Системы неравенств. Как решить систему неравенств?

Системой неравенств называют несколько неравенств, которые должны выполняться одновременно.

Например:

\(\begin{cases}5x+2≥0\\x<2x+1\\x-4>2\end{cases}\)

\(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)

\(\begin{cases}(x^2+1)(x^2+3)(x^2-1)≥0\\x<3\end{cases}\)

Решение системы неравенств

Чтобы решить систему неравенств нужно найти значения иксов, которые подойдут всем неравенствам в системе – это и значит, что они выполняются одновременно.

Пример. Решим систему \(\begin{cases}x>4\\x\leq7\end{cases}\)
Решение: Первое неравенство становится верным, если икс больше \(4\). То есть, решения первого неравенства – все значения иксов из интервала \((4;\infty)\), или на числовой оси:


Второму неравенству подойдут значения иксов меньшие чем 7, включая саму семерку, то есть любой икс  из интервала \((-\infty;7]\) или на числовой оси:


А какие значения подойдут обоим неравенствам? Те, которые принадлежат обоим промежуткам, то есть где промежутки пересекаются.


Ответ: \((4;7]\)

Как вы могли заметить для пересечения решений неравенств в системе удобно использовать числовые оси.

Общий принцип решения систем неравенств: нужно найти решение каждого неравенства, а потом пересечь эти решения с помощью числовой прямой.

Пример:

(Задание из ОГЭ)  Решить систему \(\begin{cases} 7(3x+2)-3(7x+2)>2x\\(x-5)(x+8)<0\end{cases}\)


Решение:

\(\begin{cases} 7(3x+2)-3(7x+2)>2x\\(x-5)(x+8)<0\end{cases}\)

Давайте каждое неравенство решим отдельно от другого.

1) \(7(3x+2)-3(7x+2)>2x\)

Раскроем скобки.

\(21x+14-21x-6>2x\)

Приведем подобные слагаемые.

\(8>2x\)

Перевернем получившееся неравенство.

\(2x<8\)

Поделим все неравенство на \(2\).

\(x<4\)

Отметим решение на числовой прямой.

   

Запишем ответ для первого неравенства.

\(x∈(-∞;4)\)

Теперь решим второе неравенство.

2) \((x-5)(x+8)<0\)

Неравенство уже в идеальном виде для применения метода интервалов.

 

Запишем ответ для второго неравенства.

\(x∈(-8;5)\)

Объединим оба решения с помощью числовых осей.

         

Выпишем в ответ промежуток, на котором есть решение обоих неравенств — и первого, и второго.

Ответ: \((-8;4)\)

Пример: (Задание из ОГЭ)  Решить систему \(\begin{cases} \frac{10-2x}{3+(5-2x)^2}≥0\\ 2-7x≤14-3x \end{cases}\)


Решение:

\(\begin{cases} \frac{10-2x}{3+(5-2x)^2}≥0\\ 2-7x≤14-3x \end{cases}\)

Снова будем решать неравенства по отдельности.

1)\(\frac{10-2x}{3+(5-2x)^2}\)\(≥0\)

Если вас испугал знаменатель – не бойтесь, сейчас мы его уберем.
Дело в том, что \(3+(5-2x)^2\)– всегда положительное выражение. Посудите сами: \((5-2x)^2 \)из-за квадрата либо положительно, либо равно нулю. \((5-2x)^2+3\) – точно положительно. Значит можно неравенство смело умножать на \(3+(5-2x)^2\)

\(10-2x≥0\)

Перед нами обычное линейное неравенство – выразим \(x\). Для этого перенесем \(10\) в правую часть.

\(-2x≥-10\)

Поделим неравенство на \(-2\). Так как число отрицательное меняем знак неравенства.

\(x≤5\)

Отметим решение на числовой прямой.

Запишем ответ к первому неравенству.

\(x∈(-∞;5]\)

На данном этапе главное не забыть, что есть второе неравенство.

2) \(2-7x≤14-3x\)

Опять линейное неравенство – опять выражаем \(x\).

\(-7x+3x≤14-2\)

Приводим подобные слагаемые.

\(-4x≤12\)

Делим все неравенство на \(-4\), перевернув при этом знак.

\(x≥-3\)

Изобразим решение на числовой оси и выпишем ответ для этого неравенства.

\(x∈[-3;∞)\)

А теперь объединим решения.

Запишем ответ.

Ответ: \([-3;5]\)

Пример:  Решить систему \(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)


Решение:

\(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)

В первом неравенстве раскроем скобку,  во втором — разложим квадратный трехчлен на множители, а в третьем — перенесем 14 в правую 

\(\begin{cases}x^2-55x+250<x^2-28x+196\\(x-5)(x-50)≥0\\x>14\end{cases}\)

В первом перенесем все слагаемые в левую часть. И приведем подобные слагаемые.

\(\begin{cases}-27x+54<0\\(x-5)(x-50)≥0\\x>14\end{cases}\)

Теперь в нем же перенесем \(54\) в левую сторону и поделим обе части на \((-27)\), не забыв при этом перевернуть знак сравнения.

\(\begin{cases}x>2\\(x-5)(x-50)≥0\\x>14\end{cases}\)

Отметим решения неравенств на числовых прямых.

Решения подходящие всем неравенствам системы находятся от \(50\) и дальше. Запишем ответ.

Ответ: \([50;+∞)\)


Смотрите также:

Системы линейных неравенств
Совокупности неравенств

Скачать статью

cos-cos.ru

Решение задач по математике онлайн

Данный сайт обращён к учащимся в том или ином объеме изучающим математику и/или геометрию и призван помочь школьникам и студентам в изучении курса математики, освободить их от многих рутинных вычислений, и подсказать метод решения.
Основу сайта составляют математические программы (калькуляторы) для решения задач онлайн.
Все вычисления производятся на сайте, программы не нужно скачивать и устанавливать на компьютер.
На каждую задачу приводится поэтапный процесс получения ответа, т.е. подробное решение с объяснениями этапов решения данной задачи.
Решение задач приводится в виде, принятом в большинстве школ и вузов, некоторые задачи решаются двумя способами.
Все математические программы (калькуляторы) бесплатные.
Полный список математических и геометрических задач для решения вы можете найти в меню справа.

Вычислить: $$x^2+2x-1=0$$ $$2\frac{1}{3} \cdot \left( 2\frac{3}{4}-1\frac{3}{8} \right) $$ Решение: $$2\frac{1}{3} \cdot \left( 2\frac{3}{4}-1\frac{3}{8} \right) = $$
Промежуточные результаты:
$$2\frac{3}{4}-1\frac{3}{8} = \frac{2\cdot(2\cdot4+3)-1\cdot8-3}{8} = \frac{11}{8}$$
$$ = 2\frac{1}{3} \cdot \frac{11}{8} = \frac{2\cdot3+1}{3} \cdot \frac{11}{8} = \frac{7}{3} \cdot \frac{11}{8} = \frac{77}{24} = 3\frac{5}{24} $$ Ответ: $$ 3\frac{5}{24} $$ Найти корни квадратного уравнения: $$x^2+2x-1=0$$ Решение.

Вычислим дискриминант.

$$D = b^2-4ac = 8$$ $$x_{1,2}= \frac{-b\pm\sqrt{D}}{2a} = \frac{-2\pm\sqrt{8}}{2} = \frac{-2\pm2\sqrt{2}}{2} $$ Ответ: $$ x_1 = -1+\sqrt{2},\; x_2 = -1-\sqrt{2} $$ Решить неравенство: $$\frac{4 x^2-7 x+3}{3 x-1} \geq x-1$$ Решение: $$\frac{4 x^2-7 x+3}{3 x-1} \geq x-1\Rightarrow $$ $$\frac{4 x^2-7 x+3- \left( x-1 \right) \left( 3 x-1 \right) }{3 x-1} \geq 0$$

Упрощение выражения \(4 x^2-7 x+3- \left( x-1 \right) \left( 3 x-1 \right) \)

$$4 x^2-7 x+3- \left( x-1 \right) \left( 3 x-1 \right) = $$ Раскрытие скобок: $$4 x^2-7 x+3+ \left( -x+1 \right) \left( 3 x-1 \right) = $$ Раскрытие скобок: $$4 x^2-7 x+3-3 x^2+x+3 x-1= $$ $$x^2-3 x+2$$ Ответ: \( x^2-3 x+2 \) Решим квадратное уравнение \( x^2-3 x+2= 0 \)

Решение квадратного уравнения \( x^2-3 x+2= 0 \)


Вычислим дискриминант. $$D = b^2-4ac = 1$$ $$x_{1,2}= \frac{-b\pm\sqrt{D}}{2a} = \frac{3\pm\sqrt{1}}{2} = \frac{3\pm1}{2} $$ Ответ: \( x_1 = 2,\; x_2 = 1 \)

Решение по теореме Виета

Т.к. \( \left| a \right|=1 \), то можно воспользоваться теоремой Виета: $$x^2+px+q=0 \Rightarrow \left\{\begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array}\right.$$ $$\left\{\begin{array}{l} x_1+x_2=3 \\ x_1 \cdot x_2=2 \end{array}\right. \Rightarrow \left\{\begin{array}{l} x_1=2 \\ x_2=1 \end{array}\right.$$ Ответ: \( x_1= 2,\; x_2= 1 \) Корни квадратного уравнения: $$ x_1 = 1 ;\; x_2 = 2 $$ Решим линейное уравнение \( 3 x-1= 0 \) Корень линейного уравнения: \( x = \frac{1}{3}\)
  $$ \frac{1}{3} $$ $$ 1 $$ $$ 2 $$  
Ответ: $$ x \in \left( \frac{1}{3} ;\; 1 \right] \cup \left[ 2 ;\; +\infty \right) $$ или $$ \frac{1}{3}

Нахождение производной функции

Найти производную функции $$ f(x) = \left( 1+sin \left( 2 \cdot x\right) \right) ^{2}$$ Решение $$ f'(x) = \left( \left( 1+sin \left( 2 \cdot x\right) \right) ^{2}\right) ‘= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot \left( 1+sin \left( 2 \cdot x\right) \right) ‘= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot \left( sin \left( 2 \cdot x\right) \right) ‘= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) \cdot \left( 2 \cdot x\right) ‘= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) \cdot 2= $$ $$ = 4 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) $$ Ответ: $$ f'(x) = 4 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) $$

В разделе Книги вы найдете большой список книг, учебников, решебников, ГДЗ, тестов и контрольных работ с ответами по математике и геометрии для всех классов общеобразовательных школ.
Все книги в электронном виде и доступны для скачивания бесплатно.

Отдельно стоит упомянуть программу для построения графиков функций онлайн.
Программа работает в вашем браузере, её не нужно устанавливать на компьютер.
Для её работы нужен только установленный Adobe Flash Player.

Возможности программы:
— можно строить несколько графиков в одном окне
— можно менять цвет и толщину линии постоения графика
— можно скрывать и отображать как сетку так и графики
— можно изменять масштаб отображения
— можно трассировать графики
— можно сохранять построение графиков в виде картинки

www.mathsolution.ru

StudyPort.Ru — Система неравенств. Решения системы

Системой неравенств называется совокупность неравенств, для которых нужно найти значения неизвестных, удовлетворяющие одновременно всем неравенствам системы.

Значения неизвестных, удовлетворяющие одновременно всем уравнением системы называются решениями системы.

 

Примеры систем неравенств:

 

Системы неравенств могут состоять из двух и более неравенств и содержать одну и более переменных. Система неравенств может не иметь решений, иметь несколько решений, иметь бесконечное множество решений.

В школьной программе изучаются системы, содержащие одну переменную.

Для решения различных видов систем разработано много различных методов решения, но   в рамках школьного курса рассматривается один самый простой метод. Он заключается в том, что мы решаем каждое неравенство в отдельности, а затем все полученные решения пересекаем на координатной оси.    

 

Примеры решения систем неравенств.

1. Решить систему неравенств 

Решим первое неравенство:

x2-4 < 0;

(x-2)(x+2) < 0.

Решим это неравенство методом интервалов.

Решением этого неравенства будет промежуток (-2;2).

Второе неравенство уже решено — пересекаем решения первого и второго неравенства.

Итак, решением системы неравенств будет промежуток (-2;1).

Ответ: (-2;1).

 2. Решить систему неравенств 

Решим первое неравенство:

 

Решим второе неравенство:

x-12 < 1;

x < 13.

Пересекаем решения первого и второго неравенства.

Итак, решение системы неравенств — промежуток [8;13).

Ответ: [8;13).

studyport.ru