Конденсатор в цепи переменного тока

Конденсатор в цепи переменного тока

Подробности
Просмотров: 357

«Физика — 11 класс»

Постоянный ток не может идти по цепи, содержащей конденсатор, так как обкладки конденсатора разделены диэлектриком.
Переменный же ток может идти по цепи, содержащей конденсатор.

Есть источники постоянного и переменного напряжений, в которых постоянное напряжение на зажимах источника равно действующему значению переменного напряжения.
Цепь состоит из конденсатора и лампы накаливания, соединенных последовательно.
При включении постоянного напряжения (переключатель влево) лампа не светится.
При включении переменного напряжения (переключатель вправо) лампа загорается, если емкость конденсатора достаточно велика.

Под действием переменного напряжения происходит периодическая зарядка и разрядка конденсатора.
Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы.


Если сопротивлением проводов и обкладок конденсатора можно пренебречь,

то напряжение на конденсаторе равно напряжению на концах цепи.

Следовательно,

Заряд конденсатора меняется по гармоническому закону:

q = CUm cos ωt

Сила тока, представляющая собой производную заряда по времени, равна:

Колебания силы тока опережают по фазе колебания напряжения на конденсаторе на .

Амплитуда силы тока равна:

Im = Um

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.
Роль этой величины аналогична роли активного сопротивления R в законе Ома.
Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока.
Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки.

Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора.
В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс.
С увеличением емкости оно уменьшается.
Уменьшается оно и с увеличением частоты ω.

На протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля.
В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Итак,
сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на .

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

u=50cos(100 pi t), где все величины выражен

V = 500см
g ≈ 10 H\кг
P = 7800 кг\м3
____________________
Найти: Fт

СИ
____________________
200см3 = 0,0002м3

Решение
____________________
Fт=mg

Из этой формулы нам неизвестно m. Масса находится по формуле: m=VP, где V — объём, а P — плотность.

Ищем.(Напишу без единиц измерения)
m=0,0002 х 7800 = 1,56 кг

Теперь ищем силу тяжести.
Fт = 1.56 х 10 ≈ 15,6 H (Если при точных вычислениях при g = 9.8 H\кг, то тогда получаем: Fт = 9.8 х 1.56 = 15, 288 ≈ 15, 3)

Ответ: Fт = 15,6 H или 15,3 H, это уже сами выбирайте хД

^ — степень
Дано:
V = 2км/ч  ; в СИ   V=2*1000 = 2000 м/с
R = 695 500 км = 695 500 000 м — радиус Солнца
Решение
период обращения 
T = 2пR/v =2*3.14*695 500 000 /2000 = 2 183 870 c =363978(3)мин=606.6 час
центростремительное ускорение точек экватора
a = V^2/R =2000^2 /695 500 000 =0.00575 м/с2

Найдём скорость трамвая U = S1/t = 100/20 = 5 м/с.
найдём время при 0.5 км t = S2/U = 500/5 = 100 c. 

Q(кол-во теплоты)=l:2  R*t
Q=36*20*120=86400 Дж
Ответ:86400 Дж

Работа по подъему груза вычисляется по одной формуле
A=m*g*h     Подставь числа и УСЕ

Колебания и волны. Задачи ЕГЭ с решениями

Колебания и волны.
Задачи ЕГЭ с решениями

Формулы для решения задач по теме «Колебания и волны. Задачи ЕГЭ».

колебания и волны
колебания и волны
колебания и волны
колебания и волны


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача 1. При измерении пульса человека было зафиксировано 75 пульсаций крови за 1 мин. Определите частоту сокращения сердечной мышцы.

колебания и волны

Задача 2. Каков период колебаний поршня двигателя автомобиля, если за 30 с поршень совершает 600 колебаний?

колебания и волны

Задача 3. Сколько полных колебаний совершит материальная точка за 5 с, если частота колебаний 440 Гц?

колебания и волны

Задача 4. Тело совершает гармонические колебания по закону х = 0,2sin(4πt). Определите амплитуду колебаний.

колебания и волны

Задача 5. Математический маятник совершил 100 колебаний за 628 с. Чему равна длина нити маятника?

колебания и волны

Задача 6. Амплитуду колебаний математического маятника уменьшили в 2 раза. Как при этом изменился период колебаний маятника?

колебания и волны

Задача 7. К пружине жесткостью 200 Н/м подвешен груз массой 0,4 кг. Определите частоту свободных колебаний этого пружинного маятника.

колебания и волны

Задача 8. Груз, подвешенный на пружине жесткостью 250 Н/м, совершает свободные колебания с циклической частотой 50 с–1. Найдите массу груза.

колебания и волны

Задача 9. Груз, подвешенный на лёгкой пружине жесткостью 100 Н/м, совершает свободные гармонические колебания. Какой должна быть жесткость пружины, чтобы частота колебаний этого же груза увеличилась в 4 раза?

колебания и волны

Задача 10. Расстояние между ближайшими гребнями волн в море 4 м. Лодка качается на волнах, распространяющихся со скоростью 3 м/с. С какой частотой волны ударяют о корпус лодки?

колебания и волны

Задача 11. Источник колебаний с периодом 5 мс вызывает в воде звуковую волну с длиной волны 7,175 м. Определите скорость звука в воде.

колебания и волны

Задача 12. Звуковая волна частотой 1 кГц распространяется в стальном стержне со скоростью 5 км/с. Определите длину этой волны.

колебания и волны

Задача 13. Скорость звука в воздухе 340 м/с. Длина звуковой волны в воздухе для самого низкого мужского голоса достигает 4,3 м. Определите частоту колебаний этого голоса.

колебания и волны

Задача 14. Колебания напряжения на конденсаторе в цепи переменного тока описываются уравнением: u = 50соs(100πt), где все величины выражены в единицах СИ. Чему равна циклическая частота колебаний напряжения?

колебания и волны

Задача 15. Чему равен период колебаний в колебательном контуре, состоящем из конденсатора емкостью 4 мкФ и катушки индуктивности 1 Гн? Ответ выразите в миллисекундах, округлив его до целых.

колебания и волны

Задача 16. Колебательный контур состоит из конденсатора электроемкостью С и катушки индуктивности L. Как изменится период электромагнитных колебаний в этом контуре, если электроемкость конденсатора увеличить в 4 раза?

колебания и волны

Задача 17. На рисунке представлен график зависимости амплитуды силы тока вынужденных колебаний от частоты v вынуждающей ЭДС. При какой частоте происходит резонанс?

колебания и волны

Задача 18. Амплитуда колебаний напряжения на участке цепи переменного тока равна 50 В. Чему равно действующее значение напряжения на этом участке цепи?

колебания и волны

Задача 19. Действующее значение силы тока в цепи переменного то ка равно 5 А. Чему равна амплитуда колебаний силы тока в цепи?

колебания и волны

Задача 20. Сила тока через резистор меняется по закону i = 36sin(128t

). Определите действующее значение силы тока в цепи.

колебания и волны

Задача 21. Емкость конденсатора, включенного в цепь переменного тока, равна 2 мкФ. Уравнение колебаний напряжения на конденсаторе имеет вид: u = 75cos(2•103t), где все величины выражены в СИ. Определите амплитуду силы тока.

колебания и волны

Задача 22. Чему равна длина электромагнитной волны, распространяющейся в воздухе, если период колебаний 0,01 мкс? Скорость распространения электромагнитных волн с = 3 10* м/с .

колебания и волны

Задача 23. На какую длину волны нужно настроить радиоприёмник, чтобы слушать радиостанцию «Наше радио», которая вещает на частоте 101,7 МГц? Скорость распространения электромагнитных волн с = 3 • 108 м/с.

колебания и волны

Задача 24. Длина электромагнитной волны в воздухе равна 0,6 мкм. Чему равна частота колебаний вектора напряженности электрического поля в этой волне? Скорость распространения электромагнитных волн с = 3 • 10

8 м/с.

колебания и волны

Задача 25. У какого света больше длина волны у красного или синего?

колебания и волны

Задача 26. Земля удалена от Солнца на расстояние 150 млн км. Сколько времени идет свет от Солнца к Земле? Скорость распространения электромагнитных волн с = 3 • 10м/с. колебания и волны


 

Вы смотрели конспект по теме «Колебания и волны. Задачи ЕГЭ». Ключевые слова конспекта: Кинематика гармонических колебаний. Математический маятник. Пружинный маятник. Энергия колебаний. Волны. Электрический контур. Переменный ток. Трансформаторы. Автор задач и решений: Исаков Александр Яковлевич (КамчатГТУ). Выберите дальнейшие действия:

 

Конденсатор в цепи переменного тока

Если конденсатор включить в цепь постоянного тока, то такая цепь будет разомкнутой, так как обкладки конденсатора разделяет диэлектрик, и ток в цепи идти не будет. Иначе происходит в цепи переменного тока. Переменный ток способен течь в цепи, если она содержит конденсатор. Это происходит не из-за того, что заряды вдруг получили возможность перемещаться между пластинами конденсатора. В цепи переменного тока происходит периодическая зарядка и разрядка конденсатора, который в нее включен благодаря действию переменного напряжения.

Рассмотрим цепь на рис.1, которая включает конденсатор. Будем считать, что сопротивление проводов и обкладок конденсатора не существенно, напряжение переменного тока изменяется по гармоническому закону:

   

По определению емкость на конденсаторе равна:

   

Следовательно, напряжение на конденсаторе:

   

Из выражения (3), очевидно, что заряд на конденсаторе будет изменяться по гармоническому закону:

   

Сила тока равна:

   

Сравнивая законы колебаний напряжения на конденсаторе и силы тока, видим, что колебания тока опережают напряжение на . Этот факт отражает то, что в момент начала зарядки конденсатора сила тока в цепи является максимальной при равенстве нулю напряжения. В момент времени, когда напряжение достигает максимума, сила тока падает до нуля.

В течение периода, при зарядке конденсатора до максимального напряжения, энергия, поступающая в цепь, запасается на конденсаторе, в виде энергии электрического поля. За следующую четверть периода данная энергия возвращается обратно в цепь, когда конденсатор разряжается.

Амплитуда силы тока (), исходя из выражения (5), равна:

   

Емкостное сопротивление конденсатора

Физическую величину, равную обратному произведению циклической частоты на емкость конденсатора называют его емкостным сопротивлением ():

   

Роль емкостного сопротивления уподобляют роли активного сопротивления (R) в законе Ома:

   

где – амплитудное значение силы тока; – амплитуда напряжения. Для емкостного сопротивления действующая величина силы тока имеет связь с действующим значением напряжения аналогичную выражению (8) (как сила тока и напряжение для постоянного тока):

   

На основании (9) говорят, что сопротивление конденсатора переменному току.

При увеличении емкости конденсатора растет ток перезарядки. Тогда как сопротивление конденсатора постоянному току является бесконечно большим (в идеальном случае), ёмкостное сопротивление конечно. С увеличением емкости и (или) частоты уменьшается.

Примеры решения задач

Переменный ток

“Стартовые” задачи по теме “переменный ток”. Познакомимся с понятиями индуктивного и емкостного сопротивлений, полного сопротивления, узнаем, что такое амплитудное и действующее значение тока и напряжения.

Задача 1. В цепь переменного тока последовательно включены конденсатор, резистор и катушка индуктивности. Как соотносятся по фазе колебания напряжения на этих элементах от фазы колебаний силы тока в цепи?

А) U_C   на обкладках конденсатора;

Б) U_R на зажимах резистора;

В) U_L на зажимах катушки.
1) отстают-по фазе от силы тока на \frac{\pi}{2};

2) опережают по фазе силу тока на \frac{\pi}{2};

3) совпадают по фазе с колебаниями силы тока;
4) опережают по фазе силу тока на катушки на некоторый угол \alpha.

Ток и напряжение в резисторе совпадают по фазе, всегда.
Чтобы хорошо запомнить, как соотносятся фазы напряжения и тока в реактивных элементах (катушке и конденсаторе), я даже для студентов своих стишок придумала:

«Каждый студент – запомни твердо!

От этого твой зависит зачет!

В емкости ток – опережает,

А в индуктивности – отстает!»

Ответ: 132

Задача 2. Катушка с ничтожно малым активным сопротивлением включена в  цепь переменного тока с частотой 50 Гц. При напряжении 125 В сила тока равна 3 А. Какова индуктивность катушки?
Определим  угловую частоту:

    \[\omega=2\pi \nu=6,28 \cdot50=314\]

Индуктивное сопротивление катушки:

    \[x_L=\omega L\]

По закону Ома:

    \[U=Ix_L=I\omega L\]

    \[L=\frac{U}{ I\omega }=\frac{125}{3\cdot314}=0,13\]

Ответ: L=0,13 Гн.
Задача 3.  Амплитудные значения напряжения и тока на резисторе соответственно равны  U_m=100 В, I_m=2 А. Какая средняя мощность выделится  резисторе этой цепи?

Средняя мощность вычисляется по формуле:

    \[P=UI\cos{\phi}\]

Где U и I – действующие значения тока и напряжения (они в \sqrt{2} раз меньше амплитудных), а \phi – угол сдвига фаз напряжения и тока. Для резистора \phi=0. Тогда

    \[P=\frac{I_m}{\sqrt{2}}\cdot\frac{U_m}{\sqrt{2}}=\frac{I_mU_m}{2}=\frac{100\cdot2}{2}=100\]

Ответ: 100 Вт.

Задача 4. Напряжение на резисторе в цепи переменного тока изменяется по закону U = 140\cos 100\pi t, В. Чему равно действующее значение напряжения?

Действующие значения тока и напряжения  в \sqrt{2} раз меньше амплитудных:

    \[u(t)=U_m\cos 100\pi t\]

    \[U=\frac{U_m}{\sqrt{2}}=\frac{140}{1,41}=100\]

Ответ: 100 В.

Задача 5. Найдите активное сопротивление электрической лампы, включенной в цепь переменного тока с действующим напряжением 220 В, если при этом на ней выделяется средняя мощность 200 Вт.

    \[P=I^2R=\frac{U^2}{R}=200\]

    \[R=\frac{U^2}{P}=\frac{220^2}{200}=242\]

Ответ: 242 Ом.
Задача 6. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление R = 2 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?
По закону Ома

    \[U_m=I_m\cdot \mid z \mid\]

    \[\mid z \mid=\sqrt{R^2+\frac{1}{(\omega C)^2}}=\sqrt{2000^2+\frac{1}{(2\pi \cdot50\cdot10^{-6})^2}}=3759\]

    \[I_m=\frac{U_m}{\mid z \mid}=\frac{U\sqrt{2}}{\mid z \mid}=\frac{220\cdot\sqrt{2}}{3759}=0,082\]

Ответ: 82 мА
Задача 7. Какое количество теплоты выделится на активном сопротивлении R = 10 Ом за 2 периода колебаний, если мгновенное значение переменного напряжения на сопротивлении описывается уравнением U = 15\cos 100 \pi t‚ В?
Из записи напряжения видим:  U_m=15 – амплитуда напряжения, U=\frac{U_m}{\sqrt{2}}=\frac{15}{\sqrt{2}} – действующее значение, \omega=100 \pi.

Так как T=\frac{2\pi}{\omega}=0,02, то t=2T=0,04 c.

Количество теплоты равно:

    \[Q=I^2Rt=\frac{U^2}{R}t=\frac{225}{2}\cdot \frac{0,04}{10}=0,45\]

Ответ: 0,45 Дж.


Задача 8. В последовательной цепи переменного тока из резистора сопротивлением R=25 Ом, конденсатора электроемкостью С = 4,8 мкФ и катушки индуктивностью L= 0,3 Гн наблюдается электрический резонанс. Во сколько раз амплитуда напряжения на катушке больше амплитуды приложенного напряжения?

Добротность определяет то, во сколько раз напряжение на катушке или конденсаторе больше входного (напряжения питания).

Добротность:

    \[Q=\frac{\rho}{R}\]

Где \rho=\sqrt{\frac{L}{C}} – волновое сопротивление контура.

    \[Q=\frac{1}{R}\sqrt{\frac{L}{C}}=\frac{1}{25}\sqrt{\frac{0,3\cdot10^6}{4,8}}=\frac{250}{25}=10\]

Ответ: в 10 раз.

Урок 9. конденсатор и катушка индуктивности в цепи переменного электрического тока — Физика — 11 класс

Физика, 11 класс

Урок 9. Конденсатор и катушка индуктивности в цепи переменного электрического тока

Перечень вопросов, рассматриваемых на уроке:

Процессы, происходящие в цепи переменного электрического тока при наличии конденсатора и катушки индуктивности;

Устройство и принцип действия генератора переменного тока и трансформатора;

Автоколебания;

Проблемы передачи электроэнергии и способы повышения эффективности её использования.

Глоссарий по теме

Автоколебания – незатухающие колебания в системе, поддерживаемые за счет постоянного источника энергии.

Электрические машины преобразующие механическую энергию в электрическую называются генераторами.

Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.

Коэффициент трансформации – величина равная отношению напряжений в первичной и вторичной обмотках трансформатора.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Переменный ток, которым мы пользуемся, вырабатывается с помощью генераторов переменного тока на электростанциях. Для передачи произведенной электроэнергии строятся линии электропередачи. В каждом населенном пункте имеются трансформаторы. Какую роль играют трансформаторы при передаче электроэнергии? Об этом мы поговорим на данном уроке.

В июле 1832 года Фарадей получил анонимное письмо, в котором автор описывал устройство созданного им генератора постоянного тока. Ознакомившись с содержанием письма Фарадей тут же отослал его в редакцию научного журнала. Автор этого письма не назвал себя, его фамилия осталась неизвестной.

Электрические машины преобразующие механическую энергию в электрическую называются генераторами. Впоследствии генераторы постоянного тока непрерывно совершенствовались. Потом, когда начали использовать переменный ток они уступили место генераторам переменного тока. Переменный ток в основном вырабатывается генераторами переменного тока. Простой моделью генератора может служить прямоугольная рамка, вращающаяся в магнитном поле. При вращении рамки, магнитный поток пронизывающий площадь поверхности, ограниченную рамкой, меняется по гармоническому закону:

N- число витков.

Возникает ЭДС индукции который меняется по гармоническому закону.

ЭДС индукции в рамке равна:

Если с помощью контактных колец и скользящих по ним щёток соединить концы рамки с электрической цепью, то в цепи возникнет переменный ток.

В современной энергетике для производства электроэнергии используются электромеханические индукционные генераторы. Принцип действия таких генераторов основан на явлении электромагнитной индукции. Основными частями генератора являются статор и ротор. Неподвижная часть генератора называется статором, а вращающаяся – ротором.

Постоянный ток не может идти по цепи содержащей конденсатор, т. к. цепь оказывается разомкнутой. При включении конденсатора в цепь переменного тока конденсатор будет периодически заряжаться и разряжаться с частотой равной частоте приложенного напряжения. В результате периодически меняющихся процессов зарядки и разрядки конденсатора в цепи течет переменный ток. Лампа накаливания, включенная в цепь переменного тока последовательно с конденсатором кажется горящей непрерывно, т.к. при высокой частоте колебаний силы тока человеческий глаз не способен заметить периодического ослабления нити накала. Конденсатор оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току. Чем больше ёмкость конденсатора и частота колебаний, тем больше ток перезарядки. При наличии в цепи переменного тока конденсатора колебания силы тока опережают по фазе колебания напряжения конденсаторе на 90º. Сдвиг фазы колебаний силы тока на 90º относительно фазы колебания напряжения на конденсаторе приводит к тому, что мощность переменного тока в течение одной четверти периода имеет положительный знак, а в течение второй четверти – отрицательный. Поэтому среднее значение мощности за период равно нулю.

Индуктивность в цепи, так же, как и ёмкость, влияет на силу переменного тока. Объясняется это явлением самоиндукции. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при этом вихревое электрическое поле тормозит движение электронов. Лишь спустя некоторое время сила тока достигает максимального значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она приобрела бы при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и его частотой колебаний.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю. Поэтому постоянный ток как бы не «замечает» катушку индуктивности в цепи.

Колебания напряжения на катушке опережают по фазе колебания силы тока на 90º.

Сдвиг фазы колебаний приводит к тому, что средняя мощность за период колебаний равна нулю.

Генератор на транзисторе используется для создания высокочастотных электромагнитных колебаний.

Для потребления электрической энергии нужно доставить его от источника к потребителю. Для этого строят линии электропередачи. При передаче электроэнергии на расстояние возникают потери энергии вследствие нагревания проводов. Тепловые потери можно определить используя закон Джоуля – Ленца:

Из этой формулы следует, что для уменьшения потерь энергиинужно уменьшить сопротивление или повысить напряжение. Уменьшения сопротивления проводов ЛЭП требует увеличения их площади поперечного сечения, что приведет к увеличению массы проводов. Увеличение массы проводов связано с большими расходами на укрепление столбов линии электропередачи, для их удержания и на производство металла для них. Наиболее эффективным является увеличение напряжения.

Для изменения напряжения в сети используют трансформаторы. Трансформатор был изобретен в 1876 году Яблочковым и в 1882 году усовершенствован Усагиным. Простейший трансформатор состоит из двух катушек, надетых на общий замкнутый стальной сердечник. Эти катушки называются обмотками трансформатора. Обмотка трансформатора, подключаемая к источнику переменного напряжения, называют первичной, а другая к которой присоединяют нагрузку – вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в трансформаторе возникает переменное магнитное поле. Это поле пронизывает обе обмотки и в них возникает вихревое электрическое поле, которое действуя на заряженные частицы во вторичной обмотке способствует возникновению в ней переменного напряжения.

Величина равная отношению напряжений в первичной и вторичной обмотках трансформатора называют коэффициентом трансформации. Его обозначают буквой «k».

k– коэффициент трансформации.

U1 и U2 – напряжения на первичной и на вторичной обмотке.

N1 и N2— число витков на первичной и на вторичной обмотке.

Если k < 1 — трансформатор повышающий,

k > 1 — трансформатор понижающий.

КПД трансформатора равен отношению мощности в нагрузке к мощности, подаваемой из сети на первичную обмотку:

Для передачи электроэнергии на расстояние напряжение повышают с помощью трансформатора, а для потребления — понижают. В массивных проводниках при изменении магнитного поля возникают индукционные токи (токи Фуко), которые нагревают проводник. Чтобы эти индукционные токи не нагревали сердечник трансформатора его делают не сплошным, а из отдельных пластин, скрепленных вместе.

Закон Ома гласит: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Из формулы закона Ома для переменного тока мы видим, что при постоянной амплитуде напряжения, амплитуда силы тока зависит от частоты. Амплитуда силы тока будет максимальной, если полное сопротивление минимально. Полное сопротивление цепи минимально при равенстве индуктивного и ёмкостного сопротивления. В этом заключается условие возникновения резонанса в электрической цепи.

Резонанс в электрической цепи – это явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний контура.

 Явление резонанса широко используется в радиотехнике, в схемах настройки радиоприемников. Меняя электроемкость конденсатора в колебательном контуре можно настроить его на нужную волну, т.е. выделить частоту на которой работает передающая станция

Разбор тренировочных заданий

1. Каково амплитудное значение ЭДС, возникающей в рамке из 50 витков, если она вращается с циклической частотой 180 рад/с в магнитном поле индукцией 0,4 Тл? Площадь рамки 0,02 м2.

Дано:

N=50

ω=180 рад/с

B=0,4 Тл

S=0,02 м2

_________

Ԑm=?

Решение:

Ответ: 72 В.

2. Катушка с индуктивностью 0,08 Гн присоединена к источнику переменного тока частотой 1000 Гц. При этом вольтметр показывает 100 В. Определить амплитуду тока в цепи. Ответ округлить до десятых.

Дано:

L=0,08 Гн

ν= 1000 Гц

U=100 В

__________

Im=?

Решение:

Напишем закон Ома для переменного тока

Т.к. ХC и R равны нулю, то

Учитывая, что , получаем:

Найдем амплитудное значение напряжения:

Подставим числовые данные в формулу для расчета амплитуды силы тока:

Ответ: Im = 0,3 А.

Цепи переменного тока

На рисунке 1 показан график зависимости переменного напряжения и переменного тока от времени в цепи, в которой есть только резистор и источник переменного тока — генератор переменного тока.

Поскольку напряжение и ток достигают своих максимальных значений одновременно, они равны в фазе . Закон Ома и предыдущие выражения для мощности действительны для этой схемы, если используются среднеквадратичное значение (среднеквадратичное значение) напряжения и среднеквадратичное значение тока, иногда называемое действующим значением .Эти соотношения

,

, закон Ома выражается следующим образом: В R = IR , где В R — действующее напряжение на резисторе, а I — действующее значение в цепи.

Резисторно-конденсаторные схемы

Схема с резистором, конденсатором и генератором переменного тока называется RC-схемой . Конденсатор представляет собой набор проводящих пластин, разделенных изолятором; таким образом, постоянный ток не может проходить через конденсатор.Изменяющийся во времени ток может добавлять или удалять заряды с пластин конденсатора. Простая схема зарядки конденсатора показана на рисунке 2.


Рисунок 2

RC-цепь для зарядки конденсатора.

Первоначально в момент времени t = 0 переключатель (S) разомкнут, и на конденсаторе нет заряда.Когда переключатель замкнут, ток пройдет через резистор и зарядит конденсатор. Ток прекратится, когда падение напряжения на конденсаторе станет равным потенциалу батареи (В) . Как только конденсатор достигнет максимального заряда, ток уменьшится до нуля. Ток максимален сразу после замыкания переключателя и экспоненциально уменьшается со временем. Емкостная постоянная времени (τ), греческая буква тау) — это время затухания заряда до 1/ e от его начального значения, где e — натуральный логарифм.Конденсатор с большой постоянной времени будет меняться медленно. Емкостная постоянная времени равна τ = RC .

Из правил Кирхгофа получены следующие выражения для разности потенциалов на конденсаторе С ) и токе (I) в цепи:

, где В — это потенциал батареи.

Резисторно-индуктивные цепи

Схема с резистором, индуктором и генератором переменного тока представляет собой схему RL .Когда переключатель замкнут в цепи RL, в катушке индуктивности индуцируется обратная эдс. Следовательно, току требуется время для достижения своего максимального значения, а постоянная времени, называемая индуктивной постоянной времени , задается как

Уравнения для тока как функции времени и для потенциала через индуктор:

Переключатель использовался в вышеупомянутых обсуждениях цепей RC и RL для простоты. Размыкание и закрытие переключателя дает ответ, аналогичный ответу переменного тока.Цепи RC и RL похожи друг на друга, потому что увеличение напряжения дает ток, который экспоненциально изменяется в каждой цепи, но отклики отличаются другими способами. Это различное поведение, описанное ниже, приводит к различным реакциям в цепях переменного тока.

Реактанс

Теперь рассмотрим схему переменного тока, состоящую только из конденсатора и генератора переменного тока. Графики тока и напряжения на конденсаторе в зависимости от времени показаны на рисунке.Кривые , а не по фазе, как для цепи резистора и генератора переменного тока. (См. Рисунок.) Кривые показывают, что для конденсатора напряжение достигает своего максимального значения через четверть цикла после того, как ток достигает своего максимального значения. Таким образом, напряжение отстает от тока через конденсатор на 90 градусов.

Емкостное реактивное сопротивление (X c ) выражает препятствующее влияние конденсатора на ток и определяется как

.

Рисунок 3

Ток и напряжение от источника переменного тока через конденсатор.

, где C в фарадах, а частота (f) в единицах герц. Закон Ома дает В с = IX с , где В с — действующее напряжение на конденсаторе, а I — действующее значение тока в цепи.

Рассмотрим схему с только индуктором и генератором переменного тока.На рисунке показаны графики зависимости тока и напряжения от времени для индуктора. Обратите внимание, что напряжение и ток не в фазе. Напряжение для этой цепи достигает своего максимального значения за четверть цикла, прежде чем ток достигнет своего максимума; таким образом, напряжение приводит к току на 90 градусов.


Рисунок 4

Ток и напряжение от источника переменного тока через индуктор.

Ток в цепи ограничен обратной ЭДС катушки индуктивности. Эффективное сопротивление называется индуктивным сопротивлением (X L ) , определяемым как (X L ) = 2π fL , где L измеряется в генри, а f — в герцах.Закон Ома дает L ) = IX L , где L ) — действующее напряжение на индуктивности, а I — действующее значение в индуктивности.

Резистор-индуктор-конденсаторная цепь

Схема с резистором, индуктором, конденсатором и генератором переменного тока называется RLC-схемой . Фазовые отношения этих элементов можно суммировать следующим образом:

  • Мгновенное напряжение на резисторе В R находится в фазе с мгновенным током.
  • Мгновенное напряжение на индукторе В L опережает мгновенный ток на 90 градусов.
  • Мгновенное напряжение на конденсаторе В c отстает от мгновенного тока.

Поскольку напряжения на разных элементах не совпадают по фазе, отдельные напряжения нельзя просто добавить в цепи переменного тока. Уравнения для общего напряжения и фазового угла составляют

, где все напряжения являются действующими значениями.Закон Ома для общего случая цепей переменного тока теперь выражается как В = ИЗ , где R заменяется импедансом ( Z ), измеренным в омах. Сопротивление определяется как


,
Какова роль конденсатора в цепи переменного и постоянного тока? Электротехника

Какова роль конденсатора в цепи переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды по мере изменения тока и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепях постоянного тока конденсатор, однажды заряженный от приложенного напряжения, действует как размыкающий переключатель.

What is the Role of Capacitor in AC and DC Circuits What is the Role of Capacitor in AC and DC Circuits Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой двухполюсное электрическое устройство, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единицей измерения его емкости является Фарад «F», где Фарад — это большая единица емкости, поэтому в настоящее время они используют микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на аккумулятор, так как оба хранят электрическую энергию. Конденсатор — намного более простое устройство, которое не может производить новые электроны, но сохраняет их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (таким как вощеная бумага, слюда и керамика), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы могут быть полезны для хранения заряда и быстрого разряда в нагрузке.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Электрический эквивалентный символ различных типов конденсаторов приведен ниже: symbol of different types of capacitor symbol of different types of capacitor

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но, , знаете ли вы, что такое емкость? емкость — это способность конденсатора сохранять заряд в нем. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Похожие сообщения: Конденсаторы и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, преобразование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом уроке мы объясним вам, как вы можете использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора в электронную цепь:

  • Конденсатор серии
  • Конденсатор параллельно
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Похожие сообщения: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и сборка конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), ток начинает течь и продолжать распространяться до тех пор, пока напряжение не станет отрицательным и положительным (Анод и Катодные) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор через небольшую нагрузку, он начинает подавать напряжение (накопленную энергию) на эту нагрузку, пока конденсатор не разрядится полностью.

Конденсатор имеет различные формы, и его значение измеряется в Фарадах (F). Конденсаторы используются в системах переменного и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость — это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда один источник напряжения вольт подключен к его клемме.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = Емкость в Фарадах (F)
  • Q = Электрические заряды в Coul V = напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения — объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понять основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим последние типы конденсаторов в другом посте, поскольку он не связан с вопросом).

Похожие сообщения:

Конденсаторы в серии

Как подключить конденсаторы в серии?

Последовательно, ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, необходимо соединить их последовательно, как показано на рисунке ниже, Capacitors in Series Capacitors in Series

При последовательном подключении конденсаторов общая емкость уменьшается.Следовательно, соединение последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T 901 = + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной цепи, мы применим закон напряжения Кирхгофа (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th нет.конденсатора, соединенного последовательно,

Capacitance in Series - Capacitors in Series Capacitance in Series - Capacitors in Series

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти Емкость вышеуказанной цепи, используя формулу,

Здесь, C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14,7

C T = 3.19 мкФ

Параллельно конденсаторы

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключен к источнику, как вы можете видеть на рисунке ниже, Capacitors in Parallel Capacitors in Parallel

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, благодаря этому площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как

I = C (dV / dt)

Итак, Capacitors in Parallel Capacitors in Parallel

Решая вышеприведенное уравнение

C T = C 1 + C 2 + C 3

А, для n th нет.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете найти емкость цепи по: используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Похожие сообщения:

Полярный и неполярный конденсатор

Неполярный конденсатор: (Используется как в системах переменного, так и постоянного тока)

Конденсаторы неполярного типа могут использоваться как в системах переменного, так и постоянного тока.Они могут быть подключены к источнику питания в любом направлении, и их емкость не влияет на изменение полярности.

Polar Capacitor: (Используется только в цепях и системах постоянного тока)

Этот тип конденсаторов чувствителен к их полярности и может использоваться только в системах и сетях постоянного тока. Полярные конденсаторы не работают в системе переменного тока из-за изменения полярности после каждого полупериода питания переменного тока.

Types of Capacitors: Polar and Non Polar Capacitors with Symbols Types of Capacitors: Polar and Non Polar Capacitors with Symbols Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока ниже.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких цепях конденсатор соединен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют энергию. Они просто принимают мощность в одном цикле и передают ее в другом цикле нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями энергии.

Асинхронные двигатели с разделенной фазой:

Конденсаторы также используются в асинхронном двигателе для разделения однофазного питания на двухфазное питание для создания вращающегося магнитного поля в роторе для захвата этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, для работы которых требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Существует множество преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он выдает реактивную мощность, которая ранее поступала от энергосистемы, следовательно, он уменьшает потери и повышает эффективность системы.

Конденсаторы в цепях переменного тока

Как подключить конденсаторы в цепях переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не станет равным напряжению питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после того, как он полностью зарядится. How to Connect a Capacitor in AC Circuit? How to Connect a Capacitor in AC Circuit?

И, когда вы подключаете конденсатор через источник переменного тока, он заряжается и разряжается непрерывно, из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите фазовую диаграмму идеальной конденсаторной цепи переменного тока, вы можете заметить, что ток опережает напряжение на 90⁰. Capacitors in AC Circuits Capacitors in AC Circuits

В конденсаторной цепи переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное сопротивление в цепи переменного тока .

Поскольку мы знаем, что I = dQ / dt и Q = CV

А, входное напряжение переменного тока в вышеуказанной цепи будет выражаться как,

В = V м Sin вес

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференциации)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I м = 1 / wC (где, w = 2πf и V м / I м = X c )

Емкостная реактивность (X c ) = Capacitive Reactance (Xc) Capacitive Reactance (Xc)

Теперь, до рассчитать емкостное реактивное сопротивление вышеуказанной цепи,

Xc = 1 / 2π (50) (10)

Xc = 3183.09 Ω

Похожие сообщения: В чем разница между аккумулятором и конденсатором?

Роль конденсаторов в цепях постоянного тока

Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование — преобразование переменного тока в постоянный источник питания при выпрямлении (например, мостовой выпрямитель) Когда мощность переменного тока преобразуется в флуктуирующую (с пульсациями, т.е. не в устойчивом состоянии с помощью выпрямительных цепей), мощность постоянного тока (пульсирующий постоянный ток), чтобы сгладить и отфильтровать эти пульсации и флуктуации, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения системы и требуемого тока нагрузки.

Разъединительный конденсатор:

Разъединительный конденсатор используется, где мы должны разъединить две электронные схемы. Другими словами, шум, создаваемый одной цепью, основан на развязывающем конденсаторе, и это не влияет на работу другой цепи.

Соединительный конденсатор:

Как мы знаем, конденсатор блокирует постоянный ток и пропускает через него переменный ток (мы обсудим это на следующем занятии, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в цепях фильтра для той же цели). Его значение рассчитывается таким образом, что его реактивное сопротивление минимизируется на основе частоты, которую мы хотим пройти через него. Соединительный конденсатор также используется в фильтрах (схемах удаления пульсаций, таких как RC-фильтры) для разделения сигнала переменного и постоянного тока и удаляет пульсации из пульсирующего напряжения питания постоянного тока для преобразования его в чистое напряжение переменного тока после выпрямления.

Вы также можете прочитать:

.

электричество | Определение, факты и типы

Электростатика — это изучение электромагнитных явлений, которые возникают, когда нет движущихся зарядов, т.е. после того, как статическое равновесие установлено. Заряды быстро достигают своих положений равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов.И наоборот, при наличии набора проводников с известными потенциалами можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическая энергия набора зарядов в состоянии покоя может рассматриваться с точки зрения работы, необходимой для сборки зарядов; альтернативно, можно также считать, что энергия находится в электрическом поле, создаваемом этой сборкой зарядов. Наконец, энергия может храниться в конденсаторе; энергия, необходимая для зарядки такого устройства, накапливается в нем как электростатическая энергия электрического поля.

Изучите, что происходит с электронами двух нейтральных объектов, соприкасающихся в сухой среде. Объяснение статического электричества и его проявлений в повседневной жизни. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Статическое электричество — это знакомое электрическое явление, при котором заряженные частицы переносятся из одного тела в другое. Например, если два объекта притираются друг к другу, особенно если объекты являются изоляторами, а окружающий воздух сухой, объекты приобретают равные и противоположные заряды, и между ними развивается сила притяжения.Объект, который теряет электроны, становится положительно заряженным, а другой — отрицательно заряженным. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы были описаны выше; они включены в математические отношения, известные как закон Кулона. Электрическая сила на заряде Q 1 в этих условиях из-за заряда Q 2 на расстоянии r задается законом Кулона

Жирным шрифтом в уравнении обозначен вектор Характер силы и единичный вектор r — это вектор, размер которого равен единице и который указывает от заряда Q 2 до заряда Q 1 .Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 квадратных метров на квадратный кулон (Нм 2 / C 2 ). На рисунке 1 показано усилие на Q 1 из-за Q 2 . Численный пример поможет проиллюстрировать эту силу. И Q 1 , и Q 2 выбраны произвольно в качестве положительных зарядов, каждый из которых имеет величину 10 −6 кулонов.Заряд Q 1 расположен в координатах x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты 0, 0,04, 0. Все координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

электрическая сила между двумя зарядами Рисунок 1: электрическая сила между двумя зарядами. Предоставлено факультетом физики и астрономии Мичиганского государственного университета. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской.Подпишитесь сегодня

Величина силы F на заряде Q 1 , рассчитанная по уравнению (1), составляет 3,6 ньютона; его направление показано на рисунке 1. Сила на Q 2 из-за Q 1 составляет — F , которая также имеет величину 3,6 ньютона; однако его направление противоположно направлению F . Сила F может быть выражена через ее компоненты вдоль осей x и y , поскольку вектор силы лежит в плоскости x y .Это делается с помощью элементарной тригонометрии из геометрии на рисунке 1, а результаты показаны на рисунке 2. Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрической силы между зарядами в покое. Если обвинения имеют противоположные знаки, сила будет привлекательной; притяжение будет указано в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору r и будет указывать от Q 1 до Q 2 .В декартовых координатах это привело бы к изменению знаков как x , так и y компонентов силы в уравнении (2).

составляющих кулоновской силы Рисунок 2: x и y составляющих силы F на рисунке 4 (см. Текст). Предоставлено факультетом физики и астрономии Мичиганского государственного университета.

Как можно понять эту электрическую силу на Q 1 ? По сути, сила обусловлена ​​наличием электрического поля в позиции Q 1 .Поле вызвано вторым зарядом Q 2 и имеет величину, пропорциональную величине Q 2 . При взаимодействии с этим полем первый заряд на некотором расстоянии либо притягивается, либо отталкивается от второго заряда, в зависимости от знака первого заряда.

,
Высокий пусковой ток при переключении конденсаторов и способы его предотвращения.

Как предотвратить высокий пусковой ток при переключении конденсаторов?

Введение в высокий пусковой ток при переключении конденсаторов

Применения емкостного переключения не только ограничены емкостными токами, но и имеют свою реализацию в процессе возбуждения батарей конденсаторов, воздушных линий и кабелей. Известно, что переключение конденсаторных батарей является причиной очень большой величины переходного напряжения на контактах выключателя.

Емкостное переключение обычно характеризуется переключением токов с низкой скоростью на модовую в промышленных или общественных сетях и низкой скоростью нарастания восстановительного напряжения. Новые автоматические выключатели (CB), которые утверждают, что долгий механический и электрический срок службы без технического обслуживания, кажется, лучше всего приспособлены к этому режиму коммутации. Недавно разработанный элегазовый элегаз был разработан для лучшей производительности с меньшим количеством прерывателей на полюс, но, очевидно, идеальный сценарий не может быть достигнут. Step to removing High Inrush Current in Capacitor Switching Step to removing High Inrush Current in Capacitor Switching В цепях энергосистемы, где автоматический выключатель имеет широкое применение для предотвращения повреждения, дисбаланс напряжений вдоль клемм автоматического выключателя может привести к высокому пусковому току, поэтому любое прерывание емкостного тока может вызвать проблемы в диэлектрике, используемом для переключения устройств.Конденсаторы в конденсаторной батарее могут быть повреждены из-за сильного пускового тока .

В системе электропитания имеется множество батарей с сосредоточенными конденсаторами для регулирования напряжения, для улучшения коэффициента мощности (PF), а также батареи конденсаторов находят широкое применение для фильтрации высоких гармоник в общей системе.

В процессе распределения энергосистемы существуют кабельные сети, которые генерируют емкостную нагрузку. Когда происходит какое-либо прерывание тока в системе, емкостная нагрузка заряжается, и этот заряд в конденсаторах подвергает цепь повреждению в результате повторного зажигания диэлектрика и генерации высокого перенапряжения.

Когда большой пусковой ток начинает протекать через подстанции, система сталкивается с последствиями, которые происходят в системе защиты, а также при переключении, когда напряжение, присутствующее в линии, начинает колебаться со слегка низкой частотой, тогда его величина становится равной двойной величине присутствующего пикового напряжения в цепи, которая может вызвать серьезные опасности. В этой статье будет обсуждаться, как мы можем минимизировать высокий пусковой ток и каковы основные рекомендации для него

Методы установки конденсаторов для предотвращения пускового тока

Существует два способа размещения конденсаторов в таком Таким образом, этот бросок может быть сведен к минимуму.Оба эти метода описаны здесь один за другим.

Цепь с одной конденсаторной батареей

Первый сценарий

A single capacitor bank circuit and Synchronous Switching A single capacitor bank circuit and Synchronous Switching Цепь с одной конденсаторной батареей

Рассмотрим схему, расположенную над ней, как однофазную и с сосредоточенными элементами для емкостной цепи. Он имеет автоматический выключатель, который замыкает свои контакты при любом прерывании, один конденсатор и два индуктора присутствуют в цепи, предполагая, что сопротивление цепи приблизительно равно нулю, а значение индуктора L 1 больше, чем L 2 .

В цепи имеется автоматический выключатель для определения прерывания в цепи. Эта форма цепи называется изолированной батареи конденсаторов.

В этом случае ток зависит от параметров цепи и начального состояния цепи. Предположим, что конденсатор заряжается до напряжения v0 в момент времени t0. Ток можно рассчитать по выражению;
Inrush Current in Capacitor Switching formual and equations Inrush Current in Capacitor Switching formual and equations
Где: Methods To Insert capacitors in order to prevent inrush current Methods To Insert capacitors in order to prevent inrush current
В этом случае из-за демпфирования ток уменьшится и будет установлен общий ток в цепи.

Схема параллельных конденсаторных батарей

Второй сценарий:
Этот сценарий известен как емкостное переключение между банками. Давайте рассмотрим схему для него.

A back-to-back capacitor bank circuit. for high inrush current in capacitive switching and presentation A back-to-back capacitor bank circuit. for high inrush current in capacitive switching and presentation Цепочка конденсаторных батарей.

В этом случае есть два конденсатора и два индуктора, когда автоматический выключатель замыкается на разрыв, если происходит какое-либо диэлектрическое разрушение в точке b-b ‘(то есть разность напряжений на двух контактах автоматического выключателя), тогда выражение тока можно вычислить как
Steps to prevent inrush current Steps to prevent inrush current Где: Features and Working of SmartClose Switch Features and Working of SmartClose Switch
При этом ток может быть примерно в десять раз больше пикового тока, присутствующего в цепи, но этот ток может воздействовать только на один конденсатор (локальный), и остальная часть системы будет в безопасности.

Шаги по предотвращению высокого пускового тока

Вот несколько рекомендаций по избавлению от этого высокого пускового тока.

  1. В цепи должен присутствовать резистор, так как сопротивление увеличит ток до некоторого уровня.
  2. Дополнительное реактивное сопротивление может быть размещено в системе, поскольку при установке дополнительного реактивного сопротивления в системе будут происходить дополнительные потери энергии наряду с уменьшением влияния конденсаторов.

Синхронное переключение

Поскольку мы знаем, что высокое перенапряжение возникает из-за пробоя диэлектрика между контактами автоматического выключателя, мы должны окончательно устранить эту проблему.Таким образом, чтобы устранить проблему высокого перенапряжения, необходимо убедиться, что при любой ситуации прерывания автоматический выключатель не должен иметь разницы в напряжении между контактами CB.

Нельзя достичь идеальной ситуации, так как всегда присутствует фактор плюс и минус, поэтому синхронное переключение является одним из решений. Таким образом, было изготовлено устройство под названием коммутатор SmartClose Capacitor, которое может преобразовывать любой банк в синхронный банк с помощью датчиков.

Особенности и работа SmartClose Switch .

SmartClose capacitor Switch SmartClose capacitor Switch Изображение: hubbellpowersystems.com

Имеет 6 датчиков напряжения, которые регистрируют форму волны напряжения как на стороне конденсатора, так и на стороне источника каждого прерывателя. Команда на закрытие, выданная отдельным контроллером конденсаторной батареи, заставляет конденсаторный переключатель SmartClose закрывать каждый прерыватель независимо, когда разность напряжений на каждом прерывателе равна нулю, затем команда SC подается на закрытие (SmartClose) запускает замыкание нулевого напряжения в вся схема.

Отдельный контроллер каждой конденсаторной батареи решает, когда нужна конденсаторная батарея; переключатель SmartClose захватывает это и делает все это синхронным закрытием автоматически.

Leave A Comment