понятие, строение при световой и электронной микроскопии, расположение, значение.
Клеточный центр — немембранный органоид, главный центр организации микротрубочек (ЦОМТ) и регулятор хода клеточного цикла в клетках эукариот. В подавляющем большинстве случаев в клетке в норме присутствует только одна центросома. Аномальное увеличение числа центросом характерно для раковых клеток. Более одной центросомы в норме характерно для некоторых полиэнергидных простейших и для синцитиальных структур. У многих живых организмов (животных и ряда простейших) центросома содержит пару центриолей, цилиндрических структур, расположенных под прямым углом друг к другу. Каждая центриоль образована девятью триплетами микротрубочек, расположенными по кругу, а также ряда структур, образованных центрином, ценексином и тектином.
В интерфазе клеточного цикла центросомы ассоциированы с ядерной мембраной. В профазе митоза ядерная мембрана разрушается, центросома делится, и продукты ее деления (дочерние центросомы) мигрируют к полюсам делящегося ядра.
40. Клеточная ресничка: понятие, строение, значение.
Реснички — органеллы, представляющие собой тонкие (диаметром 0,1—0,6 мкм) волосковидные структуры на поверхности эукариотических клеток. Длина их может составлять от 3—15 мкм до 2 мм (реснички гребных пластинок гребневиков). Могут быть подвижны или нет: неподвижные реснички играют роль рецепторов. Снаружи покрыты мембраной, являющейся продолжением плазмолеммы — цитоплазматической мембраны.
41. Включения: понятие, классификация, значение.
Включения цитоплазмы — это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:
трофические;
секреты;
инкреты;
пигменты;
экскреты и др.
Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы.
Пигментные включения придают клеткам и тканям определенную окраску.
Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности.
Экскреты — конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.
Цитоплазма. Клеточный центр. Рибосомы. | СПАДИЛО
Цитоплазма
Внутреннюю среду клетки составляет цитоплазма, в которой расположены органеллы, осуществляющие жизнедеятельность клетки. В цитоплазме проходят все процессы, связанные с обменом веществ, а также взаимодействием ядра и органоидов. Жизнь клетки без цитоплазмы, очевидно, невозможна. Несмотря на то, что функции синтеза, пищеварения, выведения и дыхания выполняют органоиды, без внутренней среды это бы не происходило. Аналогично человек не смог бы жить без крови, ведь питательные вещества, гормоны, кислород не разносились бы по организму.
Цитоплазма состоит из двух компонентов: гиалоплазмы и цитоскелета.
Гиалоплазма
Гиалоплазма – густой бесцветный раствор, преимущественно состоящий из воды (от 70% до 90%). В ней находятся и органические соединения (белки, липиды), и неорганические. Гиалоплазма не стоит на месте. Это весьма логично, для обменных процессов ей необходимо постоянно циркулировать внутри клетки. Вместе с ней по клетке путешествуют и органоиды. Такое движение называется циклозом.
Циклоз в клетках листа элодеи
Цитоскелет
Цитоскелет выполняет механическую функцию, он как каркас для клетки. Естественно, он не самый крепкий, но достаточно жесткий для того, чтобы придавать ей форму. Также при помощи микротрубочек переносятся некоторые вещества, так что они выполняют еще и транспортную функцию.
Цитоскелет имеет свои составляющие структуры: микротрубочки, микрофиламенты и промежуточные филаменты. Все эти компоненты не являются мембранными.
Микротрубочки собираются в клеточном центре из белка тубулина. Эти полые структуры пронизывают всю цитоплазму, не давая клетке слишком сильно сжаться или растянуться. Транспортную функцию выполняют именно микротрубочки, они же тубулиновые нити. Они полярны, поэтому во время деления клетки микротрубочки прикрепляются к хромосомам в определенном участке белковой природы – кинетохоре, а далее, в анафазе, хромосомы расходятся к полюсам клетки. Не все микротрубочки присоединяются к хромосомам, некоторые остаются без ничего. Благодаря полярности тубулиновые нити не присоединяются друг к другу.
Микрофиламенты – структуры, состоящие из белка актина и миозина, которые должны быть хорошо знакомы по теме «мышечная система организма», ведь актин и миозин осуществляют сокращение мышц, а значит, и все движения. Также в состав микрофиламентов входят другие сократительные белки. Микрофиламенты – структуры подвижные и пластичные, большое их количество расположено вблизи цитоплазматической мембраны, что позволяет одноклеточным организмам и некоторым клеткам осуществлять фаго- и пиноцитоз.
- Фотография подсвеченных микрофиламентов
Структура и функции промежуточных филаментов изучена не до конца.
Клеточный центр = центросома
Клеточный центр располагается в непосредственной близости от ядра и состоит из 2 центриолей. Центриоли имеют вид цилиндров, они расположены перпендикулярно друг другу. Центриоли удваиваются и начинают расходиться в интерфазе, а уже в профазе стартует образование нитей веретена деления. Сами центриоли тоже состоят из микротрубочек и, следовательно, из белка тубулина. У высших растений клеточный центр имеет иное строение, в нем центриолей нет.
Рибосомы
Рибосомы – немембранные органоиды клетки.
Функция, выполняемая данными органоидами – синтез белка, а именно – процесс трансляции, то есть «переписывания» нуклеотидной последовательности в последовательность аминокислот.
Рибосома состоит из двух субъединиц – большой и малой.
- Строение рибосомы и схема процесса трансляции
Рибосомы образуются в ядрышках ядра, затем рибосомы выходят через ядерные поры в цитоплазму. До трансляции происходит процесс транскрипции, то один из концов цепи иРНК обхватывается субъединицами рибосомы. тРНК (транспортная РНК) подносит к иРНК аминокислоты, которые собираются в цепочку и выходят из рибосомы.
Процесс трансляции
Кроме как в ядре, рибосомы могут находится в свободном виде в гиалоплазме, тогда они занимаются синтезом белков, необходимых для жизнедеятельности клетки. Также рибосомы располагаются на шероховатой ЭПС, такие рибосомы тоже синтезируют белки, но не для этой клетки, а для выведения их в другие клетки или внеклеточное пространство.
ОРГАНОИДЫ | НАЛИЧИЕ МЕМБРАНЫ |
А) вакуоли Б) лизосомы В) клеточный центр Г) рибосомы Д) пластиды Е) аппарат Гольджи |
1) мембранные 2) немембранные |
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Мембранные и немембранные органоиды нужно только выучить, никак по-другому не получится. Не отчаивайтесь, это не так сложно:
Классификация органоидов
Начать учить лучше с немембранных. Все, что связано с клеточным делением относится к немембранным органоидам.
Двумембранные: ядро и то, что связано с энергетической функцией.
Все остальное – одномембранные.
Ответ: 112211pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB12387 Установите соответствие между функцией органоида клетки и органоидом, выполняющим эту функцию.ФУНКЦИЯ | ОРГАНОИД |
A) секреция синтезированных веществ Б) биосинтез белков B) расщепление органических веществ Г) образование лизосом Д) формирование полисом Е) защитная |
1) аппарат Гольджи 2) лизосома 3) рибосома |
А | Б | В | Г | Д | Е |
Функции органоидов нужно учить и понимать, только тогда это задание можно будет выполнять без проблем.
Обратимся к таблице выше.
Обычно не вызывают трудностей лизосомы. Они отвечают за внутриклеточное пищеварение. Это такие пузырьки с ферментами внутри. Они поглощают твердую частичку или каплю и переваривают ее. И вышедшие из строя органоиды они тоже уничтожают. Нам точно подходит вариант с расщеплением органических веществ. Вообще, лизосомы- маленькие разрушители, так что варианты с синтезом, формированием и прочим нам не походят. А вот защитить клетку они могут, переварив что-то нежелательное.
Если вы уже ознакомились с темой про ДНК, РНК, то должны были слышать про существование рибосомальной РНК. Как раз-такие за биосинтез белка отвечают рибосомы, процесс носит название «трансляция» или же переписывание информации с ДНК на РНК.
Осталось три варианта: начнем говорить про полисомы и про секрецию. Это не относится к лизосомам, так как не носит разрушительный характер. Обратимся к слову «полисомы». Приставка поли- значит много или сложный, есть еще часть «сомы», ее мы также встречаем в словах «лизосомы» и «рибосомы», больше нигде. Логично предположить, что относятся полисомы к рибосомам. Полисома- это комплекс рибосом.
Осталось еще образование лизосом. Сами себя они не образуют, рибосомы отвечают только за синтез белка, значит, задействован комплекс Гольджи.
Что же касается секреции, то это функция комплекса Гольджи.
Ответ: 132132pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Ксения Алексеевна | Просмотров: 3.5k
Биология, Клетка, Структура клетки, Цитоскелет
Как следует из названия, микротрубочки представляют собой маленькие полые трубки. Стенки микротрубочек состоят из полимеризованных димеров α-тубулина и β-тубулина, двух глобулярных белков (рис.). При диаметре около 25 нм микротрубочки являются самыми широкими компонентами цитоскелета. Они помогают клетке сопротивляться сжатию, обеспечивают путь, по которому везикулы движутся через клетку, и тянут реплицированные хромосомы к противоположным концам делящейся клетки. Как и микрофиламенты, микротрубочки могут быстро растворяться и восстанавливаться.
Микротрубочки полые. Их стенки состоят из 13 полимеризованных димеров α-тубулина и β-тубулина (правое изображение). На левом изображении показана молекулярная структура трубки.Микротрубочки являются также структурными элементами жгутиков, ресничек и центриолей (последние представляют собой два перпендикулярных тельца центросомы). Фактически, в клетках животных центросома является центром организации микротрубочек. В эукариотических клетках жгутики и реснички структурно сильно отличаются от их аналогов у прокариот, как обсуждается ниже.
Чтобы освежить вашу память, жгутики (единственное число = жгутик) представляют собой длинные волосовидные структуры, отходящие от плазматической мембраны и используемые для перемещения целой клетки (например, сперматозоиды, Euglena ). Когда они присутствуют, клетка имеет только один жгутик или несколько жгутиков. Однако, когда присутствуют реснички (единственное число = ресничка), многие из них распространяются вдоль всей поверхности плазматической мембраны. Это короткие волосовидные структуры, которые используются для перемещения целых клеток (таких как парамеции) или веществ вдоль внешней поверхности клетки (например, реснички клеток, выстилающие фаллопиевы трубы, которые перемещают яйцеклетку к матке, или реснички, выстилающие клетки дыхательных путей, которые улавливают твердые частицы и перемещают их к вашим ноздрям.)
Несмотря на различия в длине и количестве, жгутики и реснички имеют общее структурное расположение микротрубочек, называемое «матрицей 9 + 2». Это подходящее название, потому что отдельный жгутик или ресничка состоит из кольца из девяти дуплетов микротрубочек, окружающих одиночный дуплет микротрубочек в центре (рис.).
На этой трансмиссионной электронной микрофотографии двух жгутиков показан массив микротрубочек 9 + 2: девять дублетов микротрубочек окружают одиночный дублет микротрубочек. (кредит: модификация работы Дартмутского электронного микроскопа, Дартмутский колледж; данные масштабной линейки от Мэтта Рассела)Вы завершили обширный обзор компонентов прокариотических и эукариотических клеток. Сводку клеточных компонентов в прокариотических и эукариотических клетках см. в табл.
Компоненты прокариотических и эукариотических клеток | ||||
---|---|---|---|---|
Компонент ячейки | Функция | Присутствует у прокариот? | Присутствует в клетках животных? | Присутствует в растительных клетках? |
Плазматическая мембрана | Отделяет клетку от внешней среды; контролирует прохождение органических молекул, ионов, воды, кислорода и отходов в клетку и из нее | Да | Да | Да |
Цитоплазма | Обеспечивает тургорное давление на растительные клетки в виде жидкости внутри центральной вакуоли; место многих метаболических реакций; среда, в которой находятся органеллы | Да | Да | Да |
Ядрышко | Затемненная область внутри ядра, где синтезируются рибосомные субъединицы. | № | Да | Да |
Ядро | Органелла клетки, содержащая ДНК и направляющая синтез рибосом и белков | № | Да | Да |
Рибосомы | Синтез белка | Да | Да | Да |
Митохондрии | Производство АТФ/клеточное дыхание | № | Да | Да |
Пероксисомы | Окисляет и, таким образом, расщепляет жирные кислоты и аминокислоты, а также обезвреживает яды | № | Да | Да |
Везикулы и вакуоли | Хранение и транспортировка; пищеварительная функция в растительных клетках | № | Да | Да |
Центросома | Роль в делении клеток животных не уточнена; источник микротрубочек в клетках животных | № | Да | № |
Лизосомы | Расщепление макромолекул; переработка изношенных органелл | № | Да | № |
Клеточная стенка | Защита, структурная поддержка и сохранение формы ячеек | Да, преимущественно пептидогликан | № | Да, преимущественно целлюлоза |
Хлоропласты | Фотосинтез | № | № | Да |
Эндоплазматический ретикулум | Модифицирует белки и синтезирует липиды | № | Да | Да |
Аппарат Гольджи | Изменяет, сортирует, маркирует, упаковывает и распределяет липиды и белки | № | Да | Да |
Цитоскелет | Поддерживает форму клетки, закрепляет органеллы в определенных положениях, позволяет цитоплазме и пузырькам перемещаться внутри клетки, а также позволяет одноклеточным организмам двигаться независимо | Да | Да | Да |
Жгутики | Клеточное передвижение | Некоторые | Некоторые | Нет, за исключением некоторых растительных сперматозоидов. |
Реснички | Клеточное передвижение, движение частиц вдоль внеклеточной поверхности плазматической мембраны и фильтрация | Некоторые | Некоторые | № |
Единичные ячейки
Единичные ячейки
Простейший повторитель в кристалле | А Трехмерный график |
NaCl и ЗНС | Измерение расстояние между частицами |
Определение единицы измерения Ячейка кристалла | Расчет металлика или Ионные радиусы |
Элементарные ячейки: Простейшая повторяющаяся единица в кристалле
Структуру твердых тел можно описать так, как если бы они были объемные аналоги куска обоев. Обои имеют регулярный повторяющийся дизайн, который простирается от одного края до другого другой. Кристаллы имеют похожий повторяющийся рисунок, но в данном случае дизайн простирается в трех измерениях от одного края твердого тела к другому.
Мы можем однозначно описать кусок обоев по указание размера, формы и содержания простейших повторяющаяся единица в конструкции. Мы можем описать трехмерное кристалла, указав размер, форму и содержимое простейшая повторяющаяся единица и то, как эти повторяющиеся единицы складываются для формирования кристалла.
Простейшая повторяющаяся единица в кристалле называется единицей . ячейка . Каждая элементарная ячейка определяется точками решетки точки пространства, вокруг которых частицы могут свободно колебаться. кристалл.
Структуры элементарной ячейки для различных солей показано ниже.
В 1850 году Огюст Браве показал, что кристаллы можно разделить на 14 элементарных ячеек, отвечающих следующим критериям.
- Элементарная ячейка — простейшая повторяющаяся единица в кристалл.
- Противоположные грани элементарной ячейки параллельны.
- Ребро элементарной ячейки соединяет эквивалентные точки.
14 элементарных ячеек Браве показаны на рисунке ниже.
Эти элементарные ячейки делятся на семь категорий, различающихся три длины ребра элементарной ячейки ( a , b и c ) и три внутренних угла (a, � и g), как показано в таблице ниже.
Семь категорий элементарных ячеек Браве
Категория | Длина кромки | Внутренние уголки | ||
Кубический | ( а = б = в ) | ( a = ω/i> = g = 90 или ) | ||
Тетрагональный | ( а = б в ) | ( a = ω/i> = g = 90 или ) | ||
Моноклиника | ( а б в ) | ( a = х/i> = 90 или г) | ||
Ромбическая | ( а б в ) | ( a = ω/i> = g = 90 или ) | ||
Ромбоэдрический | ( а = б = в ) | ( а = �/i> = г 90 или ) | ||
Шестигранник | ( а = б в ) | ( a = ω/i> = 90 o , g = 120 o ) | ||
Триклиника | ( а б в ) | ( а �/i> г 90 или ) |
Мы сосредоточимся на кубической категории, которая включает в себя три типы элементарных ячеекпростые показан куб, объемно-центрированный куб и гранецентрированный куб на рисунке ниже.
Эти элементарные ячейки важны по двум причинам. Первый количество металлов, ионных твердых тел и интерметаллических соединений кристаллизуются в элементарных кубических ячейках. Во-вторых, относительно легко выполнять вычисления с этими элементарными ячейками, потому что ребро ячейки все длины одинаковые, а углы ячеек равны 90.
Простая кубическая элементарная ячейка является простейшей повторяющейся единица в простой кубической структуре. Каждый угол элементарной ячейки определяется точкой решетки, в которой атом, ион или молекула могут можно найти в кристалле. По соглашению край элементарной ячейки всегда соединяет эквивалентные точки. Каждый из восьми углов поэтому элементарная ячейка должна содержать идентичную частицу. Другой частицы могут находиться на ребрах или гранях элементарной ячейки, или в теле элементарной ячейки. Но минимум, который должен быть для того, чтобы классифицировать элементарную ячейку как простую кубическую, восемь эквивалентных частиц на восьми углах.
Элементарная объемно-центрированная кубическая ячейка является простейшей повторяющаяся единица в объемно-центрированной кубической структуре. Снова, восемь одинаковых частиц в восьми углах ячейка. Однако на этот раз есть девятая идентичная частица в центре тела элементарной ячейки.
Элементарная гранецентрированная кубическая ячейка также начинается с одинаковые частицы на восьми углах куба. Но это структура также содержит такие же частицы в центрах шесть граней элементарной ячейки, всего 14 одинаковых решеток точки.
Элементарная гранецентрированная кубическая ячейка является простейшей повторяющейся единица в кубической плотноупакованной структуре. На самом деле наличие элементарных гранецентрированных кубических ячеек в этой структуре объясняет, почему структура известна как кубическая плотно упакованная.
Изучение гранецентрированной кубической структуры Деятельность |
Элементарные ячейки: A Трехмерный граф
Точки решетки в элементарной кубической ячейке можно описать в точки трехмерного графа. Потому что все три ребра ячейки длины одинаковы в кубической элементарной ячейке, неважно, что ориентация используется для a , b и c оси. Ради аргумента мы определим ось a как вертикальной оси нашей системы координат, как показано на рисунок ниже.
Ось b затем будет описывать движение поперек фронта элементарной ячейки, а ось c будет представлять движение к задней части элементарной ячейки. Кроме того, мы произвольно определить левый нижний угол элементарной ячейки как начало координат (0,0,0). Координаты 1,0,0 указывают точку решетки, которая одна длина ребра ячейки от начала координат вдоль a ось. Точно так же 0,1,0 и 0,0,1 представляют собой точки решетки, которые смещаются на одну длину ребра клетки от начала координат вдоль б оси c соответственно.
Рассматривая элементарную ячейку как трехмерный граф позволяет описать структуру кристалла с удивительно мало информации. Мы можем указать структура хлорида цезия, например, всего из четырех частей информации.
- CsCl кристаллизуется в кубической элементарной ячейке.
- Длина ребра элементарной ячейки 0,4123 нм.
- Имеется Cl — ион в координатах 0,0,0.
- Имеется ион Cs + в координатах 1/2,1/2,1/2.
Поскольку край ячейки должен соединять эквивалентные точки решетки, наличие иона Cl — в одном углу блока ячейка (0,0,0) предполагает наличие иона Cl — при каждый уголок клетки. Координаты 1/2,1/2,1/2 описывают точка решетки в центре клетки. Потому что нет другая точка в элементарной ячейке, которая находится на расстоянии одной длины ребра ячейки по этим координатам это единственный Cs + ион в клетка. Таким образом, CsCl представляет собой простую кубическую элементарную ячейку Cl –. ионы с Cs + в центре тела клетки.
Элементарные ячейки: NaCl и ZnS
NaCl должен кристаллизоваться в плотноупакованном кубическом массиве Cl — ионы с ионами Na + в октаэдрических отверстиях между самолеты Cl — ионов. Мы можем перевести эту информацию в модель элементарной ячейки для NaCl, помня, что гранецентрированная кубическая элементарная ячейка является простейшей повторяющейся единицей в кубическая плотнейшая упаковка.
В гранецентрированном кубическом блоке есть четыре уникальных положения. клетка. Эти позиции определяются координатами: 0,0,0; 0,1/2,1/2; 1/2,0,1/2; и 1/2,1/2,0. Наличие частицы в одном углу элементарной ячейки (0,0,0) требует наличия эквивалентная частица на каждом из восьми углов единицы клетка. Поскольку ребро элементарной ячейки соединяет эквивалентные точки, наличие частицы в центре нижней грани (0,1/2,1/2) подразумевает наличие эквивалентной частицы в центр верхней грани (1,1/2,1/2). Точно так же наличие частицы в центре граней 1/2,0,1/2 и 1/2,1/2,0 элементарная ячейка подразумевает эквивалентные частицы в центрах 1/2,1,1/2 и 1/2,1/2,1 грани.
На рисунке ниже показано, что в центр гранецентрированной кубической элементарной ячейки в координатах 1/2,1/2,1/2. Любая частица в этой точке касается частиц в центры шести граней элементарной ячейки.
Другие октаэдрические отверстия в гранецентрированной кубической элементарной ячейке находятся по краям ячейки, как показано на рисунке ниже.
Если ионы Cl — занимают узлы решетки элементарная гранецентрированная кубическая ячейка и все октаэдрические отверстия наполнен Na + ионов, мы получаем элементарную ячейку, показанную на рис. рисунок ниже.
Таким образом, мы можем описать структуру NaCl в терминах Следующая информация.
- NaCl кристаллизуется в кубической элементарной ячейке.
- Длина края клетки составляет 0,5641 нм.
- Имеются ионы Cl — в позициях 0,0,0; 1/2,1/2,0; 1/2,0,1/2; и 0,1/2,1/2.
- Имеются ионы Na + в позициях 1/2,1/2,1/2; 1/2,0,0; 0,1/2,0; и 0,0,1/2.
Размещение иона Cl — в этих четырех позициях подразумевает наличие иона Cl — на каждой из 14 решеток точки, определяющие гранецентрированную кубическую единицу. Размещение Na + ион в центре элементарной ячейки (1/2,1/2,1/2) и на трех уникальные ребра элементарной ячейки (1/2,0,0; 0,1/2,0; и 0,0,1/2) требует эквивалента иона Na + в каждом октаэдре отверстие в элементарной ячейке.
ZnS кристаллизуется в виде кубического плотноупакованного массива S 2- ионы с ионами Zn 2+ в тетраэдрических дырках. S 2- ионы в этом кристалле занимают те же позиции, что и Cl — ионы в NaCl. Единственная разница между этими кристаллами заключается в расположение положительных ионов. На рисунке ниже показано, что тетраэдрические отверстия в гранецентрированной кубической элементарной ячейке находятся в углы элементарной ячейки в координатах 1/4,1/4,1/4. Ан атом с этими координатами коснулся бы атома в этом углу а также атомы в центрах трех граней, образующих этот угол. Хотя это трудно увидеть без трехмерная модель, четыре атома, окружающие это отверстие расположены по углам тетраэдра.
Так как углы элементарной кубической ячейки одинаковы, то должно быть четырехгранное отверстие в каждом из восьми углов элементарная гранецентрированная кубическая ячейка. Если ионы S 2- занимают точки решетки гранецентрированной кубической элементарной ячейки и Zn 2+ ионы упакованы в каждую вторую тетраэдрическую дырку, мы получаем элементарная ячейка ZnS показана на рисунке ниже.
Таким образом, структуру ZnS можно описать следующим образом.
- ZnS кристаллизуется в кубической элементарной ячейке.
- Длина края клетки 0,5411 нм.
- Имеются ионы S 2- в позициях 0,0,0; 1/2,1/2,0; 1/2,0,1/2; и 0,1/2,1/2.
- Имеются ионы Zn 2+ в позициях 1/4,1/4,1/4; 1/4,3/4,3/4; 3/4,1/4,3/4; и 3/4,3/4,1/4.
Обратите внимание, что в этот кристалл, потому что на каждое S 9 приходится два тетраэдрических отверстия.0364 2- ион в наиболее плотно упакованном массиве этих ионов.
Единичные ячейки: измерение Расстояние между частицами
Никель — один из металлов, кристаллизующихся в кубической форме. плотно упакованная структура. Если учесть, что атом никеля имеет массу всего 9,75 х 10 -23 г и ионный радиус всего 1,24 x 10 -10 м, это замечательное достижение уметь описать структуру этого металла. Очевидное вопрос: откуда мы знаем, что никель упаковывается в кубический наиболее плотно упакованная структура?
Единственный способ определить структуру вещества на атомном Масштаб заключается в использовании зонда еще меньшего размера. Один из многих полезные зонды для изучения материи в таком масштабе электромагнитное излучение.
В 1912 году Макс ван Лауэ обнаружил, что рентгеновские лучи, попавшие в поверхности кристалла дифрагировали в узоры, напоминающие узоры, возникающие при прохождении света через очень узкую щель. Вскоре после этого Уильям Лоуренс Брэгг, который только что получил степень бакалавра физики в Кембридже, объяснил результаты ван Лауэ с помощью уравнения, известного как Брэгг уравнение , которое позволяет нам рассчитать расстояние между плоскостях атомов в кристалле по картине дифракции рентгеновские лучи известной длины волны.
нет = 2 d sin T
Схема, по которой рентгеновские лучи дифрагируют на металлическом никеле предполагает, что этот металл упаковывается в элементарную кубическую ячейку с расстояние между плоскостями атомов 0,3524 нм. Таким образом длина ребра ячейки в этом кристалле должна быть 0,3524 нм. Знаю это никель кристаллизуется в кубической элементарной ячейке недостаточно. Мы все еще должны решить, является ли это простой кубической, объемно-центрированной кубической, или гранецентрированная кубическая элементарная ячейка. Это можно сделать, измерив плотность металла.
Единичные ячейки: определение Элементарная ячейка кристалла
Атомы на углах, ребрах и гранях элементарной ячейки разделены более чем одной элементарной ячейкой, как показано на рисунке ниже. Атом на грани разделен двумя элементарными ячейками, поэтому только половина атом принадлежит каждой из этих ячеек. Атом на краю разделены четырьмя элементарными ячейками, а атом на углу разделен восемь элементарных ячеек. Таким образом, только четверть атома на ребре и одна восьмая часть атома на углу может быть отнесена к каждому из элементарные ячейки, которые разделяют эти атомы.
Если никель кристаллизовался в простой кубической элементарной ячейке, то будет атом никеля на каждом из восьми углов ячейки. Поскольку только одна восьмая часть этих атомов может быть отнесена к данному элементарная ячейка, каждая элементарная ячейка в простой кубической структуре будет иметь один чистый атом никеля.
Простая кубическая структура:
8 углов x 1/8 = 1 атом
Если бы никель образовывал объемно-центрированную кубическую структуру, быть два атома на элементарную ячейку, потому что атом никеля в центре тела не будет делиться ни с какими другими элементарными ячейками.
Объемно-центрированная кубическая структура:
(8 углов x 1/8) + 1 тело = 2 атома
Если никель кристаллизуется в гранецентрированной кубической структуре, шесть атомов на гранях элементарной ячейки внесли бы три чистые атомы никеля, всего четыре атома на элементарную ячейку.
Гранецентрированная кубическая структура:
(8 углов x 1/8) + (6 граней x 1/2) = 4 атома
Поскольку они имеют разное количество атомов в элементарной ячейке, каждая из этих структур будет иметь разную плотность. Давайте поэтому рассчитывайте плотность никеля на основе каждого из этих структуры и длина ребра элементарной ячейки для никеля, приведенные в предыдущий участок: 0,3524 нм. Для этого нам нужно знать объем элементарной ячейки в кубических сантиметрах и масса один атом никеля.
Объем ( V ) элементарной ячейки равен длина ребра ячейки ( a ) в кубе.
В = a 3 = (0,3524 нм) 3 = 0,04376 нм 3
Так как в метре 10 9 нм и 10 0 см в метр, в см должно быть 10 7 нм.
Следовательно, мы можем перевести объем элементарной ячейки в см 3 следующее.
Массу атома никеля можно рассчитать по атомному вес этого металла и число Авогадро.
Плотность никеля, если он кристаллизуется в простой кубической структуры, следовательно, будет 2,23 г/см 3 , до трех значимые фигуры.
Простая кубическая структура:
Потому что в элементарной ячейке было бы вдвое больше атомов, если бы никель кристаллизуется в объемно-центрированную кубическую структуру, плотность никеля в этой структуре была бы вдвое больше.
Объемно-центрированная кубическая структура:
На элементарную ячейку в гранецентрированной кубическая структура и плотность никеля в этой структуре будет быть в четыре раза больше.
Гранецентрированная кубическая структура:
Экспериментальное значение плотности никеля составляет 8,90 г/см 3 . Очевидный вывод состоит в том, что никель кристаллизуется в гранецентрированная кубическая элементарная ячейка и, следовательно, имеет кубическую плотно упакованная структура.
Единичные ячейки: расчет Металлические или ионные радиусы
Можно найти оценки радиусов большинства атомов металлов. Где откуда эти данные? Откуда мы знаем, например, что радиус атома никеля равен 0,1246 нм?
Никель кристаллизуется в элементарной гранецентрированной кубической ячейке с длина ребра ячейки 0,3524 нм для расчета радиуса никеля атом.
Показана одна из граней гранецентрированной кубической элементарной ячейки на рисунке ниже.
Судя по этому рисунку, диагональ на лицевой стороне этого Элементарная ячейка в четыре раза больше радиуса атома никеля.
Теорема Пифагора утверждает, что диагональ прямоугольный треугольник равен сумме квадратов другого стороны. Таким образом, диагональ, проходящая через грань элементарной ячейки, равна связано с длиной ребра элементарной ячейки следующим уравнением.
Извлечение квадратного корня из обеих сторон дает следующее результат.
Теперь подставим в это уравнение соотношение между диагональ через грань этой элементарной ячейки и радиус атом никеля:
Решение для радиуса атома никеля дает значение 0,1246 нм:
Аналогичный подход можно использовать для оценки размера ион. Начнем с того, что длина ребра ячейки в хлорида цезия составляет 0,4123 нм, чтобы рассчитать расстояние между центры Cs + и Cl — ионов в CsCl.
CsCl кристаллизуется в простой кубической элементарной ячейке Cl — ионов с ионом Cs + в центре тела ячейки, как показано на рисунке ниже.
Прежде чем мы сможем вычислить расстояние между центрами ионы Cs + и Cl — в этом кристалле, однако мы должны признать правомерность одного из простейших предположения об ионных твердых телах: положительные и отрицательные ионы которые образуют эти кристаллы касания.
Таким образом, мы можем предположить, что диагональ тела элементарная ячейка CsCl эквивалентна сумме радиусов двух Ионы Cl — и два иона Cs + .
Трехмерный эквивалент теоремы Пифагора предполагает, что квадрат диагонали через тело куб это сумма квадратов трех сторон.
Извлечение квадратного корня из обеих частей этого уравнения дает следующий результат.
Если длина ребра клетки в CsCl равна 0,4123 нм, диагональ поперек тела в этой элементарной ячейке составляет 0,7141 нм.
Сумма ионных радиусов Cs + и Cl — ионов составляет половину этого расстояния, или 0,3571 нм.
Если бы у нас была оценка размера Cs + или ион Cl — , мы могли бы использовать результаты для расчета радиус другого иона. Ионный радиус Cl — ион составляет 0,181 нм.
Leave A Comment