Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

ЭлСмСнтарная ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠžΡΠ½ΠΎΠ²Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ АлгСбра ВригономСтрия ΠžΡΠ½ΠΎΠ²Ρ‹ ΠΌΠ°Ρ‚. Π°Π½Π°Π»ΠΈΠ·Π° ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ЛинСйная Π°Π»Π³Π΅Π±Ρ€Π° Π₯имия

Для функционирования Mathway Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ javascript ΠΈ соврСмСнный Π±Ρ€Π°ΡƒΠ·Π΅Ρ€.

Π­Ρ‚ΠΎΡ‚ Π²Π΅Π±-сайт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ cookie Ρ„Π°ΠΉΠ»Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ использованиС нашСго рСсурса максимально ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ для вас.

Π£Π±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ, Ρ‡Ρ‚ΠΎ ваш ΠΏΠ°Ρ€ΠΎΠ»ΡŒ содСрТит Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 8 символов ΠΈ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… символов:

  • число
  • Π±ΡƒΠΊΠ²Π°
  • ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ символ: @$#!%*?&

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
2 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((5pi)/12)
3 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(-1)
4 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(75)
5 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1)
6 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60 Π³Ρ€Π°Π΄. )
7 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/3)
8 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(- ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
9 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/3)
10 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(0)
11 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/12)
12 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30 Π³Ρ€Π°Π΄. )
13
Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(60 Π³Ρ€Π°Π΄. )
14 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(30 Π³Ρ€Π°Π΄. )
15 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((2pi)/3)
16 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
17
Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅
sin(pi/2)
18 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=x^2
19 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45 Π³Ρ€Π°Π΄. )
20 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(15)
21 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^2
22 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1)
23 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(60 Π³Ρ€Π°Π΄. )
24 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45 Π³Ρ€Π°Π΄. )
25 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
26 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
27 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
28 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45)
29 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30 Π³Ρ€Π°Π΄. )
30 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30)
31 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
32 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
33 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45)
34 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(0)
35 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(45 Π³Ρ€Π°Π΄. )
36 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(0)
37 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы pi/3
38 Π“Ρ€Π°Ρ„ΠΈΠΊ y=x^2
39 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ 1
40 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
41 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(15)
42 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 125
43 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня 64x^6
44 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
45 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
46 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
47 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(75)
48 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
49 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ (1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x+h)-1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x))/h
50 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
51 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/12)
52 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
53 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
54 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(105)
55 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
56 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s^7
57 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4y^2z^2
58 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60)
59 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
60 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(0)
61 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/2)
62 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 4 ΠΎΡ‚ 64
63 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ ΡˆΠ΅ΡΡ‚ΠΎΠΉ стСпСни 64a^6b^7
64 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2
65 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(1)
66 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
67 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=2^x
68 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
69 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (3pi)/4
70 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 25
71 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
72 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((7pi)/12)
73 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ 1/( кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΎΡ‚ x^4)
74 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/6)
75 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 150
76 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
77 ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ x^3-8
78 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
79 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
80 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(135)
81 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 30
82 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 60
83 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(120)
84 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((2pi)/3)
85 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ -2^2
86 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(15)
87 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
88 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
89 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
90 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (5pi)/6
91 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 8x^7y^9z^3
92 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ arccos(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
93 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ i^2
94 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 24 кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 18
95 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 4x^2
96 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
97 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
98 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
99 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1/2)
100 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
2 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((5pi)/12)
3 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(-1)
4 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(75)
5 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1)
6 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60 Π³Ρ€Π°Π΄. )
7 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/3)
8 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(- ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
9 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/3)
10 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(0)
11 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/12)
12 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30 Π³Ρ€Π°Π΄. )
13 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(60 Π³Ρ€Π°Π΄. )
14 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(30 Π³Ρ€Π°Π΄. )
15 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((2pi)/3)
16 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
17 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
18 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=x^2
19 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45 Π³Ρ€Π°Π΄. )
20 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(15)
21 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^2
22 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1)
23 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(60 Π³Ρ€Π°Π΄. )
24 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45 Π³Ρ€Π°Π΄. )
25 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
26 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
27 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
28 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45)
29 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30 Π³Ρ€Π°Π΄. )
30 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30)
31 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
32 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
33 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45)
34 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(0)
35 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(45 Π³Ρ€Π°Π΄. )
36 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(0)
37 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы pi/3
38 Π“Ρ€Π°Ρ„ΠΈΠΊ y=x^2
39 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ 1
40 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
41 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(15)
42 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 125
43 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня 64x^6
44 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
45 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
46 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
47 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(75)
48 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
49 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ (1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x+h)-1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x))/h
50 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
51 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/12)
52 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
53 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
54 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(105)
55 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
56 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s^7
57 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4y^2z^2
58 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60)
59 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
60 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(0)
61 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/2)
62 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 4 ΠΎΡ‚ 64
63 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ ΡˆΠ΅ΡΡ‚ΠΎΠΉ стСпСни 64a^6b^7
64 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2
65 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(1)
66 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
67 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=2^x
68 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
69 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (3pi)/4
70 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 25
71 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
72 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((7pi)/12)
73 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ 1/( кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΎΡ‚ x^4)
74 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/6)
75 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 150
76 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
77 ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ x^3-8
78 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
79 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
80 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(135)
81 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 30
82 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 60
83 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(120)
84 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((2pi)/3)
85 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ -2^2
86 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(15)
87 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
88 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
89 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
90 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (5pi)/6
91 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 8x^7y^9z^3
92 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ arccos(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
93 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ i^2
94 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 24 кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 18
95 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 4x^2
96 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
97 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
98 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
99 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1/2)
100 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
2 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((5pi)/12)
3 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(-1)
4 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(75)
5 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1)
6 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60 Π³Ρ€Π°Π΄. )
7 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/3)
8 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(- ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
9 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/3)
10 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(0)
11 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/12)
12 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30 Π³Ρ€Π°Π΄. )
13 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(60 Π³Ρ€Π°Π΄. )
14 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(30 Π³Ρ€Π°Π΄. )
15 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((2pi)/3)
16 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
17 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
18 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=x^2
19 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45 Π³Ρ€Π°Π΄. )
20 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(15)
21 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^2
22 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1)
23 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(60 Π³Ρ€Π°Π΄. )
24 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45 Π³Ρ€Π°Π΄. )
25 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
26 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
27 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
28 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45)
29 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30 Π³Ρ€Π°Π΄. )
30 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30)
31 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
32 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
33 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45)
34 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(0)
35 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(45 Π³Ρ€Π°Π΄. )
36 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(0)
37 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы pi/3
38 Π“Ρ€Π°Ρ„ΠΈΠΊ y=x^2
39 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ 1
40 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
41 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(15)
42 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 125
43 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня 64x^6
44 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
45 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
46 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
47 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(75)
48 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
49 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ (1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x+h)-1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x))/h
50 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
51 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/12)
52 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
53 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
54 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(105)
55 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
56 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s^7
57 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4y^2z^2
58 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60)
59 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
60 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(0)
61 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/2)
62 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 4 ΠΎΡ‚ 64
63 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ ΡˆΠ΅ΡΡ‚ΠΎΠΉ стСпСни 64a^6b^7
64 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2
65 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(1)
66 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
67 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=2^x
68 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
69 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (3pi)/4
70 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 25
71 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
72 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((7pi)/12)
73 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ 1/( кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΎΡ‚ x^4)
74 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/6)
75 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 150
76 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
77 ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ x^3-8
78 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
79 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
80 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(135)
81 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 30
82 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 60
83 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(120)
84 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((2pi)/3)
85 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ -2^2
86 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(15)
87 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
88 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
89 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
90 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (5pi)/6
91 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 8x^7y^9z^3
92 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ arccos(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
93 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ i^2
94 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 24 кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 18
95 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 4x^2
96 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
97 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
98 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
99 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1/2)
100 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

ЭлСмСнтарная ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠžΡΠ½ΠΎΠ²Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ АлгСбра ВригономСтрия ΠžΡΠ½ΠΎΠ²Ρ‹ ΠΌΠ°Ρ‚. Π°Π½Π°Π»ΠΈΠ·Π° ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ЛинСйная Π°Π»Π³Π΅Π±Ρ€Π° Π₯имия

Для функционирования Mathway Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ javascript ΠΈ соврСмСнный Π±Ρ€Π°ΡƒΠ·Π΅Ρ€.

Π­Ρ‚ΠΎΡ‚ Π²Π΅Π±-сайт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ cookie Ρ„Π°ΠΉΠ»Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ использованиС нашСго рСсурса максимально ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ для вас.

Π£Π±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ, Ρ‡Ρ‚ΠΎ ваш ΠΏΠ°Ρ€ΠΎΠ»ΡŒ содСрТит Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 8 символов ΠΈ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… символов:

  • число
  • Π±ΡƒΠΊΠ²Π°
  • ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ символ: @$#!%*?&

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
2 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((5pi)/12)
3 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(-1)
4 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(75)
5 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1)
6 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60 Π³Ρ€Π°Π΄. )
7 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/3)
8 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(- ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
9 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/3)
10 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(0)
11 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(pi/12)
12 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30 Π³Ρ€Π°Π΄. )
13 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(60 Π³Ρ€Π°Π΄. )
14 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(30 Π³Ρ€Π°Π΄. )
15 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((2pi)/3)
16 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
17 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
18 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=x^2
19 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45 Π³Ρ€Π°Π΄. )
20 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(15)
21 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^2
22 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1)
23 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(60 Π³Ρ€Π°Π΄. )
24 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45 Π³Ρ€Π°Π΄. )
25 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
26 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
27 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
28 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(45)
29 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30 Π³Ρ€Π°Π΄. )
30 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(30)
31 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(1)
32 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)
33 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(45)
34 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(0)
35 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(45 Π³Ρ€Π°Π΄. )
36 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arctan(0)
37 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы pi/3
38 Π“Ρ€Π°Ρ„ΠΈΠΊ y=x^2
39 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ 1
40 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
41 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(15)
42 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 125
43 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня 64x^6
44 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 3 ΠΎΡ‚ 81
45 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 ΠΎΡ‚ 8
46 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
47 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos(75)
48 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
49 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ (1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x+h)-1/( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ x))/h
50 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ x^3
51 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/12)
52 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(-1/2)
53 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(30)
54 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(105)
55 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
56 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ s^7
57 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4y^2z^2
58 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(60)
59 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2)/2)
60 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(0)
61 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/2)
62 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 4 ΠΎΡ‚ 64
63 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ ΡˆΠ΅ΡΡ‚ΠΎΠΉ стСпСни 64a^6b^7
64 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 2
65 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(1)
66 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
67 Π“Ρ€Π°Ρ„ΠΈΠΊ f(x)=2^x
68 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
69 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (3pi)/4
70 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 5 ΠΎΡ‚ 25
71 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
72 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos((7pi)/12)
73 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ 1/( кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΎΡ‚ x^4)
74 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((5pi)/6)
75 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 150
76 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(pi/2)
77 ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ x^3-8
78 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
79 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ пятой стСпСни 1/(x^3)
80 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(135)
81 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 30
82 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ 60
83 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(120)
84 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((2pi)/3)
85 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ -2^2
86 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan(15)
87 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
88 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
89 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(pi/2)
90 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы (5pi)/6
91 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 8x^7y^9z^3
92 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ arccos(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 3)/2)
93 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ i^2
94 Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 24 кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ 18
95 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ 4x^2
96 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin((3pi)/4)
97 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((7pi)/6)
98 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ tan((3pi)/4)
99 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ arccos(-1/2)
100 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ стСпСни x^4

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

ЭлСмСнтарная ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠžΡΠ½ΠΎΠ²Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ АлгСбра ВригономСтрия ΠžΡΠ½ΠΎΠ²Ρ‹ ΠΌΠ°Ρ‚. Π°Π½Π°Π»ΠΈΠ·Π° ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ЛинСйная Π°Π»Π³Π΅Π±Ρ€Π° Π₯имия

Для функционирования Mathway Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ javascript ΠΈ соврСмСнный Π±Ρ€Π°ΡƒΠ·Π΅Ρ€.

Π­Ρ‚ΠΎΡ‚ Π²Π΅Π±-сайт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ cookie Ρ„Π°ΠΉΠ»Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ использованиС нашСго рСсурса максимально ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ для вас.

Π£Π±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ, Ρ‡Ρ‚ΠΎ ваш ΠΏΠ°Ρ€ΠΎΠ»ΡŒ содСрТит Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 8 символов ΠΈ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… символов:

  • число
  • Π±ΡƒΠΊΠ²Π°
  • ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ символ: @$#!%*?&

Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ | ΠŸΡ€Π°Π²ΠΈΠ»Π°, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ , ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ стСпСни ΠΈΠ»ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ, Π΄ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ возвСсти основаниС, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ΅ число. Π’Ρ‹Ρ€Π°ΠΆΠ°ΡΡΡŒ матСматичСски, x — это Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ n ΠΏΠΎ основанию b , Ссли b x = n , ΠΈ Π² этом случаС записываСтся x = log b n . НапримСр, 2 3 = 8; ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, 3 — это Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ 8 ΠΏΠΎ основанию 2, ΠΈΠ»ΠΈ 3 = log 2 8.Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ 10 2 = 100, Ρ‚ΠΎΠ³Π΄Π° 2 = log 10 100. Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ послСднСго Π²ΠΈΠ΄Π° (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ с основаниСм 10) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌΠΈ, ΠΈΠ»ΠΈ бриггсовскими, Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°ΠΌΠΈ ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ просто log β„– .

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹, ΠΈΠ·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½Π½Ρ‹Π΅ Π² 17 Π²Π΅ΠΊΠ΅ для ускорСния вычислСний, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сократили врСмя, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для умноТСния чисСл Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Π΅ числа. Они Π±Ρ‹Π»ΠΈ основой числСнной Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±ΠΎΠ»Π΅Π΅ 300 Π»Π΅Ρ‚, ΠΏΠΎΠΊΠ° ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ мСханичСских Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… машин Π² ΠΊΠΎΠ½Ρ†Π΅ 19 Π²Π΅ΠΊΠ° ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΎΠ² Π² 20 Π²Π΅ΠΊΠ΅ Π½Π΅ сдСлало ΠΈΡ… ΡƒΡΡ‚Π°Ρ€Π΅Π²ΡˆΠΈΠΌΠΈ для ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹Ρ… вычислСний.ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ (с основаниСм e β‰… 2,71828 ΠΈ записанным ln n ), Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ с прилоТСниями ΠΊ матСматичСским модСлям Π² физичСских ΠΈ биологичСских Π½Π°ΡƒΠΊΠ°Ρ….

Бвойства Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹

Π±Ρ‹Π»ΠΈ быстро приняты ΡƒΡ‡Π΅Π½Ρ‹ΠΌΠΈ ΠΈΠ·-Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… свойств, ΡƒΠΏΡ€ΠΎΡ‰Π°ΡŽΡ‰ΠΈΡ… Π΄ΠΎΠ»Π³ΠΈΠ΅ ΠΈ ΡƒΡ‚ΠΎΠΌΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ вычислСния. Π’ частности, ΡƒΡ‡Π΅Π½Ρ‹Π΅ ΠΌΠΎΠ³Π»ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… чисСл m ΠΈ n , просмотрСв Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ числа Π² ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π°Π±Π»ΠΈΡ†Π΅, слоТив Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ вмСстС, Π° Π·Π°Ρ‚Π΅ΠΌ снова просмотрСв Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ число с вычислСнным Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠΌ (извСстным ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π°Π½Ρ‚ΠΈΠ»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ).Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… дСсятичных Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ², это ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ опрСдСляСтся ΠΊΠ°ΠΊ log m n = log m + log n . НапримСр, 100 Γ— 1000 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ, найдя Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ 100 (2) ΠΈ 1000 (3), слоТив Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ вмСстС (5), Π° Π·Π°Ρ‚Π΅ΠΌ найдя Π΅Π³ΠΎ Π°Π½Ρ‚ΠΈΠ»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ (100000) Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅. Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ дСлСния ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ Π² Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ с Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°ΠΌΠΈ: log m / n = log m — log n .Π­Ρ‚ΠΎ Π΅Ρ‰Π΅ Π½Π΅ всС; вычислСниС стСпСнСй ΠΈ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ². Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ основаниями (Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ 1 Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² качСствС основания, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ всС Π΅Π³ΠΎ стСпСни Ρ€Π°Π²Π½Ρ‹ 1), ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ логарифмичСских Π·Π°ΠΊΠΎΠ½ΠΎΠ².

Π’ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈΡΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ для чисСл ΠΎΡ‚ 0 Π΄ΠΎ 10. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числа Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ этого Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, число сначала Π±Ρ‹Π»ΠΎ записано Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΉ записи ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π°Ρ‰ΠΈΡ… Ρ†ΠΈΡ„Ρ€ ΠΈ Π΅Π³ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ стСпСни — Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 358 Π±ΡƒΠ΄Π΅Ρ‚ записано ΠΊΠ°ΠΊ 3.58 Γ— 10 2 , Π° 0,0046 Π±ΡƒΠ΄Π΅Ρ‚ записано ΠΊΠ°ΠΊ 4,6 Γ— 10 βˆ’3 . Π’ΠΎΠ³Π΄Π° Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π·Π½Π°Ρ‡Π°Ρ‰ΠΈΡ… Ρ†ΠΈΡ„Ρ€ — дСсятичная Π΄Ρ€ΠΎΠ±ΡŒ ΠΎΡ‚ 0 Π΄ΠΎ 1, извСстная ΠΊΠ°ΠΊ мантисса, — Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΉΠ΄Π΅Π½ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅. НапримСр, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ 358, Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ log 3,58 β‰… 0,55388. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΆΡƒΡ€Π½Π°Π» 358 = ΠΆΡƒΡ€Π½Π°Π» 3,58 + ΠΆΡƒΡ€Π½Π°Π» 100 = 0,55388 + 2 = 2,55388. Π’ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ числа с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ экспонСнтой, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ 0,0046, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ log 4,6 0,66276. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, log 0,0046 = log 4,6 + log 0.001 = 0,66276 — 3 = βˆ’2,33724.

Britannica Premium: ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€Π΅Π½ΠΈΠ΅ растущих потрСбностСй искатСлСй Π·Π½Π°Π½ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ 30% подписки сСгодня. Подпишись сСйчас

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²

Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π±Ρ‹Π»ΠΎ прСдсказано сравнСниСм арифмСтичСских ΠΈ гСомСтричСских ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. Π’ гСомСтричСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ‡Π»Π΅Π½ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ постоянноС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ со своим послСдоватСлСм; Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, … 1/1000, 1/100, 1/10, 1, 10, 100, 1000… ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ±Ρ‰Π΅Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ 10. Π’ арифмСтичСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Ρ‡Π»Π΅Π½ отличаСтся Π½Π° константу, ΠΈΠ·Π²Π΅ΡΡ‚Π½ΡƒΡŽ ΠΊΠ°ΠΊ общая Ρ€Π°Π·Π½ΠΈΡ†Π°; Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, … βˆ’3, βˆ’2, βˆ’1, 0, 1, 2, 3… ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ€Π°Π·Π½ΠΈΡ†Ρƒ 1.ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… Π΅Π΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ; для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° гСомСтричСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅: … 10 βˆ’3 , 10 βˆ’2 , 10 βˆ’1 , 10 0 , 10 1 , 10 2 , 10 3 …. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… чисСл Π² гСомСтричСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, скаТСм 1/10 ΠΈ 100, Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ слоТСнию ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ, -1 ΠΈ 2, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ 10 1 = 10. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ прСобразуСтся Π² слоТСниС. ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ сравнСниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя сСриями, ΠΎΠ΄Π½Π°ΠΊΠΎ, Π½Π΅ Π±Ρ‹Π»ΠΎ основано Π½Π° явном использовании ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ записи; это Π±Ρ‹Π»ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ·Π΄Π½Π΅Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅.Π’ 1620 Π³ΠΎΠ΄Ρƒ ΡˆΠ²Π΅ΠΉΡ†Π°Ρ€ΡΠΊΠΈΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Йост Π‘ΡŽΡ€Π³ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π» Π² ΠŸΡ€Π°Π³Π΅ ΠΏΠ΅Ρ€Π²ΡƒΡŽ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡƒΡŽ Π½Π° ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ взаимосвязи гСомСтричСской ΠΈ арифмСтичСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ.

Шотландский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Π”ΠΆΠΎΠ½ ΠΠ°ΠΏΡŒΠ΅Ρ€ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π» своС ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π² 1614 Π³ΠΎΠ΄Ρƒ. Π•Π³ΠΎ Ρ†Π΅Π»ΡŒΡŽ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΌΠΎΡ‡ΡŒ Π² ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‚ΠΎΠ³Π΄Π° Π½Π°Π·Ρ‹Π²Π°Π»ΠΈΡΡŒ синусами. ΠŸΠΎΠ»Π½Ρ‹ΠΉ синус Π±Ρ‹Π» Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ стороны ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с большой Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ. (ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° ΠΡΠΏΡŒΠ΅Ρ€Π° Π±Ρ‹Π»Π° 10 7 .) Π•Π³ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π΄Π°Π½ΠΎ Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… скоростСй.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ любого синуса — это число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΎΡ‡Π΅Π½ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ линию, которая ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»Π°ΡΡŒ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ линия всСго синуса ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»Π°ΡΡŒ Π΄ΠΎ этого синуса, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΎΠ±Π° двиТСния Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ Π½Π°Ρ‡Π°Π»ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ сдвигаСтся.

Π’ сотрудничСствС с английским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΌ Π“Π΅Π½Ρ€ΠΈ Бриггсом ΠΡΠΏΡŒΠ΅Ρ€ ΠΏΡ€ΠΈΠ²Π΅Π» свой Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π² Π΅Π³ΠΎ ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ. Для Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° НапСриана сравнСниС Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, двиТущимися ΠΏΠΎ Π³Ρ€Π°Π΄ΡƒΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ прямой, Ρ‚ΠΎΡ‡ΠΊΠ° L (для Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°) Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ пСрСмСщаСтся ΠΎΡ‚ минус бСсконСчности ΠΊ плюс бСсконСчности, Ρ‚ΠΎΡ‡ΠΊΠ° X (для синуса) двиТСтся ΠΎΡ‚ нуля Π΄ΠΎ Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π΅Π΅ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ нуля.ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, L Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ, ΠΊΠΎΠ³Π΄Π° X Ρ€Π°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ ΠΈ ΠΈΡ… ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² этот ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρ€Π°Π²Π½Π°. Π‘ΡƒΡ‚ΡŒ открытия ΠΠ°ΠΏΡŒΠ΅Ρ€Π° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ прСдставляСт собой ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ арифмСтичСским ΠΈ гСомСтричСским рядами; Ρ‚.Π΅. ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ

X ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ слоТСнию ΠΈ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ L , соотвСтствСнно. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ L ΠΈ X Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ L = 1 ΠΏΡ€ΠΈ X = 10 Π² Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, Ρ‡Ρ‚ΠΎ X = 1 ΠΏΡ€ΠΈ L = 0.Π­Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ появлСнию бриггсовского, ΠΈΠ»ΠΈ ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ, Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.

НапьС ΡƒΠΌΠ΅Ρ€ Π² 1617 Π³ΠΎΠ΄Ρƒ, ΠΈ Бриггс ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π» Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π² ΠΎΠ΄ΠΈΠ½ΠΎΡ‡ΠΊΡƒ, ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π² Π² 1624 Π³ΠΎΠ΄Ρƒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ², рассчитанных Π΄ΠΎ 14 дСсятичных Π·Π½Π°ΠΊΠΎΠ² для чисСл ΠΎΡ‚ 1 Π΄ΠΎ 20 000 ΠΈ ΠΎΡ‚ 90 000 Π΄ΠΎ 100 000. Π’ 1628 Π³ΠΎΠ΄Ρƒ голландский ΠΈΠ·Π΄Π°Ρ‚Π΅Π»ΡŒ Адриан Π’Π»Π°ΠΊ составил 10-ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ для Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΎΡ‚ 1 Π΄ΠΎ 100 000, Π΄ΠΎΠ±Π°Π²ΠΈΠ² Π½Π΅Π΄ΠΎΡΡ‚Π°ΡŽΡ‰ΠΈΠ΅ 70 000 Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. И Бриггс, ΠΈ Π’Π»Π°ΠΊΠΊ занимались настройкой тригономСтричСских Ρ‚Π°Π±Π»ΠΈΡ† ΠΆΡƒΡ€Π½Π°Π»Π°. Π’Π°ΠΊΠΈΠ΅ Ρ€Π°Π½Π½ΠΈΠ΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ Π±Ρ‹Π»ΠΈ Π»ΠΈΠ±ΠΎ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ ΠΎΠ΄Π½ΠΎΠΉ сотой градуса, Π»ΠΈΠ±ΠΎ Π΄ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ½ΡƒΡ‚Ρ‹.Π’ 18 Π²Π΅ΠΊΠ΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π»ΠΈΡΡŒ с ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ Π² 10 сСкунд, Ρ‡Ρ‚ΠΎ Π±Ρ‹Π»ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ для Ρ‚Π°Π±Π»ΠΈΡ† с сСмью Π·Π½Π°ΠΊΠ°ΠΌΠΈ послС запятой. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π±ΠΎΠ»Π΅Π΅ ΠΌΠ΅Π»ΠΊΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ для вычислСния логарифмичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… чисСл — Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈ вычислСнии Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ log sin

x ΠΈ log tan x .

НаличиС Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² сильно повлияло Π½Π° Ρ„ΠΎΡ€ΠΌΡƒ плоской ΠΈ сфСричСской Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ для создания Ρ„ΠΎΡ€ΠΌΡƒΠ», Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, зависящиС ΠΎΡ‚ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ², Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.Π’ΠΎΠ³Π΄Π° ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΊ Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌ состояло всСго ΠΈΠ· Π΄Π²ΡƒΡ… шагов: получСния Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² ΠΈ, послС выполнСния вычислСний с Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°ΠΌΠΈ, получСния Π°Π½Ρ‚ΠΈΠ»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ².

Ѐрэнсис Π”ΠΆ. ΠœΡŽΡ€Ρ€Π΅ΠΉ

Π£Π·Π½Π°ΠΉΡ‚Π΅ большС Π² этих связанных ΡΡ‚Π°Ρ‚ΡŒΡΡ… Britannica:

.

python — NumPy: Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ с основаниСм n

ΠŸΠ΅Ρ€Π΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ стСка
  1. Около
  2. Π’ΠΎΠ²Π°Ρ€Ρ‹
  3. Для ΠΊΠΎΠΌΠ°Π½Π΄
  1. ΠŸΠ΅Ρ€Π΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ стСка ΠžΠ±Ρ‰Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ вопросы ΠΈ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹
  2. ΠŸΠ΅Ρ€Π΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ стСка для ΠΊΠΎΠΌΠ°Π½Π΄ Π“Π΄Π΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈ дСлятся частными знаниями с ΠΊΠΎΠ»Π»Π΅Π³Π°ΠΌΠΈ
  3. Вакансии ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ связанныС с Π½ΠΈΠΌ тСхничСскиС возмоТности ΠΊΠ°Ρ€ΡŒΠ΅Ρ€Π½ΠΎΠ³ΠΎ роста
  4. Π’Π°Π»Π°Π½Ρ‚ НанимайтС тСхничСских спСциалистов ΠΈ создавайтС свой Π±Ρ€Π΅Π½Π΄ работодатСля
  5. Π Π΅ΠΊΠ»Π°ΠΌΠ° ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ΡΡŒ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠ°ΠΌ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Π°ΠΌ со всСго ΠΌΠΈΡ€Π°
  6. О компании

Загрузка…

  1. ΠΠ²Ρ‚ΠΎΡ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π·Π°Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ
  2. Ρ‚Π΅ΠΊΡƒΡ‰Π΅Π΅ сообщСство

.

javascript — Как Π½Π°ΠΉΡ‚ΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ чисСл ΠΏΠΎ основанию?

ΠŸΠ΅Ρ€Π΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ стСка
  1. Около
  2. Π’ΠΎΠ²Π°Ρ€Ρ‹
  3. Для ΠΊΠΎΠΌΠ°Π½Π΄
  1. ΠŸΠ΅Ρ€Π΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ стСка ΠžΠ±Ρ‰Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ вопросы ΠΈ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹
  2. ΠŸΠ΅Ρ€Π΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ стСка для ΠΊΠΎΠΌΠ°Π½Π΄ Π“Π΄Π΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈ дСлятся частными знаниями с ΠΊΠΎΠ»Π»Π΅Π³Π°ΠΌΠΈ
  3. Вакансии ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ связанныС с Π½ΠΈΠΌ тСхничСскиС возмоТности ΠΊΠ°Ρ€ΡŒΠ΅Ρ€Π½ΠΎΠ³ΠΎ роста
  4. Π’Π°Π»Π°Π½Ρ‚ НанимайтС тСхничСских спСциалистов ΠΈ создавайтС свой Π±Ρ€Π΅Π½Π΄ работодатСля
  5. Π Π΅ΠΊΠ»Π°ΠΌΠ° ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ΡΡŒ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠ°ΠΌ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Π°ΠΌ со всСго ΠΌΠΈΡ€Π°
  6. О компании

Загрузка…

    .

    Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

    Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹

    ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

    ΠžΡΠ½ΠΎΠ²Ρ‹ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΠŸΡ€Π΅Π΄Π°Π»Π³Π΅Π±Ρ€Π° АлгСбра ВригономСтрия Precalculus Π˜ΡΡ‡ΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ЛинСйная Π°Π»Π³Π΅Π±Ρ€Π° Π₯имия

    Mathway Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ javascript ΠΈ соврСмСнного Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π°.

    Π­Ρ‚ΠΎΡ‚ Π²Π΅Π±-сайт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Ρ„Π°ΠΉΠ»Ρ‹ cookie, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ Π²Π°ΠΌ максимальноС удобство Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π½ΠΈΠΌ.

    Π£Π±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ, Ρ‡Ρ‚ΠΎ ваш ΠΏΠ°Ρ€ΠΎΠ»ΡŒ состоит Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Ρ‡Π΅ΠΌ ΠΈΠ· 8 символов ΠΈ содСрТит ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ:

    • Π½ΠΎΠΌΠ΅Ρ€
    • письмо
    • ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ символ: @ $ #!% *? &
    .