Подготовка школьников к ЕГЭ (Справочник по математике — Алгебра

Справочник по математикеАлгебраЛогарифмы
Определение логарифма, основное логарифмическое тождество
Свойства логарифмов
Использование свойств логарифмов при решениии логарифмических уравнений и неравенств
Десятичные логарифмы и натуральные логарифмы

Определение логарифма, основное логарифмическое тождество

      Рассмотрим два произвольных действительных числа   a   и   b,   удовлетворяющих условиям

(1)

      Определение. Логарифмом числа   b   по основанию   a   называют такую степень, в которую надо возвести число   a,   чтобы получить число   b.

      Другими словами, логарифм числа   b   по основанию   a   – это такое число   x,   которое является решением уравнения

a x= b .(2)

      Доказательство того, что решение уравнения (2) существует и единственно, выходит за рамки школьной программы.

      Для логарифма числа   b   по основанию   a   используется обозначение:

loga b .

      Таким образом, для всех действительных чисел   a   и   b,   удовлетворяющих условиям (1), справедливо равенство

которое часто называют основным логарифмическим тождеством.

      Замечание. Обратим особое внимание на то, что при решении уравнения (2) мы ищем показатель степени, а при решении уравнения

x a = b.

мы ищем основание степени, которое вычисляется по формуле

и в случае, когда   a   – натуральное число, является корнем натуральной степени из числа   b.

      Пример 1. Решить уравнение

x3 = 81 .

      Решение. Воспользовавшись понятием кубического корня и свойствами степеней, получаем

      Ответ: .

      Пример 2. Решить уравнение

3x= 81 .

      Решение. Воспользовавшись тем, что число   81   является четвертой степенью числа   3 ,   получаем:

      Ответ:   4 .

      Задача. Доказать, что число

log2 3

иррационально.

      Решение. Предположим противное, т.е. предположим, что указанное число рационально. Тогда существует несократимая дробь

,

числитель и знаменатель которой являются натуральными числами и такая, что справедливо равенство:

      Из определения логарифма отсюда вытекает равенство:

следствием которого является равенство:

2m= 3n .

      Но последнее равенство невозможно, поскольку его левая часть четное число, а правая – нечетное. Полученное противоречие доказывает требуемое в задаче утверждение.

Свойства логарифмов

      Перечисленные ниже свойства логарифмов вытекают из основного логарифмического тождества:


(основное свойство логарифмов),

(основное свойство логарифмов),

(формула перехода к новому основанию логарифмов),

(основное свойство логарифмов),

(основное свойство логарифмов),

(формула перехода к новому основанию логарифмов),

Использование свойств логарифмов при решении логарифмических уравнений и неравенств

      Для того, чтобы не ошибаться при решении логарифмических уравнений и неравенств, свойства логарифмов, перечисленные в предыдущем разделе, следует применять внимательно и аккуратно.

      Например, если при решении уравнения или неравенства требуется преобразовать выражение

loga ( f (x)2 ) ,

то вместо формулы

следует применять формулу

поскольку в противном случае можно потерять корни.

      По той же причине при преобразовании выражений

loga ( f (x) g (x))    и

следует использовать формулы:

и

      Замечание. Желающим усовершенствовать свои знания и умения при решении уравнений и неравенств с логарифмами мы рекомендуем ознакомиться с нашими учебными пособиями «Решение логарифмических уравнений» и «Решение логарифмических неравенств».

Десятичные логарифмы и натуральные логарифмы

      В математике, физике и во многих других областях естествознания и технологий важное место занимают десятичные логарифмы и натуральные логарифмы.

      Десятичные логарифмы – это логарифмы с основанием   10,   а основанием натуральных логарифмов является иррациональное и трансцендентное число   e,   которое определяется по формуле

доказательство которой выходит за рамки школьной программы.

      Для десятичных и натуральных логарифмов используются соответственно обозначения:

lg b       и       ln b,

причем

lg e = 0,43429…,

ln 10 = 2,30259…

      Графики логарифмических функций представлены в разделе «Графики степенных, показательных и логарифмических функций» нашего справочника.

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Логарифм числа. Основное логарифмическое тождество

Логарифм числа. Основное логарифмическое тождество

Навигация по странице:

  • Определение
  • Калькулятор логарифмов
  • График логарифма
  • Основное логарифмическое тождество
  • Вычисление логарифмов

Определение. Логарифмом числа b по основанию a, где a > 0, a ≠ 1, b > 0, называется показатель степени, в которую нужно возвести основание a, чтоб получить число b.

Обозначение. loga b — произносится: «логарифм b по основанию a».

Калькулятор логарифмов

log -2

График

y = log2 x

Записи loga b = c и b = ac равносильны.

Подставив во вторую формулу значение степени через логарифм, получим основное логарифмичесое тождество.

Основное логарифмическое тождество

При условии, что a > 0, a ≠ 1, b > 0 можно записать основное логарифмическое тождество

alogab = b

Примеры:

3log3 7 = 7

3-log3 7 = 13log3 7 = 17

4log2 7 =22 log2 7 = (2log2 7)2 = 72 = 49

21 + log2 7 = 2 · 2log2 7 = 2 · 7 = 14

Вычисление логарифма равносильно решению показательного уравнения

Показательное уравнение:

ax = b,

при условии a > 0, a ≠ 1; b > 0, где

x — показатель степени, a — основа степени, b — степень числа a.

Логарифмическое уравнение:

loga b = x,

при условии a > 0, a ≠ 1; b > 0, где

x — логарифм числа b с основой a, a — основа логарифма, b — число, которое стоит под знаком логарифма.

Примеры:

25 = 32    ⇔    5 = log2 32;

34 = 81    ⇔    4 = log3 81;

log1/5 125 = -3    ⇔    (1/5)-3 = 125;

log2116 = -4

    ⇔    2-4 = 116.

Пример 1

Найти логарифм: log 4 8

Обозначим log4 8 через x:

log4 8 = x

Перейдем к показательному уравнению:

4x = 8

Сведем показательное уравнение к основе 2 и решим его:

22x = 23

2x = 3

x = 32

Ответ:

log4 8 = 32

Пример 2

Найти x если : logx 125 = 32

За определением логарифма имеем:

x3/2 = 125

Возведем обе части в степень 23, и воспользуемся свойствами степеней:

(x3/2)2/3 = 125

2/3

x = (53)2/3 = 53·2/3 = 52 = 25

Ответ:

x = 25

Логарифмы Логарифм числа, основное логарифмическое тождество Формулы и свойства логарифмов Логарифм произведения. Сумма логарифмов Логарифм частного. Разность логарифмов Логарифм степени Логарифм корня Логарифмирование Потенцирование Десятичный логарифм Натуральный логарифм Число е Логарифмическая функция Логарифмические уравнения Логарифмические неравенства

Логарифм | Правила, примеры и формулы

Ключевые люди:
Джон Напье Генри Бриггс Йоост Бюрги
Похожие темы:
натуральный логарифм мантисса десятичный логарифм власть

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

логарифм , показатель или степень, в которую нужно возвести основание, чтобы получить данное число. Выражаясь математически, x — это логарифм N до базы B IF B x = N , в котором один случай = log B924923 .

Например, 2 3  = 8; следовательно, 3 — это логарифм 8 по основанию 2, или 3 = log 2  8. Таким же образом, поскольку 10 2  = 100, то 2 = log 10  100. Логарифмы последнего вида (что логарифмы с основанием 10) называются обычными или бриггсовскими логарифмами и записываются просто log п .

Логарифмы, изобретенные в 17 веке для ускорения вычислений, значительно сократили время, необходимое для умножения многозначных чисел. Они были основными в численной работе более 300 лет, пока совершенствование механических вычислительных машин в конце 19 века и компьютеров в 20 веке не сделало их устаревшими для крупномасштабных вычислений. Натуральный логарифм (с основанием

e ≅ 2,71828 и записанный как ln n ), однако, продолжает оставаться одной из самых полезных функций в математике, с приложениями к математическим моделям во всех физических и биологических науках.

Свойства логарифмов

Логарифмы были быстро приняты учеными из-за различных полезных свойств, упрощающих длительные и утомительные вычисления. В частности, ученые могли найти произведение двух чисел m и n , просматривая логарифм каждого числа в специальной таблице, складывая логарифмы вместе, а затем снова обращаясь к таблице, чтобы найти число с этим вычисленным логарифмом (известным как его антилогарифм). Выраженная в виде десятичных логарифмов, эта связь определяется как log m n  = log m  + log  n . Например, 100 × 1000 можно вычислить, найдя логарифмы 100 (2) и 1000 (3), сложив логарифмы (5), а затем найдя антилогарифм (100 000) в таблице. Точно так же задачи деления преобразуются в задачи вычитания с логарифмами: log m / n = log m − log n . Это еще не все; вычисление степеней и корней можно упростить с помощью логарифмов. Логарифмы также можно преобразовывать между любыми положительными основаниями (за исключением того, что 1 нельзя использовать в качестве основания, поскольку все его степени равны 1), как показано в Щелкните здесь, чтобы увидеть полноразмерную таблицу логарифмических законов.

В таблицы логарифмов обычно включались только логарифмы чисел от 0 до 10. Чтобы получить логарифм некоторого числа за пределами этого диапазона, число сначала было записано в научной записи как произведение его значащих цифр и его экспоненциальной степени — например, 358 будет записано как 3,58 × 10 2 , а 0,0046 будет можно записать как 4,6 × 10 −3 . Затем в таблице можно было найти логарифм значащих цифр — десятичную дробь от 0 до 1, известную как мантисса. Например, чтобы найти логарифм числа 358, нужно найти log 3,58 ≅ 0,55388. Следовательно, log 358 = log 3,58 + log 100 = 0,55388 + 2 = 2,55388. В примере числа с отрицательным показателем степени, например 0,0046, можно найти log 4,6 ≅ 0,66276. Следовательно, log 0,0046 = log 4,6 + log 0,001 = 0,66276 — 3 = -2,33724.

История логарифмов

Предвестником изобретения логарифмов стало сравнение арифметических и геометрических последовательностей. В геометрической последовательности каждый член образует постоянное отношение со своим последующим; например, …1/1000, 1/100, 1/10, 1, 10, 100, 1000… имеет обыкновенное отношение 10.

В арифметической последовательности каждый последующий член отличается на константу, известную как общая разность; например, …−3, −2, −1, 0, 1, 2, 3… имеет общую разность 1. Обратите внимание, что геометрическую последовательность можно записать в терминах ее знаменателя; для приведенного выше примера геометрической последовательности: …10 −3 , 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 , 10 3 … . Умножение двух чисел в геометрической последовательности, скажем, 1/10 и 100, равносильно сложению соответствующих показателей степени обыкновенного отношения, -1 и 2, чтобы получить 10
1
 = 10. Таким образом, умножение превращается в сложение. Однако первоначальное сравнение двух серий не было основано на каком-либо явном использовании экспоненциальной записи; это была более поздняя разработка. В 1620 г. швейцарский математик Йост Бюрги опубликовал в Праге первую таблицу, основанную на концепции соотношения геометрических и арифметических последовательностей.

Шотландский математик Джон Нейпир опубликовал свое открытие логарифмов в 1614 году. Его цель состояла в том, чтобы помочь в умножении величин, которые тогда назывались синусами. Весь синус был величиной стороны прямоугольного треугольника с большой гипотенузой. (Первоначальная гипотенуза Непера была 10

7 .) Его определение было дано в терминах относительных скоростей.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подписаться сейчас

Таким образом, логарифм любого синуса представляет собой число, очень точно выражающее линию, которая одинаково увеличивалась в течение определенного времени, в то время как линия всего синуса пропорционально уменьшалась в этом синусе, причем оба движения были равновременны и начало смещалось одинаково.

В сотрудничестве с английским математиком Генри Бриггсом Нейпир привел свой логарифм в его современную форму. Для логарифма Напера сравнение будет между точками, движущимися по градуированной прямой линии,

L точка (для логарифма) движется равномерно от минус бесконечности до плюс бесконечности, X точка (для синуса) движется от нуля до бесконечности со скоростью, пропорциональной ее расстоянию от нуля. Кроме того, L равно нулю, когда X равно единице, и их скорости в этой точке равны. Суть открытия Непера состоит в том, что оно представляет собой обобщение отношения между арифметическим и геометрическим рядами; т. е. умножение и возведение в степень значений 9Точка 0023 X
соответствует сложению и умножению значений точки L соответственно. На практике удобно ограничить движение L и X требованием, чтобы L  = 1 при X  = 10 в дополнение к условию, что X  = 1 при L  = 0. Это изменение привело к бриггсовскому или десятичному логарифму.

Нейпир умер в 1617 году, и Бриггс продолжил работу в одиночку, опубликовав в 1624 году таблицу логарифмов, рассчитанных до 14 знаков после запятой для чисел от 1 до 20 000 и от 9.от 0 000 до 100 000. В 1628 году голландский издатель Адриан Влак опубликовал 10-местную таблицу для значений от 1 до 100 000, добавив недостающие 70 000 значений. И Бриггс, и Влак занимались созданием логарифмических тригонометрических таблиц.

Такие ранние таблицы были либо с точностью до одной сотой градуса, либо с точностью до одной угловой минуты. В 18 веке таблицы были опубликованы для 10-секундных интервалов, которые были удобны для таблиц с семью десятичными знаками. В общем случае требуются более тонкие интервалы для вычисления логарифмических функций меньших чисел, например, при вычислении функций log sin x и логарифмический тангенс x .

Наличие логарифмов сильно повлияло на форму плоской и сферической тригонометрии. Процедуры тригонометрии были переработаны для получения формул, в которых операции, зависящие от логарифмов, выполняются одновременно. Тогда обращение к таблицам состояло всего из двух шагов: получения логарифмов и, после выполнения вычислений с логарифмами, получения антилогарифмов.

Фрэнсис Дж. Мюррей

Натуральный логарифм | Определение, правила и факты

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • В этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Самые популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.