ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ e x 2x 3. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ e Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ x ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΏΠ΅ΡΠ°ΡΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΎΠ± ΠΎΡΡΡΠΊΠ°Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Ρ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ (ΠΈ Π½Π΅ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΡΡ ) ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΏΡΠ΅Π΄Π΅Π»Π° ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΠΊ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΠΎΡΠ²ΠΈΠ»ΠΈΡΡ ΡΠ°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ ΡΠΎΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ΅ΡΠ²ΡΠΌΠΈ Π½Π° Π½ΠΈΠ²Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎΡΡΡΠ΄ΠΈΠ»ΠΈΡΡ ΠΡΠ°Π°ΠΊ ΠΡΡΡΠΎΠ½ (1643-1727) ΠΈ ΠΠΎΡΡΡΠΈΠ΄ ΠΠΈΠ»ΡΠ³Π΅Π»ΡΠΌ ΠΠ΅ΠΉΠ±Π½ΠΈΡ (1646-1716).
ΠΠΎΡΡΠΎΠΌΡ Π² Π½Π°ΡΠ΅ Π²ΡΠ΅ΠΌΡ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π»ΡΠ±ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π΅ Π½Π°Π΄ΠΎ Π²ΡΡΠΈΡΠ»ΡΡΡ ΡΠΏΠΎΠΌΡΠ½ΡΡΡΠΉ Π²ΡΡΠ΅ ΠΏΡΠ΅Π΄Π΅Π» ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, Π° Π½ΡΠΆΠ½ΠΎ Π»ΠΈΡΡ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ°Π±Π»ΠΈΡΠ΅ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ , Π½Π°Π΄ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ ΡΡΡΠΈΡ Π° ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡ Π½Π° ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠΌΠΈ (ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΡΡΠΌΠΌΠ°, ΡΠ°ΡΡΠ½ΠΎΠ΅)
ΠΡΠΈΠΌΠ΅Ρ 1. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ· ΠΏΡΠ°Π²ΠΈΠ» Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΡΠ½ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π΅ΡΡΡ ΡΡΠΌΠΌΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Ρ. Π΅.
ΠΠ· ΡΠ°Π±Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²ΡΡΡΠ½ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ «ΠΈΠΊΡΠ°» ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΈΠ½ΡΡΠ° — ΠΊΠΎΡΠΈΠ½ΡΡΡ. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ Π·Π°Π΄Π°ΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠΌΠΌΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΡΠΎΡΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΌ, Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
ΠΡΠ»ΠΈ ΠΏΠΎΠΊΠ° Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ, ΠΎΡΠΊΡΠ΄Π° ΡΡΠΎ Π±Π΅ΡΡΡΡΡ, ΠΎΠ½ΠΈ, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΏΡΠΎΡΡΠ½ΡΡΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ Ρ ΡΠ°Π±Π»ΠΈΡΠ΅ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΌΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π Π½ΠΈΠΌ ΠΌΡ ΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΡΡΠΌΠΎ ΡΠ΅ΠΉΡΠ°Ρ.
Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ (ΡΠΈΡΠ»Π°). ΠΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° (1, 2, 5, 200…), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π΅ΡΡΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠ΅Π³Π΄Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. ΠΡΠΎ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΡΠ΅Π½Ρ ΡΠ°ΡΡΠΎ | |
2. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ «ΠΈΠΊΡΠ°». ΠΡΠ΅Π³Π΄Π° ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΡΠΎ ΡΠΎΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π½Π°Π΄ΠΎΠ»Π³ΠΎ | |
3. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. Π ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°ΡΡ Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ. | |
4. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ -1 | |
5. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ | |
6. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΈΠ½ΡΡΠ° | |
7. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ° | |
8. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π½Π³Π΅Π½ΡΠ° | |
9. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° | |
10. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π°ΡΠΊΡΠΈΠ½ΡΡΠ° | |
11. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡΠ° | |
12. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½ΡΠ° | |
13. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π°ΡΠΊΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° | |
14. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° | |
15. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ | |
16. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ | |
17. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ |
ΠΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ | |
2. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ | |
2a. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ | |
3. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ | |
4. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ |
ΠΡΠ°Π²ΠΈΠ»ΠΎ 1. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ , ΡΠΎ Π² ΡΠΎΠΉ ΠΆΠ΅ ΡΠΎΡΠΊΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΏΡΠΈΡΡΠΌ
Ρ.Π΅. ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ.
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅. ΠΡΠ»ΠΈ Π΄Π²Π΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅, ΡΠΎ ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΠ°Π²Π½Ρ
ΠΡΠ°Π²ΠΈΠ»ΠΎ 2. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ , ΡΠΎ Π² ΡΠΎ ΠΆΠ΅ ΡΠΎΡΠΊΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎ ΠΈ ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
ΠΏΡΠΈΡΡΠΌ
Ρ.Π΅. ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄ΡΡΠ³ΠΎΠΉ.
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ 1. ΠΠΎΡΡΠΎΡΠ½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½ΠΎΡΠΈΡΡ Π·Π° Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ :
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ 2. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π½Π° Π²ΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ:
ΠΡΠ°Π²ΠΈΠ»ΠΎ 3. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠ΅
Ρ.Π΅. ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° Π΄ΡΠΎΠ±ΠΈ, ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°Ρ ΠΏΡΠ΅ΠΆΠ½Π΅Π³ΠΎ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΠ΄Π΅ ΡΡΠΎ ΠΈΡΠΊΠ°ΡΡ Π½Π° Π΄ΡΡΠ³ΠΈΡ ΡΡΡΠ°Π½ΠΈΡΠ°Ρ
ΠΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π² ΡΠ΅Π°Π»ΡΠ½ΡΡ Π·Π°Π΄Π°ΡΠ°Ρ Π²ΡΠ΅Π³Π΄Π° ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡΠ°Π·Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ°Π²ΠΈΠ» Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² Π½Π° ΡΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ — Π² ΡΡΠ°ΡΡΠ΅ «ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΉ »
ΠΠ°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΡΠ΅Ρ Π½Π΅ ΠΏΡΡΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ (ΡΠΎ Π΅ΡΡΡ, ΡΠΈΡΠ»ΠΎ) ΠΊΠ°ΠΊ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΡΠΌΠΌΠ΅ ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ! Π ΡΠ»ΡΡΠ°Π΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, Π° Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΎΠ½Π° Π²ΡΠ½ΠΎΡΠΈΡΡΡ Π·Π° Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ . ΠΡΠΎ ΡΠΈΠΏΠΈΡΠ½Π°Ρ ΠΎΡΠΈΠ±ΠΊΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π½Π° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ , Π½ΠΎ ΠΏΠΎ ΠΌΠ΅ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΆΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΎΠ΄Π½ΠΎ- Π΄Π²ΡΡ ΡΠΎΡΡΠ°Π²Π½ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΡΠ΅Π΄Π½ΠΈΠΉ ΡΡΡΠ΄Π΅Π½Ρ ΡΡΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΠΆΠ΅ Π½Π΅ Π΄Π΅Π»Π°Π΅Ρ.
Π Π΅ΡΠ»ΠΈ ΠΏΡΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Ρ Π²Π°Ρ ΠΏΠΎΡΠ²ΠΈΠ»ΠΎΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ u «v , Π² ΠΊΠΎΡΠΎΡΠΎΠΌ u — ΡΠΈΡΠ»ΠΎ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, 2 ΠΈΠ»ΠΈ 5, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π²ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ (ΡΠ°ΠΊΠΎΠΉ ΡΠ»ΡΡΠ°ΠΉ ΡΠ°Π·ΠΎΠ±ΡΠ°Π½ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ 10).
ΠΡΡΠ³Π°Ρ ΡΠ°ΡΡΠ°Ρ ΠΎΡΠΈΠ±ΠΊΠ° — ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½Π°Ρ ΡΡΠ°ΡΡΡ. ΠΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΡΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΠΎ Ρ ΠΎΠ΄Ρ Π½Π΅ ΠΎΠ±ΠΎΠΉΡΠΈΡΡ Π±Π΅Π· ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΡΡΠ΅Π±ΠΎΠ²Π°ΡΡΡΡ ΠΎΡΠΊΡΡΡΡ Π² Π½ΠΎΠ²ΡΡ ΠΎΠΊΠ½Π°Ρ ΠΏΠΎΡΠΎΠ±ΠΈΡ ΠΠ΅ΠΉΡΡΠ²ΠΈΡ ΡΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΠΈ ΠΊΠΎΡΠ½ΡΠΌΠΈ ΠΈ ΠΠ΅ΠΉΡΡΠ²ΠΈΡ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ .
ΠΡΠ»ΠΈ ΠΡ ΠΈΡΠ΅ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ ΡΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΠΈ ΠΊΠΎΡΠ½ΡΠΌΠΈ, ΡΠΎ Π΅ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ Π²ΡΠΎΠ΄Π΅ , ΡΠΎ ΡΠ»Π΅Π΄ΡΠΉΡΠ΅ Π½Π° Π·Π°Π½ΡΡΠΈΠ΅ «ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ Π΄ΡΠΎΠ±Π΅ΠΉ ΡΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΠΈ ΠΊΠΎΡΠ½ΡΠΌΠΈ «.
ΠΡΠ»ΠΈ ΠΆΠ΅ ΠΏΠ΅ΡΠ΅Π΄ ΠΠ°ΠΌΠΈ Π·Π°Π΄Π°ΡΠ° Π²ΡΠΎΠ΄Π΅ , ΡΠΎ ΠΠ°ΠΌ Π½Π° Π·Π°Π½ΡΡΠΈΠ΅ «ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ».
ΠΠΎΡΠ°Π³ΠΎΠ²ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ — ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΡΠΈΠΌΠ΅Ρ 3. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΡΠ°ΡΡΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ: Π²ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, Π° Π΅Π³ΠΎ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ — ΡΡΠΌΠΌΡ, Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ. ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄ΡΡΠ³ΠΎΠΉ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π½Π°ΠΉΠ΄Π΅Π½Π½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π² ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ Π·Π°Π΄Π°ΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²ΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΈΠΌΠ΅Ρ 4. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ ΠΌΡ ΡΠΆΠ΅ Π½Π°ΡΠ»ΠΈ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ 2. ΠΠ΅ Π·Π°Π±ΡΠ΄Π΅ΠΌ ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΡΠ²Π»ΡΡΡΠ΅Π΅ΡΡ Π²ΡΠΎΡΡΠΌ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΌ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ Π² ΡΠ΅ΠΊΡΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π±Π΅ΡΡΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΌΠΈΠ½ΡΡ:
ΠΡΠ»ΠΈ ΠΡ ΠΈΡΠ΅ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ Π·Π°Π΄Π°Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π³Π΄Π΅ ΡΠΏΠ»ΠΎΡΠ½ΠΎΠ΅ Π½Π°Π³ΡΠΎΠΌΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ, ΠΊΠ°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, , ΡΠΎ Π΄ΠΎΠ±ΡΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°ΡΡ Π½Π° Π·Π°Π½ΡΡΠΈΠ΅
ΠΡΠ»ΠΈ ΠΆΠ΅ ΠΠ°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠΈΠ½ΡΡΠΎΠ², ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ², ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² ΠΈ Π΄ΡΡΠ³ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠΎ Π΅ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ Π²ΡΠΎΠ΄Π΅ , ΡΠΎ ΠΠ°ΠΌ Π½Π° ΡΡΠΎΠΊ «ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ» .
ΠΡΠΈΠΌΠ΅Ρ 5. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΊΠΎΡΠΎΡΡΡ — ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΡ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠ»ΠΈΡΡ Π² ΡΠ°Π±Π»ΠΈΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ . ΠΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈ ΡΠ°Π±Π»ΠΈΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΡΠΈΠΌΠ΅Ρ 6. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄ΠΈΠΌ ΡΠ°ΡΡΠ½ΠΎΠ΅, Π΄Π΅Π»ΠΈΠΌΠΎΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ — ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΡ ΠΏΠΎΠ²ΡΠΎΡΠΈΠ»ΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ 4, ΠΈ ΡΠ°Π±Π»ΠΈΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
Π§ΡΠΎΠ±Ρ ΠΈΠ·Π±Π°Π²ΠΈΡΡΡΡ ΠΎΡ Π΄ΡΠΎΠ±ΠΈ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅, ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° .
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ — ΠΎΠ΄Π½Π° ΠΈΠ· ΡΠ°ΠΌΡΡ Π²Π°ΠΆΠ½ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ Π² Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ. ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠ°Π±Π»ΠΈΡΠ° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΌΠΎΡΡΠΈΡΠ΅ Π² Π΄ΡΡΠ³ΠΈΡ ΡΡΠΎΠΊΠ°Ρ :- Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΈ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΠΈΡΠ»Π° ΡΠ°Π²Π½Π° Π½ΡΠ»ΡΡΒ΄ = 0
ΠΡΠΈΠΌΠ΅Ρ:
5Β΄ = 0
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΈΡΠ»ΠΎ Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½ΠΈ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
— ΡΠΊΠΎΡΠΎΡΡΡ Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²ΡΠ΅Π³Π΄Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
2. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅
xΒ΄ = 1
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
ΠΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° (Ρ
) Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ) ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΡΡ ΠΆΠ΅ ΡΠ°ΠΌΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠΎΡΠ½ΠΎ ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°.
3. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΡΠ°Π²Π½Π° ΡΡΠΎΠΌΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ
ΡxΒ΄ = Ρ
ΠΡΠΈΠΌΠ΅Ρ:
(3x)Β΄ = 3
(2x)Β΄ = 2
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΏΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΡΠ½ΠΊΡΠΈΠΈ (Ρ
) Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ (y) ΡΠ°ΡΡΠ΅Ρ Π² Ρ ΡΠ°Π·. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΠΎΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ Ρ .
ΠΡΠΊΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
(cx + b)» = c
ΡΠΎ Π΅ΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=kx+b ΡΠ°Π²Π΅Π½ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ (k).
4. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°Π²Π½Π° ΡΠ°ΡΡΠ½ΠΎΠΌΡ ΡΡΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊ Π΅Π΅ ΠΌΠΎΠ΄ΡΠ»Ρ
|x|» = x / |x| ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Ρ β 0
ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ :
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ (ΡΠΌ. ΡΠΎΡΠΌΡΠ»Ρ 2) ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ Π»ΠΈΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΠΏΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = |x| ΠΈ ΡΠ±Π΅Π΄ΠΈΡΠ΅ΡΡ Π² ΡΡΠΎΠΌ ΡΠ°ΠΌΠΈ. ΠΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ x / |x| . ΠΠΎΠ³Π΄Π° x 0 — Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. Π’ΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ ΠΏΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π½Π° ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π° ΠΏΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ — Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π½ΠΎ ΡΠΎΡΠ½ΠΎ Π½Π° ΡΠ°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
5. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΈΡΠ»Π° ΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠΌΠ΅Π½ΡΡΠ΅Π½Π½ΠΎΠΉ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ
(x c)»= cx c-1 , ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ x c ΠΈ Ρx c-1 ,ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π° Ρ β 0
ΠΡΠΈΠΌΠ΅Ρ:
(x 2)» = 2x
(x 3)» = 3x 2
ΠΠ»Ρ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ ΡΠΎΡΠΌΡΠ»Ρ :
Π‘Π½Π΅ΡΠΈΡΠ΅ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ «Π²Π½ΠΈΠ·» ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠΈΡΠ΅ ΡΠ°ΠΌΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ x 2 — Π΄Π²ΠΎΠΉΠΊΠ° ΠΎΠΊΠ°Π·Π°Π»Π°ΡΡ Π²ΠΏΠ΅ΡΠ΅Π΄ΠΈ ΠΈΠΊΡΠ°, Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½Π½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ (2-1=1) ΠΏΡΠΎΡΡΠΎ Π΄Π°Π»Π° Π½Π°ΠΌ 2Ρ
. Π’ΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ Π΄Π»Ρ x 3 — ΡΡΠΎΠΉΠΊΡ «ΡΠΏΡΡΠΊΠ°Π΅ΠΌ Π²Π½ΠΈΠ·», ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌ Π΅Π΅ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈ Π²ΠΌΠ΅ΡΡΠΎ ΠΊΡΠ±Π° ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°Ρ, ΡΠΎ Π΅ΡΡΡ 3x 2 . ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ «Π½Π΅ Π½Π°ΡΡΠ½ΠΎ», Π½ΠΎ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ.
6. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄ΡΠΎΠ±ΠΈ 1/Ρ
(1/Ρ
)» = — 1 / x 2
ΠΡΠΈΠΌΠ΅Ρ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΡΠΎΠ±Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠ°ΠΊ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ
(1/x)» = (x -1)» , ΡΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΠ· ΠΏΡΠ°Π²ΠΈΠ»Π° 5 ΡΠ°Π±Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
(x -1)» = -1x -2 = — 1 / Ρ
2
7. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅
(1 / x c)» = — c / x c+1
ΠΡΠΈΠΌΠ΅Ρ:
(1 / x 2)» = — 2 / x 3
8. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΡΠ½Ρ (ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΠΊΠΎΡΠ½Π΅ΠΌ)
(βx)» = 1 / (2βx) ΠΈΠ»ΠΈ 1/2 Ρ
-1/2
ΠΡΠΈΠΌΠ΅Ρ:
(βx)» = (Ρ
1/2)» Π·Π½Π°ΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΠ· ΠΏΡΠ°Π²ΠΈΠ»Π° 5
(Ρ
1/2)» = 1/2 Ρ
-1/2 = 1 / (2βΡ
)
9. nx. Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ².
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ ΡΠ°Π²Π½Π° ΡΠ°ΠΌΠΎΠΉ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ΅ (ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ e Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ x ΡΠ°Π²Π½Π° e Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ x):
(1) (e x )β²
= e x
.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ a
ΡΠ°Π²Π½Π° ΡΠ°ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΎΡ a
:
(2) .
ΠΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, e Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ x
ΠΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ° — ΡΡΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π²Π½ΠΎ ΡΠΈΡΠ»Ρ e
,
ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠΌ:
.
ΠΠ΄Π΅ΡΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΊΠ°ΠΊ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΌ, ΡΠ°ΠΊ ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ. ΠΠ°Π»Π΅Π΅ ΠΌΡ Π²ΡΠ²ΠΎΠ΄ΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ (1) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, e
Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ x
:
y = e x
.
ΠΡΠ° ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ
.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x
.
ΠΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠΌ:
(3) .
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΡΡΠΎΠ±Ρ ΡΠ²Π΅ΡΡΠΈ Π΅Π³ΠΎ ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΌ ΠΏΠΎΠ½Π°Π΄ΠΎΠ±ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°ΠΊΡΡ:
Π) Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ :
(4) ;
Π) Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° :
(5) ;
Π) ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² Π΄Π»Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
(6) .
ΠΠ΄Π΅ΡΡ — Π½Π΅ΠΊΠΎΡΠΎΡΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΏΡΠ΅Π΄Π΅Π» ΠΈ ΡΡΠΎΡ ΠΏΡΠ΅Π΄Π΅Π» ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½.
Π) ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°:
(7) .
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΡΠΈ ΡΠ°ΠΊΡΡ ΠΊ Π½Π°ΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄Π΅Π»Ρ (3). ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ (4):
;
.
Π‘Π΄Π΅Π»Π°Π΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΡ .
Π’ΠΎΠ³Π΄Π° ;
.
Π ΡΠΈΠ»Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΠΈ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ,
.
ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈ ,
.
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
.
Π‘Π΄Π΅Π»Π°Π΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΡ .
Π’ΠΎΠ³Π΄Π° .
ΠΡΠΈ ,
.
Π ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ:
.
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° (5):
.
Π’ΠΎΠ³Π΄Π°
.
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ (6). ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠ΅Π΄Π΅Π» ΠΈ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π΅Π½, ΡΠΎ:
.
ΠΠ΄Π΅ΡΡ ΠΌΡ ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ Π²ΡΠΎΡΡΠΌ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠΌ (7). Π’ΠΎΠ³Π΄Π°
.
Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠΎΡΠΌΡΠ»Ρ (1) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π’Π΅ΠΏΠ΅ΡΡ Π²ΡΠ²Π΅Π΄Π΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ (2) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ a
.
ΠΡ ΡΡΠΈΡΠ°Π΅ΠΌ, ΡΡΠΎ ΠΈ .
Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ
(8)
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ
.
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ (8). ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΈ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°
.
;
.
ΠΡΠ°ΠΊ, ΠΌΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π»ΠΈ ΡΠΎΡΠΌΡΠ»Ρ (8) ΠΊ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌΡ Π²ΠΈΠ΄Ρ:
.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² ΠΎΡ e Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ x
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ
ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ². Π‘Π½Π°ΡΠ°Π»Π° ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ:
(14) .
(1) .
ΠΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ (14) ΡΠ°Π²Π½Π° ΡΠ°ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (14). ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΡ (1), ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΈ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°:
;
.
ΠΡΡΡΠ΄Π° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ n-Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π²Π½Π° ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ a
:
.
ΠΡ Π½Π°ΡΠ»ΠΈ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°:
(15) .
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΡ (15), ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΈ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°:
;
.
ΠΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° .
ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ n-Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄:
.
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΈ Π²ΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΠ½ΡΡΠ° — sin(x). ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ sin 2x, ΡΠΈΠ½ΡΡΠ° Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅ ΠΈ ΠΊΡΠ±Π΅. ΠΡΠ²ΠΎΠ΄ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΠ½ΡΡΠ° n-Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΎΡ ΡΠΈΠ½ΡΡΠ° x ΡΠ°Π²Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡΡ x:
(sin
x)β² = cos
x
.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ
ΠΠ»Ρ Π²ΡΠ²ΠΎΠ΄Π° ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΠ½ΡΡΠ°, ΠΌΡ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΡΠΎΡ ΠΏΡΠ΅Π΄Π΅Π», Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ ΡΠ²Π΅ΡΡΠΈ Π΅Π³ΠΎ ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ Π·Π°ΠΊΠΎΠ½Π°ΠΌ, ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΡΠ΅ΡΡΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°.
1) ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°:
(1) ;
2) ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ:
(2) ;
3) Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ . ΠΠ°ΠΌ ΠΏΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π°:
(3) ;
4) Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ²:
ΠΡΠ»ΠΈ ΠΈ ,
ΡΠΎ
(4) .
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΡΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΊ Π½Π°ΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄Π΅Π»Ρ. Π‘Π½Π°ΡΠ°Π»Π° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅
.
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ
(3) .
Π Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅
;
.
Π’ΠΎΠ³Π΄Π°
;
;
;
.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ΄Π΅Π»Π°Π΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΡ .
ΠΡΠΈ ,
.
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΠ΅ΡΠ²ΡΠΉ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠ΅Π΄Π΅Π» (1):
.
Π‘Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ°ΠΊΡΡ ΠΆΠ΅ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΠΈ (2):
.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠ΅Π΄Π΅Π»Ρ, Π²ΡΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ Π²ΡΡΠ΅, ΡΡΡΠ΅ΡΡΠ²ΡΡΡ, ΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ (4):
.
Π€ΠΎΡΠΌΡΠ»Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΠ½ΡΡΠ° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.
ΠΡΠΈΠΌΠ΅ΡΡ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΎΡΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΠ½ΡΡ. ΠΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΎΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ:
y = sin 2x; y = sin 2
x
ΠΈ y = sin 3
x
.
ΠΡΠΈΠΌΠ΅Ρ 1
ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ sin 2x .
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π‘Π½Π°ΡΠ°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΡΠ°ΠΌΠΎΠΉ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠ°ΡΡΠΈ:
(2x)β² = 2(x)β² = 2 Β· 1 = 2.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ .
.
ΠΠ΄Π΅ΡΡ .
ΠΡΠ²Π΅Ρ
(sin 2x)β² = 2 cos 2x.
ΠΡΠΈΠΌΠ΅Ρ 2
ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΡΠΈΠ½ΡΡΠ° Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅:
y = sin 2
x
.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΠΈΡΡ
ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π² Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ½ΡΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅:
.
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΡΠ°ΠΌΠΎΠΉ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠ°ΡΡΠΈ:
.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
.
ΠΠ΄Π΅ΡΡ .
ΠΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΎΠ΄Π½Ρ ΠΈΠ· ΡΠΎΡΠΌΡΠ» ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π’ΠΎΠ³Π΄Π°
.
ΠΡΠ²Π΅Ρ
ΠΡΠΈΠΌΠ΅Ρ 3
ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΡΠΈΠ½ΡΡΠ° Π² ΠΊΡΠ±Π΅:
y = sin 3
x
.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ²
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ sin x ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΈΠ½ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
.
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ :
.
ΠΠ΄Π΅ΡΡ .
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ sin x ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π΅Π³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π° .
Π’ΠΎΠ³Π΄Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ n-Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
(5) .
ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΡΠΎ, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ.
ΠΡ ΡΠΆΠ΅ ΠΏΡΠΎΠ²Π΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ ΠΏΡΠΈ , ΡΠΎΡΠΌΡΠ»Π° (5) ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Π°.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ ΡΠΎΡΠΌΡΠ»Π° (5) ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Π° ΠΏΡΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ . ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ, ΡΡΠΎ ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠΎΡΠΌΡΠ»Π° (5) Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π΄Π»Ρ .
ΠΡΠΏΠΈΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ (5) ΠΏΡΠΈ :
.
ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
.
ΠΠ΄Π΅ΡΡ .
ΠΡΠ°ΠΊ, ΠΌΡ Π½Π°ΡΠ»ΠΈ:
.
ΠΡΠ»ΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ,
ΡΠΎ ΡΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄ (5).
Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.
Π Π΅ΡΠ°ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΈΠ»ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°Ρ Π΅Π΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ — ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΡΠΎΠΉ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠ΅ ΠΌΡ ΠΈ ΡΠ΅ΡΠΈΠ»ΠΈ ΠΏΠΎΡΠ²ΡΡΠΈΡΡ ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΡΡ ΡΡΠ°ΡΡΡ. Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, ΠΊΠ°ΠΊΠΎΠ² Π΅Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ», ΠΊΠ°ΠΊ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ? ΠΡΠ΅ ΡΡΠΈ Π²ΠΎΠΏΡΠΎΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΡ Π² ΠΎΠ΄ΠΈΠ½: ΠΊΠ°ΠΊ ΠΏΠΎΠ½ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ?
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
ΠΡΡΡΡ Π΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ f(x) , Π·Π°Π΄Π°Π½Π½Π°Ρ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b) . Π’ΠΎΡΠΊΠΈ Ρ ΠΈ Ρ 0 ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΡΡΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ. ΠΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΈ ΡΠ°ΠΌΠ° ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° β ΡΠ°Π·Π½ΠΎΡΡΡ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Ρ -Ρ 0 . ΠΡΠ° ΡΠ°Π·Π½ΠΎΡΡΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ Π΄Π΅Π»ΡΡΠ° ΠΈΠΊΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π²ΡΡ ΡΠΎΡΠΊΠ°Ρ . ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ β ΠΏΡΠ΅Π΄Π΅Π» ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΊ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΊΠΎΠ³Π΄Π° ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ.
ΠΠ½Π°ΡΠ΅ ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠ°ΠΊΠΎΠΉ ΡΠΌΡΡΠ» Π² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°? Π Π²ΠΎΡ ΠΊΠ°ΠΊΠΎΠΉ:
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΡ OX ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ, Π΅ΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ»ΡΠ½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ Π²ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΡΠ°ΡΡΠ½ΠΎΠ΅ ΠΏΡΡΠΈ x=f(t) ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t . Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
Π§ΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t0 Π½ΡΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠ΅Π΄Π΅Π»:
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ΅: Π²ΡΠ½ΠΎΡΠΈΠΌ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ
ΠΠΎΠ½ΡΡΠ°Π½ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ — ΡΡΠΎ Π½ΡΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ. ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π²ΠΎΠ·ΡΠΌΠΈΡΠ΅ Π·Π° ΠΏΡΠ°Π²ΠΈΠ»ΠΎ — Π΅ΡΠ»ΠΈ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΠ°ΠΉΡΠ΅ .
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΡΠΈΡΠ»ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:
ΠΡΠ°Π²ΠΈΠ»ΠΎ Π²ΡΠΎΡΠΎΠ΅: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ. Π’ΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΠΈ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΠ΅ Π±ΡΠ΄Π΅ΠΌ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠ΅ΠΌΡ, Π° Π»ΡΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ.
ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΡΡΠ΅: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π²ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠΈΠΌΠ΅Ρ: Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ΄Π΅ΡΡ Π²Π°ΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ ΠΎ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΌΡ Π²ΡΡΡΠ΅ΡΠ°Π΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ β 8Ρ Π² ΠΏΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ½Π°ΡΠ°Π»Π° ΡΡΠΈΡΠ°Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°ΠΌΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΏΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ΅ΡΠ²Π΅ΡΡΠΎΠ΅: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
ΠΡ ΠΏΠΎΡΡΠ°ΡΠ°Π»ΠΈΡΡ ΡΠ°ΡΡΠΊΠ°Π·Π°ΡΡ ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄Π»Ρ ΡΠ°ΠΉΠ½ΠΈΠΊΠΎΠ² Ρ Π½ΡΠ»Ρ. ΠΡΠ° ΡΠ΅ΠΌΠ° Π½Π΅ ΡΠ°ΠΊ ΠΏΡΠΎΡΡΠ°, ΠΊΠ°ΠΊ ΠΊΠ°ΠΆΠ΅ΡΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠ΅Π΄ΡΠΏΡΠ΅ΠΆΠ΄Π°Π΅ΠΌ: Π² ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π»ΠΎΠ²ΡΡΠΊΠΈ, ΡΠ°ΠΊ ΡΡΠΎ Π±ΡΠ΄ΡΡΠ΅ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½Ρ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ .
Π‘ Π»ΡΠ±ΡΠΌ Π²ΠΎΠΏΡΠΎΡΠΎΠΌ ΠΏΠΎ ΡΡΠΎΠΉ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ ΡΠ΅ΠΌΠ°ΠΌ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡΡ Π² ΡΡΡΠ΄Π΅Π½ΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠ²ΠΈΡ . ΠΠ° ΠΊΠΎΡΠΎΡΠΊΠΈΠΉ ΡΡΠΎΠΊ ΠΌΡ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΅ΡΠΈΡΡ ΡΠ°ΠΌΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ ΠΈ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Ρ Π·Π°Π΄Π°Π½ΠΈΡΠΌΠΈ, Π΄Π°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Π²Ρ Π½ΠΈΠΊΠΎΠ³Π΄Π° ΡΠ°Π½ΡΡΠ΅ Π½Π΅ Π·Π°Π½ΠΈΠΌΠ°Π»ΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ .
1 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Π±ΡΠ΅Π²Π½ΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ Ρ | |
2 | ΠΡΠ΅Π½ΠΈΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» | ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° x ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ x | |
3 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | 92)||
21 | ΠΡΠ΅Π½ΠΈΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» | ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» ΠΎΡ 0 Π΄ΠΎ 1 ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ ΠΈΠ· 1+7x ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ x | |
22 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Π³ΡΠ΅Ρ (2x) | |
23 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | 9(3x) ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ x||
41 | ΠΡΠ΅Π½ΠΈΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» | ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» ΠΎΡ cos(2x) ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ x | |
42 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | 1/(ΠΊΠΎΡΠ΅Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΈΠ· Ρ ) | |
43 | ΠΡΠ΅Π½ΠΊΠ° ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° 9Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ | ||
45 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Ρ /2 | |
46 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | -cos(x) | |
47 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Π³ΡΠ΅Ρ (3x) | 92+1|
68 | ΠΡΠ΅Π½ΠΈΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» | ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» ΠΎΡ sin(x) ΠΏΠΎ x | |
69 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΈΠ½ΡΡ(Ρ ) | |
70 | ΠΡΠ΅Π½ΠΈΡΡ ΠΏΡΠ΅Π΄Π΅Π» | ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅, ΠΊΠΎΠ³Π΄Π° x ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°Π΅ΡΡΡ ΠΊ 0 ΠΈΠ· (sin(x))/x 92 ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Ρ | |
85 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Π»ΠΎΠ³ Ρ | |
86 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Π°ΡΠΊΡΠ°Π½(Ρ ) | |
87 | ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ — d/dx | Π±ΡΠ΅Π²Π½ΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ 5Ρ 92 |
Wolfram|Alpha ΠΡΠΈΠΌΠ΅ΡΡ: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅
ΠΠ³ΠΎ! Wolfram|Alpha Π½Π΅ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π±Π΅Π· JavaScript.
ΠΠΎΠΆΠ°Π»ΡΠΉΡΡΠ°, Π²ΠΊΠ»ΡΡΠΈΡΠ΅ JavaScript. ΠΡΠ»ΠΈ Π²Ρ Π½Π΅ Π·Π½Π°Π΅ΡΠ΅, ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ ΠΈΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π·Π΄Π΅ΡΡ. ΠΠ°ΠΊ ΡΠΎΠ»ΡΠΊΠΎ Π²Ρ ΡΡΠΎ ΡΠ΄Π΅Π»Π°Π΅ΡΠ΅, ΠΎΠ±Π½ΠΎΠ²ΠΈΡΠ΅ ΡΡΡ ΡΡΡΠ°Π½ΠΈΡΡ, ΡΡΠΎΠ±Ρ Π½Π°ΡΠ°ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Wolfram|Alpha.
ΠΡΠΈΠΌΠ΅ΡΡ Π΄Π»Ρ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²Π΄ΠΎΠ»Ρ ΠΊΡΠΈΠ²ΠΎΠΉ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Wolfram|Alpha β ΠΎΡΠ»ΠΈΡΠ½ΡΠΉ ΡΠ΅ΡΡΡΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ , Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ , ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ , ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ Π΄ΡΡΠ³ΠΈΡ ΡΠΈΠΏΠΎΠ² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ, Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΠΎΠ±Π»Π°ΡΡΡΡ . 94(Ai(t)) ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°, ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, t , Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΠΎΠ½Π΅Ρ,ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ°, ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ°, — ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ, ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ Π±Π°Π·Π°, t , ΠΠ°Π·ΠΎΠ²Π°Ρ ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ,ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ°, 2 , ΠΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ° ΠΠΎΠ½Π΅Ρ , Power End , exponent End , Exponential End , function End , ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Endd2dt2Β β -t2
Π§Π°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ°ΡΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠ΅ ΡΠ°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅.
Leave A Comment