нуклеозидами. Например, аденозин и другие виды нуклеозидов присутствуют в цитозоле клетки. Они вступают в реакцию этерификации с молекулами ортофосфорной кислоты. Продуктами этого процесса и будут нуклеотиды. Каждый мономер ДНК, а их четыре вида, имеет название, например, гуаниновый, тиминовый и цитозиновый нуклеотид.

Видео по теме

Пуриновые мономеры ДНК

В биохимии принята классификация, разделяющая мономеры ДНК и их строение на две группы: так, пуриновыми являются адениновый и гуаниновый нуклеотиды. Они содержат в своем составе производные пурина – органического вещества, имеющего формулу C5H4N4. Мономер ДНК – гуаниновый нуклеотид, также содержит пуриновое азотистое основание, соединенное с дезоксирибозой N-гликозидной связью, находящейся в бетоконфигурации.

Пиримидиновые нуклеотиды

Азотистые основания, называемые цитидином и тимидином, являются производными органического вещества пиримидина. Его формула C4H4N2. Молекула представляет собой шестичленный плоский гетероцикл, содержащий два атома нитрогена. Известно, что вместо тиминового нуклеотида в молекулах рибонуклеиновой кислоты, таких как рРНК, тРНК, иРНК, содержится урациловый мономер. В процессе транскрипции, во время списывания информации с гена ДНК на молекулу иРНК, тиминовый нуклеотид замещается на адениновый, а адениновый нуклеотид – на урациловый в синтезируемой цепи иРНК. То есть справедливой будет следующая запись: А – У, Т – А.

Правило Чаргаффа

В предыдущем разделе мы уже частично коснулись принципов соответствия мономеров в цепях ДНК и в комплексе ген-иРНК. Известный биохимик Э. Чаргафф установил совершенно уникальное свойство молекул дезоксирибонуклеиновой кислоты, а именно, что количество адениновых нуклеотидов в ней всегда равно тиминовым, а гуаниновых – цитозиновым. Главной теоретической базой принципов Чаргаффа послужили исследования Уотсона и Крика, установившие, какие мономеры образуют молекулу ДНК и какую пространственную организацию они имеют. Еще одна закономерность, выведенная Чаргаффом и названная принципом комплементарности, указывает на химическое родство пуриновых и пиримидиновых оснований и их способность при взаимодействии между собой образовывать водородные связи. Это значит, что расположение мономеров в обеих цепях ДНК строго детерминировано: так, напротив А первой цепи ДНК может находиться только Т другой и между ними возникают две водородные связи. Напротив гуанинового нуклеотида может располагаться только цитозиновый. В этом случае между азотистыми основаниями образуются три водородные связи.

Роль нуклеотидов в генетическом коде

Для осуществления реакции биосинтеза белка, происходящей в рибосомах, существует механизм перевода информации об аминокислотном составе пептида из последовательности нуклеотидов иРНК в последовательность аминокислот. Оказалось, что три рядом расположенных мономера несут в себе информацию об одной из 20 возможных аминокислот. Это явление получило название генетический код. В решении задач по молекулярной биологии его применяют для определения как аминокислотного состава пептида, так и для выяснения вопроса: какие мономеры образуют молекулу ДНК, иными словами, каков состав соответствующего гена. Например, триплет (кодон) ААА в гене кодирует аминокислоту фенилаланин в молекуле белка, а в генетическом коде ей будет соответствовать триплет UUU в цепи иРНК.

Взаимодействие нуклеотидов в процессе редупликации ДНК

Как было выяснено ранее, структурные единицы, мономеры ДНК – это нуклеотиды. Их определенная последовательность в цепях является матрицей для процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты. Это явление происходит в S-стадии интерфазы клетки. Последовательность нуклеотидов новой молекулы ДНК собирается на материнских цепях под действием фермента ДНК-полимеразы с учетом принципа комплементарности (А – Т, Д – С). Репликация относится к реакциям матричного синтеза. Это значит, что мономеры ДНК и их строение в материнских цепях служат основой, то есть матрицей для её дочерней копии.

Может ли изменяться строение нуклеотида

К слову скажем, что дезоксирибонуклеиновая кислота – это очень консервативная структура клеточного ядра. Этому есть логическое объяснение: наследственная информация, хранящаяся в хроматине ядра, должна быть неизменной и копироваться без искажений. Ну а клеточный геном постоянно находится «под прицелом» факторов внешней среды. Например, таких агрессивных химических соединений, как алкоголь, лекарственное средство, радиоактивное излучение. Все они являются так называемыми мутагенами, под воздействием которых любой мономер ДНК может изменить свое химическое строение. Такое искажение в биохимии называют точковой мутацией. Частота возникновения их в геноме клетки достаточно высока. Мутации исправляются хорошо отлаженной работой клеточной репарационной системы, включающей в себя набор ферментов.

Одни из них, например рестриктазы, «вырезают» поврежденные нуклеотиды, полимеразы обеспечивают синтез нормальных мономеров, лигазы «сшивают» восстановленные участки гена. Если же вышеописанный механизм по какой-то причине в клетке не срабатывает и дефектный мономер ДНК остается в её молекуле, мутация подхватывается процессами матричного синтеза и фенотипически проявляется в виде белков с нарушенными свойствами, неспособных выполнять необходимые функции, присущие им в клеточном обмене веществ. Это является серьёзным негативным фактором, снижающим жизнеспособность клетки и сокращающим продолжительность её жизни.

Источник: fb.ru

monateka.com

строение нуклеотидов днк и строение нуклеотидов рнк

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа) . Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т. е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК) . Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию. Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин. Строение и функции РНК РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК) . Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК. Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов. Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой. Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК) , 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК. Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

touch.otvet.mail.ru

Дезоксирибонуклеиновая кислота, ее строение и свойства. Мономеры ДНК. Способы соединения нуклеотидов. Комплементарность нуклеотидов. Антипараллельные полинуклеотидные цепи. Репликация и репарация.


⇐ ПредыдущаяСтр 3 из 7Следующая ⇒

Структура молекулы ДНК была расшифрована в 1953г Уотсоном, Криком, Уилкинсом. Это две спирально закрученные антипараллельные (напротив конца 3/ одной цепи располагается 5/ конец другой) полинуклеотидные цепи. Мономерами ДНК являются нуклеотиды, в состав каждого из них входят: 1) дезоксирибоза; 2) остаток фосфорной кислоты; 3) одно из четырех азотистых оснований (аденин, тимин, гуанин, цитозин). ). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Нуклеотиды соединяются в цепочку благодаря фосфорно-диэфирным связям между дезоксирибозой одного остатка и остатком фосфорной кислоты другого нуклеотида. Азотистые основания присоединяются к дезоксирибозе и образуют боковые радикалы. Между азотистыми основаниями цепочек ДНК устанавливаются водородные связи (2 между А и Т, 3 между Г и Ц). Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарностью.

РЕПАРАЦИЯ ДНК- особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации. Каждая из систем репарации включает следующие компоненты:

ДНК-хеликаза — фермент, «узнающий» химически изменённые участки в цепи и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий повреждённый участок;

ДНК-полимераза — фермент, синтезирующий соответствующий участок цепи ДНК взамен удалённого;

ДНК-лигаза — фермент, замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность.

Репликация молекул ДНК происходит в синтетический период интерфазы. Каждая из двух цепей «материнской» молекулы служит матрицей для «дочерней». После репликации вновь синтезированная молекула ДНК содержит одну «материнскую» цепочку, а вторую — «дочернюю», вновь синтезированную (полуконсервативный способ). Для матричного синтеза новой молекулы ДНК необходимо, чтобы старая молекула была деспирализована и вытянута. Репликация начинается в нескольких местах молекулы ДНК. Участок молекулы ДНК от точки начала одной репликации до точки начала другой называется репликоном. Прокариотическая клетка содержит один репликон, а эукариотическая — содержит много репликонов. Начало репликации активируется праймерами (затравками), состоящими из 100-200 пар нуклеотидов. Фермент ДНК-геликаза раскручивает и разделяет материнскую спираль ДНК на 2 нити, на которых по принципу комплементарности при участии фермента ДНК-полимеразы собираются «дочерние» цепи ДНК. Фермент ДНК-топоизомераза скручивает «дочерние» молекулы ДНК. В каждом репликоне ДНК-полимераза может двигаться вдоль «материнской» нити только в одном направлении (3/ ⇒ 5/). Таким образом, присоединение комплементарных нуклеотидов дочерних нитей идет в противоположных направлениях (антипараллельно). Репликация во всех репликонах идет одновременно. Фрагменты Оказаки и части «дочерних» нитей, синтезированные в разных репликонах, сшиваются в единую нить ферментом лигазой. Репликация характеризуется полуконсервативностью, антипараллельностью и прерывистостью (фрагменты Оказаки).

Механизм репарации основан на наличии в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Такую репарацию называют эксцизионной, т.е. с «вырезанием». Она осуществляется до очередного цикла репликации, поэтому ее называют также дорепликативной.

В том случае, когда система эксцизионной репарации не исправляет изменения, возникшего в одной цепи ДНК, в ходе репликации происходит фиксация этого изменения и оно становится достоянием обеих цепей ДНК. Это приводит к замене одной пары комплементарных нуклеотидов на другую либо к появлению разрывов (брешей) во вновь синтезированной цепи против измененных участков. Пострепликативная репарация осуществляется путем рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралями ДНК. Пример- восстановление нормальной структуры ДНК при возникновении тиминовых димеров (Т—Т) Ковалентные связи, возникающие между рядом стоящими остатками тимина, делают их не способными к связыванию с комплементарными нуклеотидами. В результате во вновь синтезируемой цепи ДНК появляются разрывы (бреши), узнаваемые ферментами репарации. Восстановление целостности новой полинуклеотидной цепи одной из дочерних ДНК осуществляется благодаря рекомбинации с соответствующей ей нормальной материнской цепью другой дочерней ДНК. Образовавшийся в материнской цепи пробел заполняется затем путем синтеза на комплементарной ей полинуклеотидной цепи. Проявлением такой пострепликативной репарации, осуществляемой путем рекомбинации между цепями двух дочерних молекул ДНК, можно считать нередко наблюдаемый обмен материалом между сестринскими хроматидами.

 

17. Репликация молекулы ДНК. Репликон. Праймер. Принципы репликации ДНК: полуконсервативность, антипараллельность, прерывистость (фрагменты Оказаки). Фазы репликации: инициации, элонгации, терминации. Особенности репликации ДНК про- и эукариот.

Способность к самокопированию— репликация. Это свойство обеспечивается двухцепочечной структуре. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну материнскую и одну вновь синтезированную цепь, называют полуконсервативным.

Для осуществления репликации цепи материнской ДНК должны быть отделены друг от друга, чтобы стать матрицами, на которых будут синтезироваться комплементарные цепи дочерних молекул. C помощью фермента геликазы, разрывающего водородные связи, двойная спираль ДНК расплетается в точках начала репликации. Образующиеся одинарные цепи ДНК связываются специальными дестабилизирующими белками, которые растягивают остовы цепей, делая их азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. На каждой из цепей, образующихся в области репликационной вилки, при участии фермента ДНК-полимеразы осуществляется синтез комплементарных цепей.

Cинтез второй цепи ДНК осуществляется короткими фрагментами (фрагменты Оказаки) также в направлении от 5′- к 3′-концу. Синтезу каждого такого фрагмента предшествует образование РНК-затравки длиной около 10 нуклеотидов. Вновь образованный фрагмент с помощью фермента ДНК-лигазысоединяется с предшествующим фрагментом после удаления его РНК-затравки. В связи с указанными особенностями репликационная вилка является асимметричной. Из двух синтезируемых дочерних цепей одна строится непрерывно, ее синтез идет быстрее и эту цепь называют лидирующей. Синтез другой цепи идет медленнее, так как она собирается из отдельных фрагментов, требующих образования, а затем удаления РНК-затравки. Поэтому такую цепь называют запаздывающей(отстающей). Хотя отдельные фрагменты образуются в направлении 5′ → 3′, в целом эта цепь растет в направлении 3′ → 5′. Репликация ДНК у про- и эукариот в основных чертах протекает сходно, однако, скорость синтеза у эукариот на порядок ниже, чем у прокариот. Причиной этого может быть образование ДНК эукариот достаточно прочных соединений с белками, что затрудняет ее деспирализацию, необходимую для осуществления репликативного синтеза.

Праймер — это короткий фрагмент нуклеиновой кислоты, комплементарный ДНК- или РНК-мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы, а также при репликации ДНК. Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3′-конца праймера. ДНК-полимераза последовательно добавляет к 3′-концу праймера нуклеотиды, комплементарные матричной цепи.

Репликон единица процесса репликации участка генома, к-рый находится под контролем одной точки инициации (начала) репликации. От точки инициации репликация идёт в обе стороны, в нек-рых случаях с неравной скоростью. Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

  • инициация репликации
  • элонгация
  • терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон — это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка — место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок — участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК.

Полуконсервативностьозначает, что каждая дочерняя ДНК состоит из одной матричной цепи и одной вновь синтезированной.

Антипараллельность цепей ДНК: противоположная направленность двух нитей двойной спирали ДНК; одна нить имеет направление от 5′ к 3′, другая — от 3′ к 5′.

Каждая цепь ДНК имеет определенную ориентацию. Один конец несет гидроксильную группу (- ОН), присоединенную к 3′-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в 5′-положении сахара. Две комплементарные цепи в молекуле ДНК расположены в противоположных направлениях — антипараллельно: одна нить имеет направление от 5′ к 3′, другая — от 3′ к 5′. При параллельной ориентации напротив 3′-конца одной цепи находился бы З’-конец другой.

У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро.


Рекомендуемые страницы:

lektsia.com

Структура молекулы днк

Пространственную модель молекулы ДНК в 1953 году предложили американские исследователи генетик Джеймс Уотсон (род. 1928) и физик Фрэнсис Крик (род. 1916). За выдающийся вклад в это открытие им была присуждена Нобелевская премия по физиологии и медицине 1962 года.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер, мономером которого является нуклеотид. В состав каждого нуклеотида входят остаток фосфорной кислоты, соединенный с сахаром дезоксирибозой, который, в свою очередь, соединен с азотистым основанием. Азотистых оснований в молекуле ДНК четыре вида: аденин, тимин, гуанин и цитозин.

Молекула ДНК состоит из двух длинных цепей, сплетенных между собой в виде спирали, чаще всего, правозакрученной. Исключение составляют вирусы, которые содержат одноцепочную ДНК.

Фосфорная кислота и сахар, которые входят в состав нуклеотидов, образуют вертикальную основу спирали. Азотистые основания располагаются перпендикулярно и образуют «мостики» между спиралями. Азотистые основания одной цепи соединяются с азотистыми основаниями другой цепи согласно принципу комплементарности, или соответствия.

Принцип комплементарности. В молекуле ДНК аденин соединяется только с тимином, гуанин – только с цитозином.

Азотистые основания оптимально соответствуют друг другу. Аденин и тимин соединяется двумя водородными связями, гуанин и цитозин – тремя. Поэтому на разрыв связи гуанин-цитозин требуется больше энергии. Одинаковые по размеру тимин и цитозин гораздо меньше аденина и гуанина. Пара тимин-цитозин была бы слишком мала, пора аденин-гуанин – слишком велика, и спираль ДНК искривилась бы.

Водородные связи непрочны. Они легко разрываются и так же легко восстанавливаются. Цепи двойной спирали под действием ферментов или при высокой температуре могут расходиться, как замок-молния.

5. Молекула рнк Рибонуклеиновая кислота (рнк)

Молекула рибонуклеиновой кислоты (РНК) тоже является биополимером, который состоит из четырех типов мономеров – нуклеотидов. Каждый мономер молекулы РНК содержат остаток фосфорной кислоты, сахар рибозу и азотистое основание. Причем, три азотистых основания такие же, как в ДНК – аденин, гуанин и цитозин, но вместо тимина в РНК присутствует близкий ему по строению урацил. РНК – одноцепочечная молекула.

Количественное содержание молекул ДНК в клетках какого-либо вида практически постоянно, однако количество РНК может существенно меняться.

Виды рнк

В зависимости от строения и выполняемой функции различают три вида РНК.

1. Транспортная РНК (тРНК). Транспортные РНК в основном находятся в цитоплазме клетки. Они переносят аминокислоты к месту синтеза белка в рибосому.

2. Рибосомальная РНК (рРНК). Рибосомальная РНК связывается с определенными белками и образует рибосомы – органеллы, в которых происходит синтез белков.

3. Информационная РНК (иРНК), или матричная РНК (мРНК). Информационная РНК переносит информацию о структуре белка от ДНК рибосоме. Каждая молекула иРНК соответствует определенному участку ДНК, который кодирует структуру одной белковой молекулы. Поэтому для каждого из тысяч белков, которые синтезируются в клетке, имеется своя особенная иРНК.

studfiles.net