2

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ e x 2x 3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ e Π² стСпСни x ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡ отыскания ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎΠ± отыскании ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρƒ самых простых (ΠΈ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ простых) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΏΡ€Π΅Π΄Π΅Π»Π° ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° появились Ρ‚Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌΠΈ Π½Π° Π½ΠΈΠ²Π΅ нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€ΡƒΠ΄ΠΈΠ»ΠΈΡΡŒ Исаак ΠΡŒΡŽΡ‚ΠΎΠ½ (1643-1727) ΠΈ Π“ΠΎΡ‚Ρ„Ρ€ΠΈΠ΄ Π’ΠΈΠ»ΡŒΠ³Π΅Π»ΡŒΠΌ Π›Π΅ΠΉΠ±Π½ΠΈΡ† (1646-1716).

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² нашС врСмя, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ любой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π΅ Π½Π°Π΄ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ упомянутый Π²Ρ‹ΡˆΠ΅ ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Π° Π½ΡƒΠΆΠ½ΠΎ лишь Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌΠΈ диффСрСнцирования. Для нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ , Π½Π°Π΄ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ ΡˆΡ‚Ρ€ΠΈΡ…Π° Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π½Π° ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ простыС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΈΠΌΠΈ дСйствиями (ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, сумма, частноС)

связаны эти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Π°Π»Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… произвСдСния, суммы ΠΈ частного — Π² ΠΏΡ€Π°Π²ΠΈΠ»Π°Ρ… диффСрСнцирования. Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования Π΄Π°Π½Ρ‹ послС ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ².

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Из ΠΏΡ€Π°Π²ΠΈΠ» диффСрСнцирования выясняСм, Ρ‡Ρ‚ΠΎ производная суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΅ΡΡ‚ΡŒ сумма ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚. Π΅.

Из Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… выясняСм, Ρ‡Ρ‚ΠΎ производная «ΠΈΠΊΡΠ°» Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π° производная синуса — косинусу. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ эти значСния Π² сумму ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡƒΡŽ условиСм Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ суммы, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ слагаСмоС с постоянным ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΌ, Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ вынСсти Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

Если ΠΏΠΎΠΊΠ° Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ вопросы, ΠΎΡ‚ΠΊΡƒΠ΄Π° Ρ‡Ρ‚ΠΎ бСрётся, ΠΎΠ½ΠΈ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΡ€ΠΎΡΡΠ½ΡΡŽΡ‚ΡΡ послС ознакомлСния с Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΌΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌΠΈ диффСрСнцирования. К Π½ΠΈΠΌ ΠΌΡ‹ ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ прямо сСйчас.

Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ константы (числа). Π›ΡŽΠ±ΠΎΠ³ΠΎ числа (1, 2, 5, 200…), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΅ΡΡ‚ΡŒ Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ВсСгда Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ трСбуСтся ΠΎΡ‡Π΅Π½ΡŒ часто
2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Π§Π°Ρ‰Π΅ всСго «ΠΈΠΊΡΠ°». ВсСгда Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π½Π°Π΄ΠΎΠ»Π³ΠΎ
3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ стСпСни. Π’ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π½Π΅ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ.
4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни -1
5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня
6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ синуса
7. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ косинуса
8. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ тангСнса
9. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ котангСнса
10. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арксинуса
11. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арккосинуса
12. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арктангСнса
13. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арккотангСнса
14. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°
15. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ логарифмичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
16. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ экспонСнты
17. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы ΠΈΠ»ΠΈ разности
2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния
2a. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ выраТСния, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ
3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ частного
4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ 1. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ , Ρ‚ΠΎ Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ

Ρ‚.Π΅. производная алгСбраичСской суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° алгСбраичСской суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

БлСдствиС. Если Π΄Π²Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Π½Π° постоянноС слагаСмоС, Ρ‚ΠΎ ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹

, Ρ‚.Π΅.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ 2. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ , Ρ‚ΠΎ Π² Ρ‚ΠΎ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎ ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅

ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ

Ρ‚.Π΅. производная произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠΉ.

БлСдствиС 1. ΠŸΠΎΡΡ‚ΠΎΡΠ½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π½ΠΎΡΠΈΡ‚ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ :

БлСдствиС 2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· сомноТитСлСй Π½Π° всС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅.

НапримСр, для Ρ‚Ρ€Ρ‘Ρ… ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ 3. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅

ΠΈ , Ρ‚ΠΎ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎ ΠΈ ΠΈΡ… частноС u/v , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ

Ρ‚.Π΅. производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ знамСнатСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ числитСля ΠΈ числитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ знамСнатСля, Π° Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΡ€Π΅ΠΆΠ½Π΅Π³ΠΎ числитСля.

Π“Π΄Π΅ Ρ‡Ρ‚ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… страницах

ΠŸΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ произвСдСния ΠΈ частного Π² Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡Π°Ρ… всСгда трСбуСтся ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ сразу нСсколько ΠΏΡ€Π°Π²ΠΈΠ» диффСрСнцирования, поэтому большС ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° эти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ — Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния ΠΈ частного Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ »

.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π½Π΅ ΠΏΡƒΡ‚Π°Ρ‚ΡŒ константу (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, число) ΠΊΠ°ΠΊ слагаСмоС Π² суммС ΠΈ ΠΊΠ°ΠΊ постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ! Π’ случаС слагаСмого Π΅Ρ‘ производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Π° Π² случаС постоянного мноТитСля ΠΎΠ½Π° выносится Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. Π­Ρ‚ΠΎ типичная ошибка, которая встрСчаСтся Π½Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ этапС изучСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π½ΠΎ ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΠΆΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΎΠ΄Π½ΠΎ- двухсоставных ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² срСдний студСнт этой ошибки ΡƒΠΆΠ΅ Π½Π΅ Π΄Π΅Π»Π°Π΅Ρ‚.

А Ссли ΠΏΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ произвСдСния ΠΈΠ»ΠΈ частного Ρƒ вас появилось слагаСмоС u «v , Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ u — число, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 2 ΠΈΠ»ΠΈ 5, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ константа, Ρ‚ΠΎ производная этого числа Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, всё слагаСмоС Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Ρ‚Π°ΠΊΠΎΠΉ случай Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 10).

Другая частая ошибка — мСханичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ простой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ посвящСна ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Π°Ρ ΡΡ‚Π°Ρ‚ΡŒΡ. Но сначала Π±ΡƒΠ΄Π΅ΠΌ ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

По Ρ…ΠΎΠ΄Ρƒ Π½Π΅ ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ Π±Π΅Π· ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. Для этого ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ Π² Π½ΠΎΠ²Ρ‹Ρ… ΠΎΠΊΠ½Π°Ρ… пособия ДСйствия со стСпСнями ΠΈ корнями ΠΈ ДСйствия с дробями .

Если Π’Ρ‹ ΠΈΡ‰Π΅Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ со стСпСнями ΠΈ корнями, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π²Ρ€ΠΎΠ΄Π΅ , Ρ‚ΠΎ слСдуйтС Π½Π° занятиС «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Ρ€ΠΎΠ±Π΅ΠΉ со стСпСнями ΠΈ корнями «.

Если ΠΆΠ΅ ΠΏΠ΅Ρ€Π΅Π΄ Π’Π°ΠΌΠΈ Π·Π°Π΄Π°Ρ‡Π° Π²Ρ€ΠΎΠ΄Π΅ , Ρ‚ΠΎ Π’Π°ΠΌ Π½Π° занятиС «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ».

ΠŸΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ — ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ части выраТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: всё Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ прСдставляСт ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, Π° Π΅Π³ΠΎ сомноТитСли — суммы, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄Π½ΠΎ ΠΈΠ· слагаСмых содСрТит постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования произвСдСния: производная произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠΉ:

Π”Π°Π»Π΅Π΅ примСняСм ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования суммы: производная алгСбраичСской суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° алгСбраичСской суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’ нашСм случаС Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ суммС Π²Ρ‚ΠΎΡ€ΠΎΠ΅ слагаСмоС со Π·Π½Π°ΠΊΠΎΠΌ минус. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ суммС Π²ΠΈΠ΄ΠΈΠΌ ΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ, производная ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, ΠΈ константу (число), производная ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π˜Ρ‚Π°ΠΊ, «ΠΈΠΊΡ» Ρƒ нас прСвращаСтся Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ, Π° минус 5 — Π² ноль. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ «ΠΈΠΊΡ» ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ Π½Π° 2, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π΄Π²ΠΎΠΉΠΊΡƒ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° Ρ‚Ρƒ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ «ΠΈΠΊΡΠ°». ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ значСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π² сумму ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡƒΡŽ условиСм Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ всСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. ΠžΡ‚ нас трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ частного. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ диффСрСнцирования частного: производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ знамСнатСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ числитСля ΠΈ числитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ знамСнатСля, Π° Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΡ€Π΅ΠΆΠ½Π΅Π³ΠΎ числитСля. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ сомноТитСлСй Π² числитСлС ΠΌΡ‹ ΡƒΠΆΠ΅ нашли Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 2. НС Π·Π°Π±ΡƒΠ΄Π΅ΠΌ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ сомноТитСлСм Π² числитСлС Π² Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ бСрётся со Π·Π½Π°ΠΊΠΎΠΌ минус:

Если Π’Ρ‹ ΠΈΡ‰Π΅Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Π΄ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π³Π΄Π΅ сплошноС Π½Π°Π³Ρ€ΠΎΠΌΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈ стСпСнСй, ΠΊΠ°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, , Ρ‚ΠΎ Π΄ΠΎΠ±Ρ€ΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° занятиС

«ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Ρ€ΠΎΠ±Π΅ΠΉ со стСпСнями ΠΈ корнями» .

Если ΠΆΠ΅ Π’Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ большС ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… синусов, косинусов, тангСнсов ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π²Ρ€ΠΎΠ΄Π΅ , Ρ‚ΠΎ Π’Π°ΠΌ Π½Π° ΡƒΡ€ΠΎΠΊ «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ» .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· сомноТитСлСй ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… — ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΡ‹ ознакомились Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. По ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ диффСрСнцирования произвСдСния ΠΈ Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄ΠΈΠΌ частноС, Π΄Π΅Π»ΠΈΠΌΠΎΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ — ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. По ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ диффСрСнцирования частного, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠ»ΠΈ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 4, ΠΈ Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ Π΄Ρ€ΠΎΠ±ΠΈ Π² числитСлС, ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π½Π° .

ВычислСниС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ — ΠΎΠ΄Π½Π° ΠΈΠ· самых Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π² Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ исчислСнии. НиТС приводится Ρ‚Π°Π±Π»ΠΈΡ†Π° нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π‘ΠΎΠ»Π΅Π΅ слоТныС ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования смотритС Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… ΡƒΡ€ΠΎΠΊΠ°Ρ…:
  • Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ логарифмичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ΠΊΠ°ΠΊ справочныС значСния. Они ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π·Π°Π΄Π°Ρ‡. На ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅, Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° «ΡˆΠΏΠ°Ρ€Π³Π°Π»ΠΊΠ°» основных случаСв нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² понятном для примСнСния Π²ΠΈΠ΄Π΅, рядом с Π½ΠΈΠΌ Π΄Π°Π½Ρ‹ пояснСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ случая.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ числа Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ
с´ = 0
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
5Β΄ = 0

ПояснСниС :
ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ число Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ мСняСтся Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях — ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ измСнСния всСгда Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅
xΒ΄ = 1

ПояснСниС :
ΠŸΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° (Ρ…) Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° вычислСний) увСличиваСтся Π½Π° эту ΠΆΠ΅ ΡΠ°ΠΌΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½Π° скорости измСнСния значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°.

3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ мноТитСля Ρ€Π°Π²Π½Π° этому ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŽ
сx´ = с
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(3x)Β΄ = 3
(2x)Β΄ = 2
ПояснСниС :
Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС, ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ… ) Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ (y) растСт Π² с Ρ€Π°Π·. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ скорости измСнСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ с .

ΠžΡ‚ΠΊΡƒΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ
(cx + b)» = c
Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=kx+b Ρ€Π°Π²Π΅Π½ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΌΡƒ коэффициСнту Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой (k).


4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Ρ€Π°Π²Π½Π° частному этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊ Π΅Π΅ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ
|x|» = x / |x| ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Ρ… β‰  0
ПояснСниС :
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ производная ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ (см. Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 2) Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Ρ‚ΠΎ производная модуля отличаСтся лишь Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСняСтся Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ ΠΏΡ€ΠΈ пСрСсСчСнии Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |x| ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ Π² этом сами. ИмСнно Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ x / |x| . Когда x 0 — Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… значСниях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ… ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… — Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, возрастаСт, Π½ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ Π½Π° Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ числа этой стСпСни ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ
(x c)»= cx c-1 , ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ x c ΠΈ сx c-1 ,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π° с β‰  0
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(x 2)» = 2x
(x 3)» = 3x 2
Для запоминания Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ :
БнСситС ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ «Π²Π½ΠΈΠ·» ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚Π΅ саму ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ. НапримСр, для x 2 — Π΄Π²ΠΎΠΉΠΊΠ° оказалась Π²ΠΏΠ΅Ρ€Π΅Π΄ΠΈ икса, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½Π°Ρ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ (2-1=1) просто Π΄Π°Π»Π° Π½Π°ΠΌ 2Ρ…. Π’ΠΎ ΠΆΠ΅ самоС ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ для x 3 — Ρ‚Ρ€ΠΎΠΉΠΊΡƒ «ΡΠΏΡƒΡΠΊΠ°Π΅ΠΌ Π²Π½ΠΈΠ·», ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅ΠΌ Π΅Π΅ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΈ вмСсто ΠΊΡƒΠ±Π° ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 3x 2 . НСмного «Π½Π΅ Π½Π°ΡƒΡ‡Π½ΠΎ», Π½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ просто Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ.

6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Ρ€ΠΎΠ±ΠΈ 1/Ρ…
(1/Ρ…)» = — 1 / x 2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Ρ€ΠΎΠ±ΡŒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ
(1/x)» = (x -1)» , Ρ‚ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π° 5 Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…
(x -1)» = -1x -2 = — 1 / Ρ… 2

7. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Ρ€ΠΎΠ±ΠΈ с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ стСпСни Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅
(1 / x c)» = — c / x c+1
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(1 / x 2)» = — 2 / x 3

8. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ корня (производная ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΊΠΎΡ€Π½Π΅ΠΌ)
(√x)» = 1 / (2√x) ΠΈΠ»ΠΈ 1/2 Ρ… -1/2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(√x)» = (Ρ… 1/2)» Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π° 5
(Ρ… 1/2)» = 1/2 Ρ… -1/2 = 1 / (2βˆšΡ…)

9. nx. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π²Ρ‹ΡΡˆΠΈΡ… порядков.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ экспонСнты Ρ€Π°Π²Π½Π° самой экспонСнтС (производная e Π² стСпСни x Ρ€Π°Π²Π½Π° e Π² стСпСни x):
(1) (e x )β€² = e x .

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с основаниСм стСпСни a Ρ€Π°Π²Π½Π° самой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΎΡ‚ a :
(2) .

Π’Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ экспонСнты, e Π² стСпСни x

ЭкспонСнта — это ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ основаниС стСпСни Ρ€Π°Π²Π½ΠΎ числу e , ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ являСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ:
.
Π—Π΄Π΅ΡΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ числом. Π”Π°Π»Π΅Π΅ ΠΌΡ‹ Π²Ρ‹Π²ΠΎΠ΄ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (1) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ экспонСнты.

Π’Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ экспонСнты

Рассмотрим экспонСнту, e Π² стСпСни x :
y = e x .
Π­Ρ‚Π° функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх . НайдСм Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x . По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, производная являСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ:
(3) .

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ свСсти Π΅Π³ΠΎ ΠΊ извСстным матСматичСским свойствам ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ. Для этого Π½Π°ΠΌ понадобятся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„Π°ΠΊΡ‚Ρ‹:
А) Бвойство экспонСнты :
(4) ;
Π‘) Бвойство Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° :
(5) ;
Π’) ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΈ свойство ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:
(6) .
Π—Π΄Π΅ΡΡŒ — нСкоторая функция, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ сущСствуСт ΠΏΡ€Π΅Π΄Π΅Π» ΠΈ этот ΠΏΡ€Π΅Π΄Π΅Π» ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½.
Π“) Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°:
(7) .

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ эти Ρ„Π°ΠΊΡ‚Ρ‹ ΠΊ Π½Π°ΡˆΠ΅ΠΌΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ (3). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство (4):
;
.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ подстановку . Π’ΠΎΠ³Π΄Π° ; .
Π’ силу нСпрСрывности экспонСнты,
.
ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΠΈ , . Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:
.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ подстановку . Π’ΠΎΠ³Π΄Π° . ΠŸΡ€ΠΈ , . И ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ:
.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ свойство Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° (5):
. Π’ΠΎΠ³Π΄Π°
.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ свойство (6). ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ сущСствуСт ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π΅Π» ΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π΅Π½, Ρ‚ΠΎ:
.
Π—Π΄Π΅ΡΡŒ ΠΌΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ воспользовались Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ (7). Π’ΠΎΠ³Π΄Π°
.

Π’Π΅ΠΌ самым ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (1) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ экспонСнты.

Π’Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹Π²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (2) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с основаниСм стСпСни a . ΠœΡ‹ считаСм, Ρ‡Ρ‚ΠΎ ΠΈ . Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция
(8)
ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх .

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (8). Для этого Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ свойствами ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° .
;
.
Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (8) ΠΊ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ:
.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков ΠΎΡ‚ e Π² стСпСни x

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков. Π‘Π½Π°Ρ‡Π°Π»Π° рассмотрим экспонСнту:
(14) .
(1) .

ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ производная ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (14) Ρ€Π°Π²Π½Π° самой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (14). ДиффСрСнцируя (1), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка:
;
.

ΠžΡ‚ΡΡŽΠ΄Π° Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ производная n-Π³ΠΎ порядка Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π²Π½Π° исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:
.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассмотрим ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ с основаниСм стСпСни a :
.
ΠœΡ‹ нашли Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка:
(15) .

ДиффСрСнцируя (15), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка:
;
.

ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡŽ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ производная n-Π³ΠΎ порядка ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:
.

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ Π²Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса — sin(x). ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ sin 2x, синуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ ΠΈ ΠΊΡƒΠ±Π΅. Π’Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса n-Π³ΠΎ порядка.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΎΡ‚ синуса x Ρ€Π°Π²Π½Π° косинусу x:
(sin x)β€² = cos x .

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ

Для Π²Ρ‹Π²ΠΎΠ΄Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса, ΠΌΡ‹ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ этот ΠΏΡ€Π΅Π΄Π΅Π», Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ свСсти Π΅Π³ΠΎ ΠΊ извСстным Π·Π°ΠΊΠΎΠ½Π°ΠΌ, свойствам ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ. Для этого Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ свойства.
1) Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°:
(1) ;
2) ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ косинус:
(2) ;
3) ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ . Нам понадобится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:
(3) ;
4) Бвойство ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ²:
Если ΠΈ , Ρ‚ΠΎ
(4) .

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ эти ΠΏΡ€Π°Π²ΠΈΠ»Π° ΠΊ Π½Π°ΡˆΠ΅ΠΌΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ алгСбраичСскоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅
.
Для этого ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ
(3) .
Π’ нашСм случаС
; . Π’ΠΎΠ³Π΄Π°
;
;
;
.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ сдСлаСм подстановку . ΠŸΡ€ΠΈ , . ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π΅Π» (1):
.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ подстановку ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство нСпрСрывности (2):
.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹, вычислСнныС Π²Ρ‹ΡˆΠ΅, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‚ΠΎ примСняСм свойство (4):

.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Рассмотрим простыС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, содСрТащих синус. ΠœΡ‹ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:
y = sin 2x; y = sin 2 x ΠΈ y = sin 3 x .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ sin 2x .

РСшСниС

Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ самой простой части:
(2x)β€² = 2(x)β€² = 2 Β· 1 = 2.
ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ .
.
Π—Π΄Π΅ΡΡŒ .

ΠžΡ‚Π²Π΅Ρ‚

(sin 2x)β€² = 2 cos 2x.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ синуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅:
y = sin 2 x .

РСшСниС

ΠŸΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π² Π±ΠΎΠ»Π΅Π΅ понятном Π²ΠΈΠ΄Π΅:
.
НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ самой простой части:
.
ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

.
Π—Π΄Π΅ΡΡŒ .

МоТно ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΎΠ΄Π½Ρƒ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ» Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ΠΎΠ³Π΄Π°
.

ΠžΡ‚Π²Π΅Ρ‚

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ синуса Π² ΠΊΡƒΠ±Π΅:
y = sin 3 x .

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ sin x ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· синус ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:
.

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ :

.
Π—Π΄Π΅ΡΡŒ .

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ sin x ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π΅Π³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π° . Π’ΠΎΠ³Π΄Π° производная n-Π³ΠΎ порядка ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:
(5) .

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ это, примСняя ΠΌΠ΅Ρ‚ΠΎΠ΄ матСматичСской ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ.

ΠœΡ‹ ΡƒΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ , Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (5) справСдлива.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (5) справСдлива ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ . Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ· этого слСдуСт, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (5) выполняСтся для .

Π’Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (5) ΠΏΡ€ΠΈ :
.
Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, примСняя ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

.
Π—Π΄Π΅ΡΡŒ .
Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ нашли:
.
Если ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ , Ρ‚ΠΎ эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄ (5).

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

Π Π΅ΡˆΠ°Ρ‚ΡŒ физичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… Π΅Π΅ вычислСния. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ — ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… понятий матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°. Π­Ρ‚ΠΎΠΉ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅ΠΌΠ΅ ΠΌΡ‹ ΠΈ Ρ€Π΅ΡˆΠΈΠ»ΠΈ ΠΏΠΎΡΠ²ΡΡ‚ΠΈΡ‚ΡŒ сСгодняшнюю ΡΡ‚Π°Ρ‚ΡŒΡŽ. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ производная, ΠΊΠ°ΠΊΠΎΠ² Π΅Π΅ физичСский ΠΈ гСомСтричСский смысл, ΠΊΠ°ΠΊ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ? ВсС эти вопросы ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ Π² ΠΎΠ΄ΠΈΠ½: ΠΊΠ°ΠΊ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ?

ГСомСтричСский ΠΈ физичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

ΠŸΡƒΡΡ‚ΡŒ Π΅ΡΡ‚ΡŒ функция f(x) , заданная Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a, b) . Π’ΠΎΡ‡ΠΊΠΈ Ρ… ΠΈ Ρ…0 ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ этому ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ. ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ… мСняСтся ΠΈ сама функция. ИзмСнСниС Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° – Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ…-Ρ…0 . Π­Ρ‚Π° Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ записываСтся ΠΊΠ°ΠΊ Π΄Π΅Π»ΡŒΡ‚Π° икс ΠΈ называСтся ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ИзмСнСниСм ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ называСтся Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ – ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΊΠΎΠ³Π΄Π° послСднСС стрСмится ΠΊ Π½ΡƒΠ»ΡŽ.

Π˜Π½Π°Ρ‡Π΅ это ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

Какой смысл Π² Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°? А Π²ΠΎΡ‚ ΠΊΠ°ΠΊΠΎΠΉ:

производная ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ осью OX ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.


ЀизичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: производная ΠΏΡƒΡ‚ΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ€Π°Π²Π½Π° скорости прямолинСйного двиТСния.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π΅Ρ‰Π΅ со ΡˆΠΊΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Ρ€Π΅ΠΌΠ΅Π½ всСм извСстно, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это частноС ΠΏΡƒΡ‚ΠΈ x=f(t) ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t . БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t0 Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π»:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠ΅: выносим константу

ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρƒ ΠΌΠΎΠΆΠ½ΠΎ вынСсти Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ — это Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²ΠΎΠ·ΡŒΠΌΠΈΡ‚Π΅ Π·Π° ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ — Ссли ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π°ΠΉΡ‚Π΅ .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€. Вычислим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅: производная суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’ΠΎ ΠΆΠ΅ самоС справСдливо ΠΈ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ разности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

НС Π±ΡƒΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ этой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, Π° Π»ΡƒΡ‡ΡˆΠ΅ рассмотрим практичСский ΠΏΡ€ΠΈΠΌΠ΅Ρ€.

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅: производная произвСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

РСшСниС:

Π—Π΄Π΅ΡΡŒ Π²Π°ΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

Π’ Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΡ‹ встрСчаСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ – 8Ρ… Π² пятой стСпСни. Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ‚Π°ΠΊΠΎΠ³ΠΎ выраТСния сначала считаСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ внСшнСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ нСпосрСдствСнно самого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ΅: производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

ΠœΡ‹ ΠΏΠΎΡΡ‚Π°Ρ€Π°Π»ΠΈΡΡŒ Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² с нуля. Π­Ρ‚Π° Ρ‚Π΅ΠΌΠ° Π½Π΅ Ρ‚Π°ΠΊ проста, ΠΊΠ°ΠΊ каТСтся, поэтому ΠΏΡ€Π΅Π΄ΡƒΠΏΡ€Π΅ΠΆΠ΄Π°Π΅ΠΌ: Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π±ΡƒΠ΄ΡŒΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

Π‘ Π»ΡŽΠ±Ρ‹ΠΌ вопросом ΠΏΠΎ этой ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ‚Π΅ΠΌΠ°ΠΌ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ Π² студСнчСский сСрвис . Π—Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ срок ΠΌΡ‹ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ°ΠΌΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ с заданиями, Π΄Π°ΠΆΠ΅ Ссли Π²Ρ‹ Π½ΠΈΠΊΠΎΠ³Π΄Π° Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ занимались вычислСниСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

ΠœΡΡ‚ΡƒΡΠΉ | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

92) 9(3x) ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ x 92+1
1 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Π±Ρ€Π΅Π²Π½ΠΎ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ…
2 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° x ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ x
3 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx
21 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ 0 Π΄ΠΎ 1 кубичСского корня ΠΈΠ· 1+7x ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ x
22 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Π³Ρ€Π΅Ρ…(2x)
23 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx
41 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ cos(2x) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ x
42 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx 1/(ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΈΠ· Ρ…)
43 ΠžΡ†Π΅Π½ΠΊΠ° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° 9Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ
45 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Ρ…/2
46 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx -cos(x)
47 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Π³Ρ€Π΅Ρ…(3x)
68 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ sin(x) ΠΏΠΎ x
69 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ синус(Ρ…)
70 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅, ΠΊΠΎΠ³Π΄Π° x приблиТаСтся ΠΊ 0 ΠΈΠ· (sin(x))/x 92 ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ…
85 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Π»ΠΎΠ³ Ρ…
86 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Π°Ρ€ΠΊΡ‚Π°Π½(Ρ…)
87 Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ — d/dx Π±Ρ€Π΅Π²Π½ΠΎ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ 5Ρ…92

Wolfram|Alpha ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅

Ого! Wolfram|Alpha Π½Π΅ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π±Π΅Π· JavaScript.

ΠŸΠΎΠΆΠ°Π»ΡƒΠΉΡΡ‚Π°, Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅ JavaScript. Если Π²Ρ‹ Π½Π΅ Π·Π½Π°Π΅Ρ‚Π΅, ΠΊΠ°ΠΊ это ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ инструкции здСсь. Как Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Ρ‹ это сдСлаСтС, ΠΎΠ±Π½ΠΎΠ²ΠΈΡ‚Π΅ эту страницу, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ‡Π°Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Wolfram|Alpha.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ для

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΈΠ·ΠΌΠ΅Ρ€ΡΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ»ΠΈ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Wolfram|Alpha β€” ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΉ рСсурс для опрСдСлСния диффСрСнцируСмости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ для вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… тригономСтричСских, логарифмичСских, ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ…, ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² матСматичСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. ДиффСрСнциация ΠΈΠΌΠ΅Π΅Ρ‚ мноТСство ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… областях. 94(Ai(t)) ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ производная Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ нСзависимая пСрСмСнная, t , нСзависимая пСрСмСнная ΠšΠΎΠ½Π΅Ρ†,ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ функция, ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ экспонСнта, ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ экспонСнта, — ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ, ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ Π±Π°Π·Π°, t , Базовая конСчная,ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ экспонСнта, 2 , ЭкспонСнта ΠšΠΎΠ½Π΅Ρ† , Power End , exponent End , Exponential End , function End , ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка Endd2dt2Β β…‡-t2

ЧастныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅

НайдитС Ρ‡Π°ΡΡ‚Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ вычислитС ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Π΅ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅.