Генетические отличия: человек и шимпанзе, их ДНК (гены, хромосомы)
То, что обезьяна – близкий родственник человека, известно уже давно, шимпанзе среди всех обезьян – наш самый близкий родственник. При исследовании ДНК происхождение человека от обезьяноподобных предков вполне подтверждается. Генетические различия на уровне ДНК между людьми составляют в среднем 1 нуклеотид из 1000 (то есть 0.1%), между человеком и шимпанзе — 1 нуклеотид из 100 (т.е. 1%).
По размеру генома человек и высшие приматы не отличаются друг от друга, но отличаются по количеству хромосом — у человека на одну пару меньше. Как было рассказано на прошлых лекциях, у человека 23 пары хромосом, т.е. всего 46. У шимпанзе 48 хромосом, на одну пару больше. В процессе эволюции у предков человека две разных хромосомы приматов объединились в одну. Подобные изменения числа хромосом встречаются и в эволюции других видов. Они могут быть важны для генетической изоляции группы в процессе видообразования, так как в большинстве случаев особи с разным числом хромосом не дают потомства.
Время расхождения (дивергенции) видов, или другими словами, время существования последнего общего предка для двух видов, можно определить несколькими способами. Первый такой: проводят датировку костных останков и определяют, кому эти останки могли принадлежать, когда мог жить общий предок тех или иных видов. Но костных останков предполагаемых предков человека не так много, чтобы можно было с уверенностью восстановить и датировать полную последовательность форм в процессе антропогенеза. Сейчас используют другой способ датировки времени расхождения человека и остальных приматов. Для этого подсчитывают количество мутаций, накопившихся в одних и тех же генах в каждой из ветвей за время их раздельной эволюции. Скорость накопления этих мутаций более менее известна. Скорость накопления мутаций устанавливают по числу различий в ДНК тех видов, для которых известны палеонтологические датировки расхождения видов по костным останкам. Время расхождения человека с шимпанзе по разным оценкам варьирует от 5,4 до 7 млн.
Вы уже знаете, что геном человека полностью прочтен (секвенирован). В прошлом году появилось сообщение, что прочтен также геном шимпанзе. Сравнивая геномы человека и шимпанзе, ученые пытаются выявить те гены, которые “делают нас людьми”. Это было бы легко сделать, если бы после разделения ветвей эволюционировали только гены человека, но это не так, шимпанзе тоже развивались, в их генах тоже накапливались мутации. Поэтому, чтобы понять, в какой ветви произошла мутация – у человека или у шимпанзе — приходится сравнивать их еще и с ДНК других видов, гориллы, орангутана, мыши. То есть то, что есть только у шимпанзе и нет например у орангутана, это чисто «шимпанзиные» замены нуклеотидов. Таким образом, сравнивая нуклеотидные последовательности разных видов приматов, мы можем выделить те мутации, которые произошли только в линии наших предков. Сейчас известно около дюжины генов, которые “делают нас людьми”.
Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов.

Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.
Когда говорят об отличии человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки – это женщины, квадратики – мужчины, закрашенные фигуры – больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене FOXP2 (forkhead box P2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает.
Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.
Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая – число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту.
Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе – 5.5 млн лет. Тогда количество замен m, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см.
A. I.= ( h/5.5) / [ m/(2 x 90 — 5.5)]= 31.7 h / m
Где A.I. (Acceleration Index) – индекс ускорения.
Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B(h + m, Th/(Th+Tm)), где h — число замен в линии человека, m-число замен в линии мыши: Th=5.
Попробуйте самостоятельно рассчитать вероятность в приведенном примере.
Место первой публикации: http://www.bio.fizteh.ru/student/files/biology/biolections/lection21.html
Дальше: О митохондриальной Еве и генетическом разнообразии современного человечества
Мы в Telegram: подпишитесь! | Мы в Вконтакте: | Наш канал на YouTube | Мы в Дзен: добавляйтесь! | Как помочь проекту |
Хромосомный набор обезьяны.

То, что обезьяна – близкий родственник человека, известно уже давно, шимпанзе среди всех обезьян – наш самый близкий родственник. При исследовании ДНК происхождение человека от обезьяноподобных предков вполне подтверждается. Генетические различия на уровне ДНК между людьми составляют в среднем 1 нуклеотид из 1000 (то есть 0.1%), между человеком и шимпанзе — 1 нуклеотид из 100 (т.е. 1%).
По размеру генома человек и высшие приматы не отличаются друг от друга, но отличаются по количеству хромосом — у человека на одну пару меньше. Как было рассказано на прошлых лекциях, у человека 23 пары хромосом, т.е. всего 46. У шимпанзе 48 хромосом, на одну пару больше. В процессе эволюции у предков человека две разных хромосомы приматов объединились в одну. Подобные изменения числа хромосом встречаются и в эволюции других видов. Они могут быть важны для генетической изоляции группы в процессе видообразования, так как в большинстве случаев особи с разным числом хромосом не дают потомства.
Время расхождения (дивергенции) видов, или другими словами, время существования последнего общего предка для двух видов, можно определить несколькими способами. Первый такой: проводят датировку костных останков и определяют, кому эти останки могли принадлежать, когда мог жить общий предок тех или иных видов. Но костных останков предполагаемых предков человека не так много, чтобы можно было с уверенностью восстановить и датировать полную последовательность форм в процессе антропогенеза. Сейчас используют другой способ датировки времени расхождения человека и остальных приматов. Для этого подсчитывают количество мутаций, накопившихся в одних и тех же генах в каждой из ветвей за время их раздельной эволюции. Скорость накопления этих мутаций более менее известна. Скорость накопления мутаций устанавливают по числу различий в ДНК тех видов, для которых известны палеонтологические датировки расхождения видов по костным останкам. Время расхождения человека с шимпанзе по разным оценкам варьирует от 5,4 до 7 млн. лет назад.
Вы уже знаете, что геном человека полностью прочтен (секвенирован). В прошлом году появилось сообщение, что прочтен также геном шимпанзе. Сравнивая геномы человека и шимпанзе, ученые пытаются выявить те гены, которые “делают нас людьми”. Это было бы легко сделать, если бы после разделения ветвей эволюционировали только гены человека, но это не так, шимпанзе тоже развивались, в их генах тоже накапливались мутации. Поэтому, чтобы понять, в какой ветви произошла мутация – у человека или у шимпанзе — приходится сравнивать их еще и с ДНК других видов, гориллы, орангутана, мыши. То есть то, что есть только у шимпанзе и нет например у орангутана, это чисто «шимпанзиные» замены нуклеотидов. Таким образом, сравнивая нуклеотидные последовательности разных видов приматов, мы можем выделить те мутации, которые произошли только в линии наших предков. Сейчас известно около дюжины генов, которые “делают нас людьми”.
Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов. У человека многие гены обонятельных рецепторов инактивированы. Сам фрагмент ДНК присутствует, но в нем появляются мутации, которые инактивируют этот ген: либо он не транскрибируется, либо он транскрибируется, но с него образуется нефункциональный продукт. Как только прекращается отбор на поддержание функциональности гена, в нем начинают накапливаться мутации, сбивающие рамку считывания, вставляющие стоп-кодоны и т.д. То есть мутации появляются во всех генах, и скорость мутирования примерно постоянная. Удается поддерживать ген функционирующим только за счет того, что мутации, нарушающие важные функции, отбрасываются отбором. Такие инактивированные мутациями гены, которые можно распознать по последовательности нуклеотидов, но накопившие мутации, делающие его неактивным, называются псевдогенами. Всего в геноме млекопитающих около 1000 последовательностей, соответствующих генам обонятельных рецепторов. Из них у мыши 20% псевдогенов, у шимпанзе и макаки инактивирована треть (28-26%), а у человека – более половины (54%) являются псевдогенами.
Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.
Когда говорят об отличии человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки – это женщины, квадратики – мужчины, закрашенные фигуры – больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене FOXP2 (forkhead box P2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает. У мышей, у которых выключили ген FOXP2 , нарушилось формирование одной из зон мозга в эмбриональный период. Видимо, у человека эта зона связана с освоением речи. Кодирует этот ген фактор транскрипции. Напомним, что на эмбриональной стадии развития факторы транскрипции включают группу генов на тех или иных этапах, которые контролируют превращение клеток в то, во что они должны превратиться.
Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.
Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая – число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту. Видно, что молчащие замены накапливаются во всех линиях, то есть мутации в данном локусе не запрещены, если они не ведут к аминокислотным заменам. Это не значит, что не появлялись мутации в белок-кодирующей части, они скорее всего появлялись, но были отсеяны отбором, поэтому мы не можем их зафиксировать. В нижней части рисунка схематично изображена аминокислотная последовательность белка, отмечены места, где произошли две аминокислотные замены человека, которые, видимо, повлияли на функциональные особенности белка FOXP2 .
Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе – 5.5 млн лет. Тогда количество замен m, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см. рисунок), по сравнению с числом замен h в линии человека, должно быть в 31.7 раз больше. Если же в линии человека накопилось больше замен, чем ожидается при постоянной скорости эволюции гена, то говорят об ускорении эволюции. Во сколько раз ускорена эволюция, вычисляют по простой формуле:
A. I.= ( h /5.5) / [ m /(2 x 90 — 5.5)]= 31.7 h / m
Где A.I. (Acceleration Index) – индекс ускорения.
Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B (h + m , Th/(Th+Tm)), где h — число замен в линии человека, m-число замен в линии мыши: Th=5.5, Tm=174.5.
Из школьных учебников по биологии каждому доводилось знакомиться с термином хромосома. Понятие было предложено Вальдейером в 1888 году. Оно переводится буквально как окрашенное тело. Первым объектом исследований стала плодовая мушка.
Общее о хромосомах животных
Хромосома – это структура ядра клетки, в которой хранится наследственная информация. Она образуются из молекулы ДНК, в которой содержится множество генов. Другими словами, хромосома – это молекула ДНК. Ее количество у различных животных неодинаковое. Так, например, у кошки – 38, а у коровы -120. Интересно, что самое маленькое число имеют дождевые черви и муравьи. Их количество составляет две хромосомы, а у самца последних – одна.
У высших животных, так же как и у человека, последняя пара представлена ХУ половыми хромосомами у самцов и ХХ – у самок. Нужно обратить внимание, что число этих молекул для всех животных постоянно, но у каждого вида их количество отличается. Для примера можно рассмотреть содержание хромосом у некоторых организмов: у шимпанзе – 48, речного рака -196, у волка – 78, зайца – 48. Это связано с разным уровнем организации того или иного животного.
На заметку! Хромосомы всегда размещаются парами. Генетики утверждают, что эти молекулы и есть неуловимые и невидимые носители наследственности. Каждая из хромосом содержит в себе множество генов. Некоторые считают, что чем больше этих молекул, тем животное более развитое, а его организм сложнее устроен. В таком случае, у человека хромосом должно насчитываться не 46, а больше, чем у любого другого животного.
Сколько хромосом у различных животных
Необходимо обратить внимание! У обезьян количество хромосом приближено к значению человека. Но у каждого вида результаты отличаются. Итак, у различных обезьян насчитывается следующее количество хромосом:
- Лемуры имеют в своем арсенале 44-46 молекул ДНК;
- Шимпанзе – 48;
- Павианы – 42,
- Мартышки – 54;
- Гиббоны – 44;
- Гориллы – 48;
- Орангутанг – 48;
- Макаки – 42.
У семейства псовых (хищных млекопитающих) хромосом больше, чем у обезьян.
- Так, у волка – 78,
- у койота – 78,
- у лисицы малой – 76,
- а вот у обыкновенной – 34.
- У хищных зверей льва и тигра присутствуют по 38 хромосом.
- У домашнего животного кошки – 38, а у его оппонента собаки почти в два раза больше – 78.
У млекопитающих, которые имеют хозяйственное значение, количество этих молекул следующее:
- кролик – 44,
- корова – 60,
- лошадь – 64,
- свинья – 38.
Познавательно! Самыми большими хромосомными наборами среди животных обладают хомячки. Они имеют 92 в своем арсенале. Также в этом ряду идут ежики. У них есть 88-90 хромосом. А самым маленьким количеством этих молекул наделены кенгуру. Их численность составляет 12. Очень интересен тот факт, что у мамонта 58 хромосом. Образцы взяты из замороженной ткани.
Для большей наглядности и удобства, данные других животных будут представлены в сводке.
Наименование животного и количество хромосом:
Пятнистые куницы | 12 |
Кенгуру | 12 |
Желтая сумчатая мышь | 14 |
Сумчатый муравьед | 14 |
Обыкновенный опоссум | 22 |
Опоссум | 22 |
Норка | 30 |
Барсук американский | 32 |
Корсак (лисица степная) | 36 |
Лисица тибетская | 36 |
Панда малая | 36 |
Кошка | 38 |
Лев | 38 |
Тигр | 38 |
Енот-полоскун | 38 |
Канадский бобр | 40 |
Гиены | 40 |
Мышь домовая | 40 |
Павианы | 42 |
Крысы | 42 |
Дельфин | 44 |
Кролики | 44 |
Человек | 46 |
Заяц | 48 |
Горилла | 48 |
Лисица американская | 50 |
Полосатый скунс | 50 |
Овца | 54 |
Слон (азиатский, саванный) | 56 |
Корова | 60 |
Коза домашняя | 60 |
Обезьяна шерстистая | 62 |
Осел | 62 |
Жираф | 62 |
Мул (гибрид осла и кобылы) | 63 |
Шиншилла | 64 |
Лошадь | 64 |
Лисица серая | 66 |
Белохвостый олень | 70 |
Лисица парагвайская | 74 |
Лисица малая | 76 |
Волк (красный, рыжий, гривистый) | 78 |
Динго | 78 |
Койот | 78 |
Собака | 78 |
Шакал обыкновенный | 78 |
Курица | 78 |
Голубь | 80 |
Индейка | 82 |
Эквадорский хомячок | 92 |
Лемур обыкновенный | 44-60 |
Песец | 48-50 |
Ехидна | 63-64 |
Ежи | 88-90 |
Количество хромосом у разных видов животных
Как видно, каждое животное обладает разным количеством хромосом. Даже у представителей одного семейства показатели отличаются. Можно рассмотреть на примере приматов:
- у гориллы – 48,
- у макаки – 42, а у мартышки 54 хромосом.
Почему это так, остается загадкой.
Сколько хромосом у растений?
Наименование растения и количество хромосом:
Видео
Один из популярных доводов креационистов звучит так: у человекообразных обезьян — шимпанзе, горилл и орангутанов — на 2 хромосомы больше, чем у человека. Как же получилось, что в процессе эволюции у людей потерялись хромосомы? Происходит ли что-то подобное у нас сейчас? Почему люди могут и не подозревать, что они — мутанты? Каким образом эти мутанты размножаются?
Сравнение хромосом человека и шимпанзе.Видно, что 2-я хромосома человека соответствует 2-м хромосомам шимпанзе. Источник: Jorge Yunis, Science 208:1145-58 (1980). Courtesy of Science magazine.
Напомним нашим уважаемым читателям, что хромосомы — это такие штуки, в которые в наших клетках упакована ДНК. У человека 23 пары хромосом: 23 хромосомы достались нам от мамы и 23 — от папы. Итого 46. У шимпанзе — 24+24=48. Полный набор хромосом называется «кариотип». В каждой хромосоме находится в плотно скрученном виде очень большая молекула ДНК. На самом деле, важно не число хромосом, а те гены, которые в этих хромосомах содержатся. Один и тот же набор генов может быть упакован в разное число хромосом.
В 1980 году в авторитетном журнале Science вышла статья команды генетиков университета Миннеаполиса. Исследователи применили новейшие на тот момент методы окраски хромосом (на хромосомах появляются поперечные полоски разной толщины и яркости, при этом каждая хромосома отличается своим особым набором полосок). Оказалось, что у человека и шимпанзе исчерченность хромосом почти идентична! Но как быть с лишней хромосомой у обезьян? Всё очень просто: если напротив второй хромосомы человека поставить в одну линию 12-ю и 13-ю хромосомы шимпанзе, соединив их концами, мы увидим, что вместе они и составляют вторую человеческую.
Позже, в 1991 году, учёные присмотрелись к точке предполагаемого слияния на второй человеческой хромосоме и обнаружили там то, что и искали, — последовательности ДНК, характерные для теломер — концевых участков хромосом. Ещё через год на той же хромосоме нашлись следы второй центромеры (центромера — участок, необходимый для нормального деления клетки. Центромера обычно делит хромосому на две части, называемые плечами; у каждой хромосомы имеется только одна активная центромера). Очевидно, на месте одной хромосомы раньше было две. Итак, когда-то у наших предков две хромосомы слились в одну, образовав 2-ю хромосому человека.
Как давно это случилось? Сейчас, когда палеогенетики научились восстанавливать геномы ископаемых существ, мы знаем, что и у неандертальца, и у денисовского человека несколько десятков тысяч лет назад уже было 46 хромосом, как и у нас. По современным данным, слияние произошло гораздо раньше, в интервале 2,5-4,5 млн лет назад. Для того чтобы определить дату точнее, хорошо бы заполучить геномы гейдельбергского человека и Homo erectus, а также полностью реконструировать соответствующие хромосомы современных человекообразных обезьян.
Но возникает вопрос: допустим, у кого-то из наших предков две хромосомы соединились в одну. У него получилось нечётное количество хромосом — 47, в то время как у остальных, не мутировавших особей — по-прежнему 48! И как же такой мутант потом размножался? Как вообще могут скрещиваться особи с разным числом хромосом? Напомню, что при мейозе — клеточном делении, в результате которого образуются половые клетки — каждая хромосома в клетке должна соединиться со своей парой-гомологом. А тут возникла непарная хромосома! Куда же ей податься?
Но оказывается, это — не проблема, если при мейозе гомологичные участки хромосом найдут друг друга. В случае нечётного числа хромосом некоторые половые клетки могут нести «несбалансированный» генетический набор из-за неправильного расхождения хромосом в мейозе, но другие могут получиться вполне нормальными.
При скрещивании 47-хромосомного мутанта с 48-хромосомной «дикой» особью часть деток получится обычной, 48-хромосомной (24+24), а часть — 47-хромосомной (23 от мутантного родителя + 24 от обычного). В итоге появляются уже несколько особей с нечётным числом хромосом. Остаётся им встретиться — и вуаля: в следующем поколении появляются 46-хромосомники (23+23). Специалисты полагают, что дальнейшее распространение 46-хромосомного типа могло произойти благодаря неким эволюционным преимуществам, возникшим в результате этой мутации. Слияние хромосом привело к потере или изменению работы генов, находившихся вблизи точки слияния. Может быть, из-за этого возросла плодовитость или усилились когнитивные способности (исследования показывают, что несколько генов, находящихся вблизи точки слияния хромосом, экспрессируются в мозгу, а также в половых железах мужчин).
Модель «гориллоподобного» полигамного клана ранних Homo, где у самца (или мужчины) произошло слияние хромосом. Квадратики — самцы, кружки — самки.Самец с возникшей мутацией (II поколение), обладатель 47 хромосом, имел детей от нескольких самок (III поколение). В итоге, часть его потомков получились 48-хромосомными (незакрашенные), часть — 47-хромосомными (наполовину закрашенные), в дополнение к больным и мёртвым из-за несбалансированности хромосом (чёрные треугольники). В IV поколении в результате скрещивания двух носителей мутации получаются 46-хромосомные варианты (полностью закрашенные кружок и квадрат).
Кто-нибудь скажет, что всё это фантазии. Однако слияние хромосом происходит у людей и сейчас, в результате распространённой мутации — робертсоновской транслокации (сокращённо — ROB).
Если вы видели хромосому на картинке, то представляете, что часто она выглядит как два «плеча», отходящих от одной точки — (эта точка и является центромерой). Иногда плечи одинаковой длины — такую хромосому называют метацентрической. Если плечи неравны — хромосома субметацентрическая. И если одно из плеч такое коротенькое, что его почти не видно, — хромосома акроцентрическая.
Так вот, при ROB две акроцентрические хромосомы разрываются в точке центромеры, и их длинные плечи сливаются, формируя новую единую хромосому. Короткие плечи тоже соединяются и образуют маленькую хромосому, которая обычно теряется за несколько клеточных делений. Вот и стало на хромосому меньше. При этом маленькая хромосома содержит так мало генетического материала, что может пропасть без какого-либо заметного эффекта для индивида. Всё бы хорошо, только у организма получился нечётный набор хромосом (22+23=45 вместо 46).
Робертсоновские транслокации — не такое уж редкое событие. 45 хромосом обнаруживается у каждого 1000-го новорождённого ребёнка. У человека ROB может затрагивать акроцентрические хромосомы 13, 14, 15, 21 и 22. Большинство носителей ROB абсолютно здоровы и ни о чём не подозревают, пока не пытаются заводить детей. Но проблем может и не возникать — и в этом случае мутация будет передаваться из поколения в поколение, никем не замеченная.
А каков шанс двум таким мутантам встретиться и родить 44-хромосомного ребёночка? Казалось бы, это очень маловероятное событие. Однако в небольших человеческих популяциях браки между родственниками — например, кузенами — не редкость. В этом случае скрещивание двух носителей ROB вполне возможно. Такие истории известны генетикам уже много десятилетий. Вот только две из них.
Факт передачи мутации в течение как минимум 9 поколений зафиксирован в 1987 году. ROB были обнаружены в трёх финских семьях, восходящих к общему предку. Генеалогию семей удалось проследить до начала XVIII века, когда их предки жили в 3-х деревнях на севере нынешней Финляндии, недалеко друг от друга. Самая крупная из семей содержала на момент исследования как минимум 49 носителей слившихся хромосом 13 и 14. Среди них нашлась и гомозигота по мутации, обладатель 44 хромосом — женщина, родители которой были троюродными кузенами. За исключением небольшого роста, 152 см, она была здорова и родила 6 детей! Умерла удивительная женщина в 63 года от остановки сердца.
Ещё один случай зафиксирован в 2016 году в Китае. История такова: 25-летний китайский мужчина женился на молодой женщине; у них родился сын, но умер 6 месяцев от роду. В связи с этим медики сделали генетический анализ. Выяснилось, что умерший ребёнок был 45-хромосомным, мама — обычная, а вот папа — обладатель 44 хромосом. Дальнейшее расследование показало, что родители мужчины — двоюродные брат и сестра, оба носители ROB. У них слились в одну хромосомы 14 и 15. Специалисты решили провести полное обследование уникального пациента. Для начала его осмотрели психиатр и невропатолог, которые не выявили никаких отклонений от нормы. Затем мужчине сделали томограмму мозга, электроэнцефалограмму и даже люмбальную пункцию — всё прекрасно, «мутант» здоров как бык. Далее учёные изучили сперматозоиды как самого мужчины (44 хромосомы), так и его отца (45 хромосом). У отца 20% спермиев оказались несбалансированными, зато у сына — 99,7% спермиев были вполне нормальны. Итак, наш 44-хромосомный мужчина здоров и готов к размножению. Конечно, как видим, при браке с женщиной — носителем обычного кариотипа, у него возникли трудности. А вот если бы ему попалась такая же, как он, ROB-гомозигота — всё было бы идеально.
По мнению авторов исследования, репродуктивный барьер между носителями ROB и обычными людьми, теоретически, может привести к формированию изолированной популяции 44-хромосомных людей, скрещивающихся друг с дружкой. А это уже путь к возникновению нового подвида Homo sapiens.
Схема строения хромосомы в поздней профазе метафазе митоза. 1 хроматида; 2 центромера; 3 короткое плечо; 4 длинное плечо … Википедия
I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия
Раздел ботаники, занимающийся естественной классификацией растений. Экземпляры со многими сходными признаками объединяют в группы, называемые видами. Тигровые лилии один вид, белые лилии другой и т.п. Похожие друг на друга виды в свою очередь… … Энциклопедия Кольера
генетическая терапия ex vivo — * генетычная тэрапія ex vivo * gene therapy ex vivo генотерапия на основе изоляции клеток мишеней пациента, их генетической модификации в условиях культивирования и аутологичной трансплантации. Генетическая терапия с использованием зародышевой… … Генетика. Энциклопедический словарь
Животные, растения и микроорганизмы наиболее распространенные объекты генетических исследований.1 Acetabularia ацетабулярия. Pод одноклеточных зеленых водорослей класса сифоновых, характеризуются гигантским (до 2 мм в диаметре) ядром именно… … Молекулярная биология и генетика. Толковый словарь.
Полимер — (Polymer) Определение полимера, виды полимеризации, синтетические полимеры Информация об определении полимера, виды полимеризации, синтетические полимеры Содержание Содержание Определение Историческая справка Наука о Полимеризация Виды… … Энциклопедия инвестора
Особое качественное состояние мира, возможно, необходимая ступень в развитии Вселенной. Естественно научный подход к сущности Ж. сосредоточен на проблеме ее происхождения, ее материальных носителей, на отличии живого от неживого, на эволюции… … Философская энциклопедия
Какое количество хромосом у человекообразных обезьян, Вы узнаете из этой статьи.
Сколько хромосом у обезьяны?Хромосомы – это генетический материал, который находится в клетке организма. В каждой из них содержится молекула ДНК в скрученном виде спирали. Полный набор хромосом именуется кариотипом.
Генетическое сходство человека и человекообразных обезьян просто поражают. ДНК человека и обезьяны совпадают на 98,9%. А количество хромосом отличается всего одной парой.
У шимпанзе их 48, то есть 24 пары, а у человека – 46, то есть 23 пары.
Почему так? Дело в том, что в ходе эволюционного процесса у наших предков две различные хромосомы (переданные от приматов) объединились в одну. Это очень важный момент, который определил генетическую изоляцию и видообразование. Кстати, такие изменения в числе хромосом наблюдаются и у других видов. На каком-то этапе общая ветвь развития общего предка человека и обезьяны разошлась. Начались скоростные накопления мутаций, которые и установили различие в ДНК и количестве хромосом. Приблизительно наше расхождение с шимпанзе случилось в период от 5,4 до 7 млн. лет назад.
Хромосома человека 2: | |||||
С середины 1800-х годов биологи в целом придерживались мнения, что все живые существа произошли от одного общего предка. В то время как генетическое сходство между человеком и обезьяной укрепляло теорию Дарвина, оставалось значительное необъяснимое несоответствие. В то время как у всех человекообразных обезьян 48 хромосом (24 пары), у человека их всего 46 (23 пары). Если люди и человекообразные обезьяны имели общего предка, разве у них не должно быть одинакового числа хромосом в клетках? Фазы, через которые хромосомы реплицируются, делятся, перемешиваются и рекомбинируют, несовершенны, поскольку ДНК подвержена случайным мутациям. Фундаментальная часть процесса, посредством которого делается наука, включает в себя разработку проверяемого предсказания, также известного как гипотеза. Ученые предложили два возможных объяснения несоответствия: либо у общего предка было 24 пары, а у людей была слитая хромосома; или у предка было 23 пары, а обезьяны несут расщепленную хромосому. Их целенаправленное исследование привело к тому, что они нашли мутацию в одной хромосоме человека, которая объяснила, что произошло. В 2005 году рецензируемый научный журнал опубликовал результаты испытаний. Оказывается, хромосома 2, которая уникальна для человеческой линии эволюции, возникла в результате прямого слияния двух хромосом предков, которые остаются отдельными у других приматов. | |||||
Происхождение человека: слияние хромосом?
Около 60 лет назад два исследователя, Joe Hin Tjio и Albert Levan , обнаружили, что число хромосом (кариотип) у человека составляет 46 хромосом, то есть 23 пары, а не 48, как считалось ранее. (1). Ключом к этому открытию стало внедрение серии из улучшений в методах культивирования, применяемых к фибробластам человека 9.0047, особенно в отношении лечения колхицином, который прерывает деление клеток на соответствующей стадии для наблюдения за хромосомами. Это известно как метафаза, во время которой хромосомы сокращаются, чтобы их можно было правильно увидеть в микроскоп. Интересно, что эти же усовершенствования использовались в последующие годы для определения того, что наши ближайшие предки (крупные человекообразные обезьяны, такие как шимпанзе, бонобо, гориллы или орангутанги) обладали 48 хромосомами. Как и когда произошло это изменение числа хромосом? Прежде всего, какую роль сыграло это различие в происхождении нашего вида? Последние достижения в методах генетического анализа значительно продвинулись в решении этих двух вопросов.
Слияние хромосом: причина различий и у приматов, в частности.

появился анализ ДНК на хромосомах, до которого не было возможности провести углубленную характеристику хромосомной перестройки, отличающей нас от крупных человекообразных обезьян. Таким образом, было видно, что более или менее в центре нашей хромосомы 2 находились теломерные и субтеломерные последовательности ДНК (обычно присутствует только на одном конце хромосом, но не во внутренних областях) (2). Это дало понять, что слияние двух хромосом было полным, то есть от одного конца до другого. В настоящее время доступность генома человека и генома крупных обезьян показала, как генетическое содержание нашей хромосомы 2 соответствует сумме двух хромосом наших предков-обезьян.
Однако было также обнаружено, что в области слияния, в которой возникла наша хромосома 2, отсутствуют некоторые области и последовательности, которые соответствуют субтеломерным областям, присутствующим в двух хромосомах, слитых у нашего вида. Другими словами, слияние должно было включать потерю и перестройку части генетического материала двух изначально отдельных хромосом у наших предков, общих с крупными обезьянами.
Денисовцы, неандертальцы и крупные человекообразные обезьяны: когда мы разделились?
Анализы, проводимые в настоящее время на геномах вымерших видов, которые имеют непосредственное отношение к нам, таких как денисовцы и неандертальцы, показывают, что у этих видов уже было слияние хромосом, которое привело к возникновению длинной хромосомы 2, характерной для человека (3). Следовательно, эта перестройка хромосом уходит далеко в прошлое : оценки с использованием различных методов датируют это от 0,75 до 4,5 миллионов лет назад.
Тот факт, что у денисовцев и неандертальцев было то же число хромосом, что и у нас, может объяснить, почему потомки от межвидового скрещивания с нашим видом были жизнеспособны и, возможно, плодовиты. Это также объясняет, почему следов их генетических характеристик остаются в нашем геноме , как показал сравнительный геномный анализ трех видов. Однако гипотетические потомки от скрещивания трех упомянутых видов гоминидов (46 хромосом) и их крупных предков-обезьян (48 хромосом) имели бы проблемы с хромосомной несовместимостью и, вероятно, были бы нежизнеспособны. На самом деле в нашем геноме не обнаружено никаких следов специфических генетических характеристик крупных человекообразных обезьян. Следовательно, слияние хромосом могло действовать как эффективный механизм репродуктивной изоляции, которая изолировала нас от предков крупных человекообразных обезьян.
Наконец, существует вероятность того, что слияние хромосом, в результате которого возникла наша хромосома 2, могло быть связано с появлением наших отличительных характеристик. Таким образом, некоторые гены нашей хромосомы 2, расположенные вблизи области слияния хромосом, экспрессируются у нашего вида более интенсивно, чем у крупных человекообразных обезьян. Эти гены экспрессируются прежде всего в очень важных тканях и органах, таких как мозг и гонады (4). Во-вторых, потеря определенных последовательностей ДНК, произошедшая в результате слияния, могла оказать «положительное» влияние на наших предков.
Чтобы окончательно прояснить, что произошло при хромосомной перестройке, столь характерной для нашего вида, в ближайшие годы нам придется попытаться получить ДНК вымерших видов, которые старше Homo Erectus или Homo Heidelbergensis , тем самым определив, являются ли слияние связано со всеми «человеческими» линиями; или провести углубленный сравнительный анализ области слияния нашей хромосомы 2 и субтеломерных областей двух хромосом крупных обезьян, участвующих в слиянии, что пока невозможно.
Leave A Comment