Линейная функция

•Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
•Графиком линейной функции является прямая.

1.Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:

2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
• если k>0, то функция y=kx+b возрастает
• если k

Коэффициент b показывает смещение графика функции вдоль оси OY:
• если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
• если b

На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.

Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3

На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций y=2x+3; y=2x; y=2x-3

Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

• График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
• График функции y=2x (b=0) пересекает ось OY в точке (0;0) — начале координат.
• График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
Если k0, то график функции y=kx+b имеет вид:

Если k>0 и b>0, то график функции y=kx+b имеет вид:

Если k>0 и b, то график функции y=kx+b имеет вид:

Если k, то график функции y=kx+b имеет вид:

Если k=0, то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b Если b=0, то график функции y=kx (прямая пропорциональность) проходит через начало координат:

3.Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3 выглядит так:
Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.

4.

Условие параллельности двух прямых:

График функции y=k1x+b1 параллелен графику функции y=k2x+b2, если k1=k2

5.Условие перепендикулярности двух прямых:

График функции y=k1x+b1 перепендикулярен графику функции y=k2x+b2, если k1*k2=-1 или k1=-1/k2

6.Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

www.tofmal.ru

ВЛИЯНИЕ КОЭФФИЦИЕНТОВ а, b и с НА РАСПОЛОЖЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ

У р о к 15.
Влияние коэффициентов а, b и с на расположение
графика квадратичной функции

Цели: продолжить формирование умения строить график квадратичной функции и перечислять ее свойства; выявить влияние коэффициентов а, b и с на расположение графика квадратичной функции.

Ход урока

I. Организационный момент.

II. Устная работа.

Определите, график какой функции изображен на рисунке:

у = х2 – 2х – 1;

у = –2х2 – 8х;

у = х2 – 4х – 1;

у = 2х2 + 8х + 7;

у = 2х2 – 1.

б)

у = х2 – 2х;

у = –х2 + 4х + 1;

у = –х2 – 4х + 1;

у = –х2 + 4х – 1;

у = –х2 + 2х

– 1.

III. Формирование умений и навыков.

Упражнения:

1. № 127 (а).

2. № 129.

Р е ш е н и е

Прямая у = 6х + b касается параболы у = х2 + 8, то есть имеет с ней только одну общую точку в том случае, когда уравнение 6х + b = х2 + 8 будет иметь единственное решение.

Это уравнение является квадратным, найдем его дискриминант:

х2 – 6х + 8 + b = 0;

D1 = 9 – (8 – b) = 1 + b;

D1 = 0, если 1 + b = 0, то есть b = –1.

О т в е т: b = –1.

3. Выявить влияние коэффициентов

а, b и с на расположение графика функции у = ах2 + + с.

Учащиеся обладают достаточными знаниями, чтобы выполнить это задание самостоятельно. Следует предложить им все полученные выводы занести в тетрадь, при этом выделив «основную» роль каждого из коэффициентов.

1) Коэффициент а влияет на направление ветвей параболы: при а > 0 – ветви направлены вверх, при а < 0 – вниз.

2) Коэффициент b влияет на расположение вершины параболы. При b = 0 вершина лежит на оси оу.

3) Коэффициент с показывает точку пересечения параболы с осью ОУ.

После этого можно привести пример, показывающий, что можно сказать о коэффициентах а, b

и с по графику функции.

Значение с можно назвать точно: поскольку график пересекает ось ОУ в точке (0; 1), то с = 1.

Коэффициент а можно сравнить с нулем: так как ветви параболы направлены вниз, то а < 0.

Знак коэффициента b можно узнать из формулы, определяющей абсциссу вершины параболы: т = , так как а < 0 и т = 1, то b> 0.

4. Определите, график какой функции изображен на рисунке, опираясь на значение коэффициентов а, b и с.

у = –х2 + 2х;

у = х2 + 2х + 2;

у = 2х2 – 3х – 2;

у = х2 – 2.

Р е ш е н и е

По изображенному графику делаем следующие выводы о коэффициентах а, b и с:

а > 0, так как ветви параболы направлены вверх;

b ≠ 0, так как вершина параболы не лежит на оси ОУ;

с = –2, так как парабола пересекает ось ординат в точке (0; –2).

Всем этим условиям удовлетворяет только функция у = 2х2 – 3х – 2.

у = х2 – 2х;

у = –2х2 + х + 3;

у = –3

х2х – 1;

у = –2,7х2 – 2х.

Р е ш е н и е

По изображенному графику делаем следующие выводы о коэффициентах а, b и с:

а < 0, так как ветви параболы направлены вниз;

b ≠ 0, так как вершина параболы не лежит на оси ОУ;

с = 0, так как парабола пересекает ось ОУ в точке (0; 0).

Всем этим условиям удовлетворяет только функция у = –2,7х2 – 2х.

5. По графику функции у = ах2 + + с определите знаки коэффициентов а, b и с:

а) б)

Р е ш е н и е

а) Ветви параболы направлены вверх, поэтому а > 0.

Парабола пересекает ось ординат в нижней полуплоскости, поэтому с < 0. Чтобы узнать знак коэффициента b воспользуемся формулой для нахождения абсциссы вершины параболы: т = . По графику видно, что т < 0, и мы определим, что а > 0. Поэтому b > 0.

б) Аналогично определяем знаки коэффициентов а, b и с:

а < 0, с > 0, b < 0.

Сильным в учебе учащимся можно дать дополнительно выполнить № 247.

Р е ш е н и е

у = х2 + рх + q.

а) По теореме Виета, известно, что если

х1 и х2 – корни уравнения х2 +
+ рх + q = 0 (то есть нули данной функции), то х1 · х2 = q и х1 + х2 = –р. Получаем, что q = 3 · 4 = 12 и р = –(3 + 4) = –7.

б) Точка пересечения параболы с осью ОУ даст значение параметра q, то есть q = 6. Если график функции пересекает ось ОХ в точке (2; 0), то число 2 является корнем уравнения х2 + рх + q = 0. Подставляя значение х = 2 в это уравнение, получим, что р = –5.

в) Своего наименьшего значения данная квадратичная функция достигает в вершине параболы, поэтому , откуда р = –12. По условию значение функции у = х2 – 12х + q в точке x = 6 равно 24. Подставляя x = 6 и у = 24 в данную функцию, находим, что q = 60.

IV. Проверочная работа.

В а р и а н т 1

1. Постройте график функции у = 2х2 + 4х – 6 и найдите, используя график:

а) нули функции;

б) промежутки, в которых у > 0 и y < 0;

в) промежутки возрастания и убывания функции;

г) наименьшее значение функции;

д) область значения функции.

2. Не строя график функции у = –х2 + 4х, найдите:

а) нули функции;

б) промежутки возрастания и убывания функции;

в) область значения функции.

3. По графику функции у = ах2 + + с определите знаки коэффициентов а, b и с:

В а р и а н т 2

1. Постройте график функции у = –х2 + 2х + 3 и найдите, используя график:

а) нули функции;

б) промежутки, в которых у > 0 и y < 0;

в) промежутки возрастания и убывания функции;

г) наибольшее значение функции;

д) область значения функции.

2. Не строя график функции у = 2х2 + 8х, найдите:

а) нули функции;

б) промежутки возрастания и убывания функции;

в) область значения функции.

3. По графику функции у = ах2 + + с определите знаки коэффициентов а, b и с:

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Опишите алгоритм построения квадратичной функции.

– Перечислите свойства функции у = ах2 + + с при а > 0 и при а < 0.

– Как влияют коэффициенты а, b и с на расположение графика квадратичной функции?

Домашнее задание: № 127 (б), № 128, № 248.

Д о п о л н и т е л ь н о: № 130.

infourok.ru

Знаки коэффициентов квадратного трехчлена

Знаки коэффициентов квадратного трехчлена.

В этой статье я расскажу, как по графику квадратичной функции найти знаки коэффициентов квадратного трехчлена.

Чтобы определить знаки коэффициентов квадратного трехчлена по графику квадратичной функции , нужно вспомнить теорему Виета.

Согласно теореме Виета, сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение равно свободному члену.

Квадратное уравнение называется приведенным, если его старший коэффициент равен единице.

Чтобы уравнение   стало приведенным, нужно обе части уравнения разделить на старший коэффициент. Получим приведенное уравнение . Для него справедливы соотношения:

И эти же соотношения справедливы для уравнения  

По графику квадратичной функции мы легко можем определить знак коэффициента   — если ветви параболы направлены вверх, то ,  а если вниз, то .

Также по графику легко определяются знаки корней (корни квадратного трехчлена   — это абсциссы точек пересечения графика функции  с осью абсцисс), а также знак корня с большим модулем.

Если оба корня положительны, то .

Если оба корня отрицательны, то .

Если корень с большим модулем положителен, то .

Если корень с большим модулем отрицателен, то .

Если корни имеют одинаковые знаки, то .

Если корни имеют разные знаки, то .

Во всех случаях, определив знак коэффициента  по направлению ветвей параболы, мы легко найдем знаки коэффициентов  и

Рассмотрим примеры.

1. Определить знаки коэффициентов квадратного трехчлена , если график функции   имеет вид:

1. Ветви параболы направлены вниз, следовательно, .

2. Корни имеют одинаковые знаки, следовательно, их произведение положительно: . Так как , следовательно, .

3. Оба корня отрицательны, следовательно,   их сумма отрицательна: . Так как , следовательно, .

Ответ: , , .

 

2. Определить знаки коэффициентов  квадратного трехчлена , если график функции   имеет вид:

1. Ветви параболы направлены вверх, следовательно, .

2. Корни имеют разные  знаки, следовательно, их произведение отрицательно: . Так как , следовательно, .

3. Корень с большим модулем положителен, следовательно,  сумма корней положительна: . Так как , следовательно, .

Ответ: , , .

Замечание: — ордината точки пересечения параболы с осью , поэтому знак можно определить сразу.

 

ege-ok.ru