(-x) относительно x 100 Вычислим интеграл интеграл 1/x относительно x

Перевод корней в степени и обратно: объяснение, примеры

Часто преобразование и упрощение математических выражений требует перехода от корней к степеням  и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

Переход от степеней с дробными показателями к корням

Допустим, мы имеем число с показателем степени в виде обыкновенной дроби — amn. Как записать такое выражение в виде корня?

Ответ вытекает из самого определения степени! 

Определение

Положительное число a в степени mn — это корень степени n из числа am.

amn=amn.

При этом, обязательно должно выполнятся условие:

a>0; m∈ℤ; n∈ℕ.

Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0:

0mn=0mn=0.

В соответствии с определением, степень amn можно представить в виде корня amn.

Например: 325=325, 123-34=123-34.

Однако, как уже было сказано, не следует забывать про условия: a > 0 ;   m ∈ ℤ ;   n ∈ ℕ .

Так, выражение -813 нельзя представить в виде -813, так как запись -813 попросту не имеет смысла — степень отрицательных чисел на определена.При этом, сам корень -813 имеет смысл.

Переход от  степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее — ОДЗ) исходных выражений в основании степени. 

Например, выражение x2+2x+1-412 можно представить в виде квадратного корня x2+2x+1-4.Выражение в степени x2+x·y·z-z3-73 переходит в выражение x2+x·y·z-z3-73 для всех x, y, z из ОДЗ данного выражения.

Как представить корень в виде степени?

Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

amn=amn

Опять же, переход очевиден для положительных чисел a. Например, 764=764, или27-53=27-53.

Для отрицательных a корни имеют смысл. Например -426, -23. Однако, представить эти корни в виде степеней  -426 и -213 нельзя.  

Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

Используя свойства степеней, можно выполнить преобразования  выражения -426.

-426=-12·426=426.

Так как 4>0, можно записать: 

426=426.

В случае с корнем нечетной степени из отрицательного числа, можно записать:

-a2m+1=-a2m+1.

Тогда выражение -23 примет вид:

-23=-23=-213.

Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.

 

Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением Amn в виде Amn. Поясним, что здесь имеется в виду. Например, выражение х-323, основываясь на равенстве из первого пункта, хочется представить в виде x-323. Такая замена возможна только при x-3≥0, а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула amn=amn не имеет смысла.

Таким образом, в рассмотренном примере преобразование вида Amn=Amn является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы Amn=Amn нередко возникают ошибки. 

Чтобы правильно перейти от корня Amn к степени Amn, необходимо соблюдать несколько пунктов:

  • В случае, если число m — целое и нечетное, а n — натуральное и четное, то формула  Amn=Amn справедлива на всей ОДЗ переменных.
  • Если m — целое и нечетное, а n — натуральное и нечетное,то выражение Amn можно заменить:
     — на Amn для всех значений переменных, при которых A≥0;
     — на —Amn для  для всех значений переменных, при которых A<0;
  • Если  m — целое и четное, а n — любое натуральное число, то Amn можно заменить на Amn.

Сведем все эти правила в таблицу и приведем несколько примеров их использования.

Вернемся к выражению х-323. Здесь m=2 — целое и четное число, а n=3 — натуральное число. Значит, выражение х-323 правильно будет записать в виде:

х-323=x-323.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Приведем еще один пример с корнями и степенями.

Пример. Перевод корня в степень

x+5-35=x+5-35, x>-5—x-5-35, x<-5

Обоснуем результаты, приведенные в таблице. Если число m — целое и нечетное, а n — натуральное и четное, для всех переменных из ОДЗ в выражении Amn значение A положительно или неотрицательно (при m>0). Именно поэтому  Amn=Amn.

Во втором варианте, когда  m — целое, положительное и нечетное, а n — натуральное и нечетное, значения Amn разделяются. Для переменных из ОДЗ, при которых A неотрицательно, Amn=Amn=Amn. Для переменных, при которых A отрицательно, получаем Amn=-Amn=-1m·Amn=-Amn=-Amn=-Amn.

Аналогично рассмотрим и следующий случай, когда m — целое и четное, а n — любое натуральное число. Если значение Aположительно или неотрицательно, то для таких значений переменных из ОДЗ Amn=Amn=Amn. Для отрицательных A получаем Amn=-Amn=-1m·Amn=Amn=Amn.

Таким образом, в третьем случае для всех переменных из ОДЗ можно записать Amn=Amn.

Как найти область определения функции

После этого экскурса в важную составную матанализа многие согласятся, что найти область определения функции ненамного сложнее, чем Московскую область на карте. Ведь Московскую область наугад, ткнув куда попало пальцем, тоже не найти. Во-первых, должна быть карта. Во-вторых, на карте нужно сначала найти Москву. Примерно так же и с областью определения функции.

Во-первых, нужно различать виды функций (корень, дробь, синус и др.). Во-вторых, решать уравнения и неравенства с учетом вида функции (например, на что нельзя делить, какое выражение не может быть под знаком корня и тому подобное).

Согласитесь, не так уж много и не так сложно.

Итак, чтобы находить области определения распространённых функций, порешаем уравнения и неравенства с одной переменной. А в конце урока обобщим понятие на уровне теории.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Приступаем к практике. На рисунке изображён график функции . Знаменатель дроби не может быть равен нулю, так как на нуль делить нельзя. Поэтому, приравнивая знаменатель нулю, получаем значение, не входящее в область определения функции: 1. То есть, область определения заданной функции — это все значения «икса» от минус бесконечности до единицы и от единицы до плюс бесконечности. Это хорошо видно на графике. Приведённый здесь пример функции относится к виду дробей. На уроке разберём решения всех распространённых видов функций.

Пример 0.

Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Нужно всего лишь решить неравенство

x — 5 ≥ 0,

так как для того, чтобы мы получили действительное значение игрека, подкоренное выражение должно быть больше или равно нулю. Получаем решение: область определения функции — все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).

На чертеже сверху — фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в «плюсовом» направлении штриховка продолжается бесконечно вместе с самой осью.

Постоянная (константа) определена при любых действительных значениях x, следовательно, данная функция определена на всём множестве R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[.

Пример 1. Найти область определения функции y = 2.

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение

f(x) = 2 определено при любых действительных значениях x, следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

В случае, когда функция задана формулой и n — натуральное число:

Пример 2. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно, то есть, если — 1 ≤ x ≤ 1. Следовательно, область определения данной функции — [- 1; 1].

Заштрихованная область числовой прямой на чертеже сверху — это область определения данной функции.

Область определения степенной функции с целым показателем степени

В случае, когда функция задана формулой :

если a — положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[;

если a — отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[, то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 3. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы — так же целого числа. Следовательно, область определения данной функции — вся числовая прямая, то есть ]- ∞; + ∞[.

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если — положительное, то областью определения функции является множество [0; + ∞[;

если — отрицательное, то областью определения функции является множество ]0; + ∞[.

Пример 4. Найти область определения функции .

Решение. Оба слагаемых в выражении функции — степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции — множество [0; + ∞[.

На чертеже сверху заштрихована часть числовой прямой от нуля (включительно) и больше, причём штриховка продолжается вместе с самой прямой до плюс бесконечности.

Пример 5. Найти область определения функции .

Решение. Дробный показатель степени данной степенной функции — отрицательный. Поэтому решим строгое неравенство, когда квадратный трёхчлен в скобках строго больше нуля::

.

Дикриминант получился отрицательный. Следовательно сопряжённое неравенству квадратное уравнение не имеет корней. А это значит, что квадратный трёхчлен ни при каких значениях «икса» не равен нулю. Таким образом, область определения данной функции — вся числовая ось, или, что то же самое — множество R действительных чисел, или, что то же самое — ]- ∞; + ∞[.

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[.

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[.

Найти область определения функции самостоятельно, а затем посмотреть решение


Область определения функции y = cos(x) — так же множество R действительных чисел.

Область определения функции y = tg(x) — множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x) — множество R действительных чисел, кроме чисел .

Пример 8. Найти область определения функции .

Решение. Внешняя функция — десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь — синус «икса». Поворачивая воображаемый циркуль по окружности, видим, что условие sin x > 0 нарушается при «иксе» равным нулю, «пи», два, умноженном на «пи» и вообще равным произведению числа «пи» и любого чётного или нечётного целого числа.

Таким образом, область определения данной функции задаётся выражением

,

где k — целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x) — множество [-1; 1].

Область определения функции y = arccos(x) — так же множество [-1; 1].

Область определения функции y = arctg(x) — множество R действительных чисел.

Область определения функции y = arcctg(x) — так же множество R действительных чисел.

Пример 9. Найти область определения функции .

Решение. Решим неравенство:

Таким образом, получаем область определения данной функции — отрезок [- 4; 4].

Пример 10. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение второго неравенства:

Таким образом, получаем область определения данной функции — отрезок [0; 1].

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x, при которых знаменатель дроби обращается в нуль.

Пример 11. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби, находим область определения данной функции — множество ]- ∞; — 2[ ∪ ]- 2 ;+ ∞[.

Пример 12. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[.

Пример 13. Найти область определения функции .

Решение. Область определения первого слагаемого — данной функции — множество R действительных чисел, второго слагаемого — все действительные числа, кроме -2 и 2 (получили, решая равенство нулю знаменателя, как в предыдущем примере). В этом случае область определения функции должна удовлетворять условиями определения обоих слагаемых. Следовательно, область определения данной функции — все x, кроме -2 и 2.

Пример 14. Найти область определения функции .

Решение. Решим уравнение:

Уравнение не имеет действительных корней. Но функция определена только на действительных числах. Таким образом, получаем область определения данной функции — вся числовая прямая или, что то же самое — множество R действительных чисел или, что то же самое — ]- ∞; + ∞[.

То есть, какое бы число мы не подставляли вместо «икса», знаменатель никогда не будет равен нулю.

Пример 15. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 0[ ∪ ]0 ; 1[ ∪ ]1 ;+ ∞[.

Пример 16. Найти область определения функции .

Решение. Кроме того, что знаменатель не может быть равным нулю, ещё и выражение под корнем не может быть отрицательным. Сначала решим уравнение:

График квадратичной функции под корнем представляет собой параболу, ветви которой направлены вверх. Как следует из решения квадратного уравнения, парабола пересекает ось Ox в точках 1 и 2. Между этими точками линия параболы находится ниже оси Ox, следовательно значения квадратичной функции между этими точками отрицательное. Таким образом, исходная функция не определена на отрезке [1; 2].

Найти область определения функции самостоятельно, а затем посмотреть решение


Если функция задана формулой вида y = kx + b, то область определения функции — множество R действительных чисел.

А теперь обобщим решения рассмотренных примеров. Каждой точке графика функции соответствуют:

  • определённое значение «икса» — аргумента функции;
  • определённое значение «игрека» — самой функции.
Верны следующие факты.
  • От аргумента — «икса» — вычисляется «игрек» — значения функции.
  • Область определения функции — это множества всех значений «икса», для которых существует, то есть может быть вычислен «игрек» — значение функции. Иначе говоря, множество значений аргумента, на котором «функция работает».

Весь раздел «Исследование функций»

Функция КОРЕНЬ — Служба поддержки Office

В этой статье описаны синтаксис формулы и использование функции КОРЕНЬ в Microsoft Excel.

Описание

Возвращает положительное значение квадратного корня.

Синтаксис

КОРЕНЬ(число)

Аргументы функции КОРЕНЬ описаны ниже.

Замечание

Если число отрицательное, то SQRT возвращает #NUM! значение ошибки #ЗНАЧ!.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

-16

Формула

Описание

Результат

=КОРЕНЬ(16)

Квадратный корень числа 16.

4

=КОРЕНЬ(A2)

Квадратный корень из -16. Так как число отрицательное, #NUM! возвращается сообщение об ошибке.

#ЧИСЛО!

=КОРЕНЬ(ABS(A2))

Старайтесь не #NUM! сначала с помощью функции ABS найдите абсолютное значение -16, а затем найдите квадратный корень.

4

Почему нельзя делить на ноль?

«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 — это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0 : 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0 : 0 = 1? Но ведь так можно взять любое число и получить 0 : 0 = 5, 0 : 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0 : 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Ответил: Александр Сергеев

ее график и свойства при k0

 

Рассмотрим функцию y=k/y. Графиком этой функции является линия, называемая в математике гиперболой. Общий вид гиперболы, представлен на рисунке ниже. (На графике представлена функция y равно k разделить на x, у которой k равно единице.)

Видно, что график состоит из двух частей. Эти части называют ветвями гиперболы. Стоит отметить также, что каждая ветвь гиперболы подходит в одном из направлений все ближе и ближе к осям координат. Оси координат в таком случае называют асимптотами.

Вообще любые прямые линии, к которым бесконечно приближается график функции, но не достигает их, называются асимптотами. У гиперболы, как и у параболы, есть оси симметрии. Для гиперболы, представленной на рисунке выше, это прямая y=x.

Теперь разберемся с двумя общими случаями гипербол. Графиком функции y = k/x, при k ≠0, будет являться гипербола, ветви которой расположены либо в первом и третьем координатных углах, при k>0, либо во втором и четвертом координатных углах, при k<0.

Основные свойства функции y = k/x, при k>0

График функции y = k/x, при k>0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат – асимптоты гиперболы.

3. Прямая y=x ось симметрии гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x>0; y6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Основные свойства функции y = k/x, при k<0

График функции y = k/x, при k<0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат – асимптоты гиперболы.

3. Прямая y=-x ось симметрии гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x0.

6. Функция возрастает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Нужна помощь в учебе?



Предыдущая тема: Преобразование рациональных выражений: способы преобразований и примеры
Следующая тема:&nbsp&nbsp&nbspРациональные числа: определение, сумма, разность, умножение, деление

3.

Уравнения-следствия и равносильные преобразования уравнений

Объяснение и обоснование

1.  Понятие уравнения и его корней. Уравнение в математике чаще всего по­нимают как аналитическую запись задачи о нахождении значений аргумен­та, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной x записывают так: f (x) = g (x).

Часто уравнения определяют короче — как равенство с переменной.

Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

Например, уравнение 2x = —1 имеет единственный корень x = -1, а урав­нение | x | = —1 не имеет корней, поскольку значение | x | не может быть от­рицательным числом.

2.  Область допустимых значений (ОДЗ) уравнения. Если задано уравнение f (x) = g (x), то общая область определения для функций f (x) и g (x) назы­вается областью допустимых значений этого уравнения. (Иногда исполь­зуются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения х2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x — 2 + \/1 — x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x — 2 + VT — x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

lx — 210,                                                                             lx 12,

мой -!                        из которой получаем систему -!                        не имеющую решений.

[1 — x 10,                                                                          [x < 1,

Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и по­этому это уравнение не имеет корней.

Нахождение ОДЗ данного уравнения может быть полезным для его ре­шения, но не всегда является обязательным элементом решения уравнения.

3.  Методы решения уравнений. Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения урав­нений в курсе математики 5—6 классов использовались зависимости меж­ду компонентами и результатами действий и свойства числовых равенств;

GMAT Math: Как разделить на квадратный корень

Многие студенты, готовящиеся к GMAT Quant, особенно те, кто давно не занимается математикой, теряются, пытаясь разделить на квадратный корень. Однако деление на квадратный корень не должно вас пугать. Пройдя короткий курс повышения квалификации, вы быстро научитесь делить на квадратный корень.

Практические вопросы: Как разделить на квадратный корень

Сначала рассмотрим эти три практических вопроса.

1. В приведенном выше уравнении x =

2. Треугольник ABC — равносторонний треугольник высотой 6. Какова его площадь?

3. В приведенном выше уравнении x =

.

Второй — немного геометрии. Вы можете просмотреть свойства треугольника 30-60-90 и равностороннего треугольника, если они вам незнакомы. Первый — это простая арифметика.Третье довольно сложно. Для любого из них вполне может случиться так, что, даже если вы выполнили все операции умножения и деления правильно, вы получили ответы в форме — что-то, деленное на квадратный корень из чего-то, — и у вас остается вопрос: а почему нет? Может ли этот ответ вообще появиться среди вариантов ответа? Если это вас сбило с толку, значит, вы нашли именно тот пост.

Фракции и радикалы

Когда мы впервые познакомились с дробями, в нежном подростковом возрасте и числители, и знаменатели были хорошими простыми положительными целыми числами. Как мы теперь понимаем, любое действительное число, любое число во всей числовой строке, может появляться в числителе или знаменателе дроби. Среди прочего, радикалы, то есть выражения квадратного корня, могут появляться как в числителе, так и в знаменателе. Нет особой проблемы, если в числителе используется квадратный корень. Например,

— очень хорошая дробь. Фактически, те из вас, кто когда-либо занимался тригонометрией, могут даже узнать эту особую дробь. Но предположим, что в знаменателе есть квадратный корень: что тогда? Давайте возьмем величину, обратную этой дроби.

Это уже не совсем хорошая дробь. Математически это дробь «безвкусицы», потому что мы делим на квадратный корень. Эта фракция требует какого-то упрощения. Как нам это упростить?

Работа с квадратными корнями в знаменателе

Согласно стандартному математическому соглашению, которому следует GMAT, мы не оставляем квадратные корни в знаменателе дроби. Если в знаменателе дроби появляется квадратный корень, мы следуем процедуре, называемой , рационализируя знаменатель .

Мы знаем, что умножение любого квадратного корня на себя равно положительному целому числу. Таким образом, если мы умножим знаменатель квадратного корня из 3 на себя, получится 3, а не радикал. Проблема в том, что мы не можем обойтись без умножения знаменателя дробей на что-либо, оставив числитель в покое, и ожидать, что дробь сохранит свое значение. НО, помните проверенную временем уловку с дробями — мы всегда можем умножить дробь на A / A, на что-то над собой, потому что новая дробь будет равна 1, а умножение на 1 ничего не меняет.

Таким образом, чтобы упростить дробь с квадратным корнем из 3 в знаменателе, мы умножаем квадратный корень из 3 на квадратный корень из 3!

Это последнее выражение численно равно первому выражению, но, в отличие от первого, оно теперь имеет математический «хороший вкус», потому что в знаменателе нет квадратного корня. Знаменатель был рационализирован (то есть дробь теперь является рациональным числом).

Иногда между числом в исходном числителе и целым числом происходит сокращение, которое является результатом рационализации знаменателя. Рассмотрим следующий пример:

Этот шаблон отмены в процессе упрощения может дать вам некоторое представление о практической проблеме №1, описанной выше.

Квадратные корни и сложение в знаменателе

Это следующий уровень сложности, когда дело доходит до деления на квадратный корень. Предположим, мы делим число на выражение, которое включает в себя сложение или вычитание квадратного корня. Например, рассмотрим эту дробь:

Эта фракция нуждается в рационализации.НО, если мы просто умножим знаменатель на себя, это НЕ БУДЕТ устранять квадратный корень — скорее, это просто создаст более сложное выражение, включающее квадратный корень. Вместо этого мы используем формулу разности двух квадратов:

= (a + b) (a — b). Факторы формы (a + b) и (a — b) называются конъюгатами друг друга. Когда у нас есть (число + квадратный корень) в знаменателе, мы создаем сопряжение знаменателя, меняя знак сложения на знак вычитания, а затем умножаем числитель и знаменатель на сопряжение знаменателя . В приведенном выше примере знаменатель равен трем минус квадратный корень из двух. Сопряжение знаменателя будет равно трем плюс , квадратному корню из двух. Чтобы рационализировать знаменатель, мы умножаем числитель и знаменатель на это сопряжение.

Обратите внимание, что умножение в знаменателе привело к упрощению «разности двух квадратов», которое вычистило квадратные корни из знаменателя. Этот последний термин представляет собой полностью рационализированную и полностью упрощенную версию оригинала.

Сводка

Прочитав эти сообщения о делении на квадратный корень, вы можете еще раз попробовать три практических вопроса в верхней части этой статьи, прежде чем читать объяснения ниже. Если у вас есть какие-либо вопросы о делении квадратным корнем или пояснениях ниже, задавайте их в разделах комментариев! И удачи вам с их победой во время GMAT!

Разъяснения к практическим вопросам

1) Чтобы найти x, мы начнем с перекрестного умножения. Обратите внимание, что

, потому что, как правило, мы можем умножать и делить через радикалы.

Перемножая, получаем

Возможно, вы нашли это и задались вопросом, почему он не указан в качестве ответа. Это численно равно правильному ответу, но, конечно, как объясняется в этом посте, эта форма не рационализирована. Нам нужно рационализировать знаменатель.

Ответ = (Д)

2) Мы знаем высоту ABC и нам нужно найти основание.Итак, высота BD делит треугольник ABC на два треугольника 30-60-90. Из пропорций треугольника 30-60-90 мы знаем:

Так вот, я предпочитаю сразу же рационализировать знаменатель.

Теперь AB упрощен. Мы знаем, что AB = AC, потому что ABC равносторонняя, поэтому у нас есть база.

Ответ = (C)

3) Начнем с деления на выражение в скобках, чтобы выделить x.

Конечно, эта форма не появляется среди вариантов ответов. Опять же, нам нужно рационализировать знаменатель, и этот случай немного сложнее, потому что у нас есть сложение в знаменателе вместе с квадратным корнем. Здесь нам нужно найти сопряжение знаменателя, заменив знак плюса на знак минус, а затем умножить числитель и знаменатель на это сопряжение. Это приведет к:

Ответ = (А)

Готовы получить отличный результат GMAT? Начни здесь.

Самые популярные ресурсы

О Майке MᶜGarry
Майк создает уроки для экспертов и практические вопросы, чтобы помочь студентам GMAT добиться успеха.У него есть степень бакалавра физики и магистра религии в Гарварде, а также более 20 лет опыта преподавания, специализирующегося на математике, естественных науках и стандартизированных экзаменах. Майк любит разбивать футбольные мячи на орбите, и, несмотря на отсутствие очевидных черепных дефектов, он настаивает на том, чтобы болеть за Нью-Йорк Метс.

квадратов и квадратных корней в алгебре

Возможно, вы сначала захотите прочитать наше Введение в квадраты и квадратные корни.

Квадраты

Чтобы возвести число в квадрат, просто умножьте его само на себя …

Пример: Что такое 3 в квадрате?

3 Квадрат = = 3 × 3 = 9

«В квадрате» часто записывают как две маленькие цифры:


Это говорит о том, что «4 в квадрате равно 16»
(маленькие 2 означают число появляется дважды при умножении, поэтому 4 × 4 = 16)

Квадратный корень

Корень квадратный идет в другом направлении:

3 в квадрате равно 9, поэтому квадратный корень из 9 это 3

Это как спросить:

Что можно умножить само на себя, чтобы получить это?

Определение

Вот определение:

Квадратный корень из x равен , число r , квадрат которого равен x:

r 2 = x
r квадратный корень из x

Символ квадратного корня


Это специальный символ, означающий «квадратный корень», это как галочка,
и фактически началось сотни лет назад в виде точки с движением вверх.

Он называется радикалом и всегда делает математику важной!

Мы можем использовать это так:


мы говорим «квадратный корень из 9 равен 3»

Пример: Что такое √36?

Ответ: 6 × 6 = 36, поэтому √36 = 6

Отрицательные числа

Мы также можем возводить в квадрат отрицательные числа.

Пример: Что такое

минус 5 в квадрате ?

Но подождите… что означает «минус 5 в квадрате»?

  • квадрат 5, тогда минус?
  • или квадрат (−5)?

Непонятно! И получаем разные ответы:

  • возвести в квадрат 5, затем вычислить минус: — (5 × 5) = −25
  • квадрат (−5): (−5) × (−5) = +25

Итак, давайте проясним это с помощью «()».

Это было интересно!

Когда мы возводим в квадрат отрицательное число , мы получаем положительный результат .

То же, что и возведение положительного числа в квадрат:

Теперь помните наше определение квадратного корня?

Квадратный корень из x равен , число r , квадрат которого равен x:

r 2 = x
r квадратный корень из x

И мы только что обнаружили:

(+5) 2 = 25
(−5) 2 = 25

Итак, и +5, и −5 являются квадратными корнями из 25

.

Два квадратных корня

Может быть положительных и отрицательных квадратный корень!

Это важно помнить.

Пример: Решить w

2 = a

Ответ:

w = √a и w = −√a

Главный квадратный корень

Итак, если на самом деле есть два квадратных корня, почему люди говорят √25 = 5?

Потому что означает главный квадратный корень … тот, который не является отрицательным!

— это два квадратных корня , но символ √ означает просто главный квадратный корень .

Пример:

Квадратные корни из 36 равны 6 и −6

Но √36 = 6 (не −6)

Главный квадратный корень иногда называют положительным квадратным корнем (но он может быть нулевым).

Знак плюс-минус

± — специальный символ, означающий «плюс или минус»,
поэтому вместо записи: w = √a и w = −√a
можно написать: w = ± √a

В двух словах

Когда имеем: r 2 = x

, тогда: r = ± √x

Почему это важно?

Почему этот «плюс-минус» важен? Потому что мы не хотим упустить решение!

Пример: Решить x

2 — 9 = 0

Начать с: x 2 — 9 = 0

Переместите 9 вправо: x 2 = 9

Квадратный корень: x = ± √9

Ответ: x = ± 3

Знак «±» говорит нам также включить ответ «−3».

Пример: найти x в (x — 3)

2 = 16

Начать с: (x — 3) 2 = 16

Квадратный корень: x — 3 = ± √16

Вычислить √16: x — 3 = ± 4

Добавьте 3 к обеим сторонам: x = 3 ± 4

Ответ: x = 7 или −1

Чек: (7−3) 2 = 4 2 = 16
Чек: (−1−3) 2 = (−4) 2 = 16

Квадратный корень xy

Когда два числа умножаются на на квадратный корень , мы можем разделить это на умножение двух квадратных корней следующим образом:

√xy = √x√y

, но только если x и y оба значения больше или равны 0

Пример: Что такое

√ (100 × 4) ?

√ (100 × 4) = √ (100) × √ (4)

= 10 × 2

= 20

и √x√y = √xy :

Пример: Что такое

√8√2 ?

√8√2 = √ (8 × 2)

= √16

= 4

Пример: Что такое

√ (−8 × −2) ?

√ (−8 × −2) = √ (−8) × √ (−2)

= ???

Кажется, мы здесь попались в какую-то ловушку!

Мы можем использовать мнимые числа, но это приводит к неправильному ответу −4

Да, верно. ..

Правило работает, только если x и y оба больше или равны 0

Итак, мы не можем использовать это правило здесь.

Вместо этого просто сделайте это так:

√ (−8 × −2) = √16 = +4

Почему √xy = √x√y?

Мы можем использовать тот факт, что возведение квадратного корня в квадрат снова возвращает нам исходное значение:

(√a) 2 = a

Предполагая, что , а не отрицательны!

Мы можем сделать это для xy: (√xy) 2 = xy

А также к x и y по отдельности: (√xy) 2 = (√x) 2 (√y) 2

Используйте 2 b 2 = (ab) 2 : (√xy) 2 = (√x√y) 2

Убрать квадрат с обеих сторон : √xy = √x√y

Показатель половины

Квадратный корень можно также записать в виде дробной степени от половины:


, но только для x больше или равно 0

Как насчет квадратного корня негативов?

Результат — мнимое число. .. прочтите эту страницу, чтобы узнать больше.

Конъюгаты и деление на радикалы

Purplemath

Иногда вам нужно перемножать многочленные выражения, содержащие только радикалы. Это ситуация, в которой вертикальное умножение является прекрасным подспорьем.

  • Упростить

Это упражнение выглядит некрасиво, но оно вполне выполнимо, если я аккуратен и точен в своей работе.

Во-первых, я делаю умножение, используя вертикальный метод, чтобы не усложнять:

MathHelp.

com

Затем я устанавливаю исходное выражение, равное последней строке из приведенного выше умножения, и завершаю вычисления, упрощая каждый член:


  • Упростить:

Сначала делаю умножение:

А потом упрощаю:


Обратите внимание, в последнем примере выше, как я получил все целые числа. (Хорошо, технически они целые числа, но дело в том, что члены , а не включают какие-либо радикалы.) Я перемножил два радикальных бинома и получил ответ, в котором радикалов не было. Вы также могли заметить, что два «бинома» были одинаковыми, за исключением знака посередине: у одного был «плюс», а у другого — «минус».

Эта пара факторов, при этом второй фактор отличается только одним знаком посередине, очень важна; по сути, этот «тот же самый, за исключением знака в середине» второй фактор имеет собственное название:

Учитывая радикальное выражение

, «сопряженный» — это выражение.

Конъюгат (KAHN-juh-ghitt) имеет те же числа, но с противоположным знаком посередине. Таким образом,

является не только конъюгатом, но и конъюгатом.

Кроме того, конъюгаты не обязательно должны быть двухчленными выражениями с радикалами в каждом из терминов. Фактически, любое двухчленное выражение может иметь конъюгат:

1 + sqrt [2] является конъюгатом 1 — sqrt [2] sqrt [7] — 5 sqrt [6] является конъюгатом sqrt [7] + 5 sqrt [6] x + sqrt [y] является конъюгатом x — sqrt [y]

Чтобы создать конъюгат, все, что вам нужно сделать, это перевернуть знак посередине. Все остальное остается прежним.


  • Что такое спряжение 3 + sqrt [5]?

В этом случае я нахожу сопряжение для выражения, в котором только один из членов имеет радикал. Отлично. Независимо от этого, процесс тот же; а именно, переворачиваю знак посередине. Так как они дали мне выражение со знаком «плюс» в середине, спряжение — это те же два термина, но с «минусом» посередине:


  • Найдите конъюгат –7 sqrt [3] — 2

На этот раз радикал находится в первом из двух членов, и перед первым членом стоит «минус».Отлично. Я оставлю первый «минус» в покое, потому что ничего не меняю, кроме среднего знака; Переверну второй «минус» посередине на «плюс»:


Когда мы умножаем конъюгаты, мы делаем нечто подобное тому, что происходит, когда мы умножаем на разность квадратов; а именно:

a 2 b 2 = ( a + b ) ( a b )

Когда мы умножаем множители a + b и a b , средние члены « ab » сокращаются:

То же самое происходит, когда мы умножаем конъюгаты:

Мы вскоре увидим, почему это важно. Чтобы понять это, давайте сначала взглянем на дроби, в знаменателях которых есть радикалы.


Деление на квадратные корни

Подобно тому, как мы можем переключаться между умножением радикалов и радикалом, содержащим умножение, мы можем переключаться между делением корней и одним корнем, содержащим деление.

  • Упростить:

Я могу упростить это, работая внутри, а затем извлекая квадратный корень:

…или иначе, разделив разделение на два радикала, упрощение и исключение:

В любом случае, мой окончательный ответ такой же.


  • Упростить:

Я вижу, что в знаменателе есть полный квадрат, а в числителе — простое число. Так что упрощение будет легче, если я разделю радикал, содержащий фракцию, на фракцию, содержащую радикалы:


URL: https://www.purplemath.com/modules/radicals4.htm

Видео с вопросом: Дифференциация частных функций с использованием корневых функций

Стенограмма видеозаписи

Учитывая, что 𝑦 равно трем корням 𝑥 минус два 𝑥, деленным на корень, определить производную 𝑦 по 𝑥.

Нам дано, что 𝑦 является некоторой функцией 𝑥. Фактически, 𝑦 — это отношение двух функций. И нам нужно определить производную 𝑦 по. А поскольку 𝑦 является частным двух функций, у нас может возникнуть соблазн сделать это с помощью правила частного, и это сработает. Однако мы можем заметить более простой способ сделать это. Мы можем разделить оба члена в числителе на квадратный корень из, используя наши законы экспонент. Итак, мы начнем с записи ing как трехкорневого three, разделенного на корень 𝑥 минус два 𝑥, разделенного на корень 𝑥.

А теперь мы хотим упростить это выражение. В нашем первом члене корень 𝑥, деленный на корень, равен единице. Чтобы упростить наш второй член, нам нужно вспомнить два наших закона экспонент. в степени, деленное на 𝑥 в степени 𝑏, равно 𝑥 в степени 𝑎 минус 𝑏. И нам также нужно помнить, что мы можем переписать квадратный корень из как в степени половины. Итак, используя эти два правила и помня, что 𝑥 равно 𝑥 в первой степени, мы можем разделить 𝑥 на корень.Получаем, что он равен 𝑥 в степени половины, которая равна корню.

Итак, мы переписали 𝑦 как три минус два корня 𝑥, и мы можем дифференцировать этот член по члену, используя правило степени для дифференцирования. И это намного проще, чем использовать правило частного. Получаем, что d𝑦 по d𝑥 равно производной трех минус два корня 𝑥 по 𝑥. И было бы проще записать квадратный корень из как в степени половины. Теперь мы хотим дифференцировать этот термин за термином, используя правило мощности для дифференциации.Мы умножаем его на показатель и уменьшаем этот показатель на единицу.

В нашем первом слагаемом производная от постоянной тройки равна нулю. Затем, чтобы дифференцировать наш второй член, мы используем наше степенное правило для дифференциации. Мы умножаем на показатель половины и уменьшаем этот показатель на единицу. Это дает нам половину отрицательных двух, умноженную на в степени 1/2 минус один. И мы можем упростить это, чтобы получить отрицательное 𝑥 в степени отрицательной половины. И мы могли бы оставить свой ответ таким.Однако мы воспользуемся нашими законами экспонент, чтобы переписать в степени отрицательной половины как единицы, деленной на квадратный корень из, и это даст нам окончательный ответ.

Мы смогли показать, если 𝑦 равно трем корням минус два 𝑥, все деленное на квадратный корень из then, то d𝑦 на d𝑥 равно отрицательному, деленному на квадратный корень из 𝑥.

Функция, обратная функции квадратного корня

Чтобы найти функцию, обратную функции квадратного корня, очень важно сначала набросать или изобразить данную проблему, чтобы четко определить, что это за область и диапазон.Я буду использовать область определения и диапазон исходной функции, чтобы описать область и диапазон обратной функции, меняя их местами. Если вам нужна дополнительная информация о том, что я имел в виду под «обменом домена и диапазона» между функцией и ее обратной, см. Мой предыдущий урок об этом.


Примеры того, как найти обратную функцию квадратного корня

Пример 1: Найдите обратную функцию, если она существует. Укажите его домен и диапазон.

Каждый раз, когда я сталкиваюсь с функцией извлечения квадратного корня с линейным членом внутри радикального символа, я всегда думаю о ней как о «половине параболы», нарисованной сбоку.Так как это положительный случай функции квадратного корня, я уверен, что ее диапазон будет становиться все более положительным, проще говоря, стремительно увеличиваясь до положительной бесконечности.

У этой конкретной функции извлечения квадратного корня есть этот график с определенными областями и диапазоном.

С этого момента мне придется решать обратную алгебру, следуя предложенным шагам. По сути, замените \ color {red} f \ left (x \ right) на \ color {red} y, поменяйте местами x и y в уравнении, решите для y, которое вскоре будет заменено соответствующей обратной записью, и, наконец, укажите домен и диапазон.

Не забудьте использовать приемы решения радикальных уравнений для решения обратной задачи. Возведение квадратного корня в квадрат или во вторую степень должно устранить радикал. Однако вы должны сделать это для обеих сторон уравнения, чтобы сохранить баланс.

Убедитесь, что вы проверили домен и диапазон обратной функции из исходной функции. Они должны быть «противоположны друг другу».

Размещение графиков исходной функции и обратной ей по одной координатной оси.2} = 1. Его домен и диапазон будут замененной «версией» исходной функции.


Пример 3: Найдите обратную функцию, если она существует. Укажите его домен и диапазон.

Это график исходной функции, показывающий ее домен и диапазон.

Определение диапазона обычно является сложной задачей. Лучший способ найти это — использовать график данной функции с ее областью определения. Проанализируйте, как функция ведет себя по оси y, учитывая значения x из области.

Вот шаги, чтобы решить или найти обратное значение данной функции квадратного корня.

Как видите, все очень просто. Убедитесь, что вы делаете это осторожно, чтобы избежать ненужных алгебраических ошибок.


Пример 4: Найдите обратную функцию, если она существует. Укажите его домен и диапазон.

Эта функция составляет 1/4 (четверть) окружности с радиусом 3, расположенной в Квадранте II. С другой стороны, это половина полукруга, расположенная над горизонтальной осью.

Я знаю, что он пройдет проверку горизонтальной линии, потому что ни одна горизонтальная линия не пересечет ее более одного раза. Это хороший кандидат на обратную функцию.

Опять же, я могу легко описать диапазон, потому что потратил время на его построение. Что ж, я надеюсь, что вы понимаете важность наличия наглядного пособия, которое поможет определить этот «неуловимый» диапазон.

Наличие квадрата члена внутри радикального символа говорит мне, что я буду применять операцию извлечения квадратного корня к обеим сторонам уравнения, чтобы найти обратное.Поступая так, у меня будет плюс или минус. Это ситуация, когда я приму решение, какую из них выбрать в качестве правильной обратной функции. Помните, что обратная функция уникальна, поэтому я не могу позволить получить два ответа.

Как я решу, какой выбрать? Ключевым моментом является рассмотрение домена и диапазона исходной функции. Я поменяю их местами, чтобы получить домен и диапазон обратной функции. Используйте эту информацию, чтобы выбрать, какая из двух функций-кандидатов удовлетворяет требуемым условиям.

Хотя у них один и тот же домен, диапазон здесь является решающим фактором! Диапазон говорит нам, что обратная функция имеет минимальное значение y = -3 и максимальное значение y = 0.

Случай положительного квадратного корня не соответствует этому условию, поскольку он имеет минимум при y = 0 и максимум при y = 3. Отрицательный случай должен быть очевидным выбором даже после дальнейшего анализа.


Пример 5: Найдите обратную функцию, если она существует. Укажите его домен и диапазон.

Полезно увидеть график исходной функции, потому что мы можем легко определить ее домен и диапазон.

Отрицательный знак функции квадратного корня означает, что он находится ниже горизонтальной оси. Обратите внимание, что это похоже на Пример 4. Это также одна четверть круга, но с радиусом 5. Область заставляет четверть круга оставаться в Квадранте IV.

Вот как мы находим его алгебраически обратный.

Вы выбрали правильную обратную функцию из двух возможных? Ответ — случай с положительным знаком.


Практика с рабочими листами

Возможно, вас также заинтересует:

Инверсия матрицы 2 × 2

Функция, обратная абсолютному значению

Функция, обратная константе

Обратная экспоненциальная функция2 Функция, обратная линейной

Функция, обратная логарифмической

Функция, обратная квадратичной

Функция, обратная рациональной

Решение уравнений с квадратными корнями — элементарная алгебра

Цели обучения

К концу этого раздела вы сможете:

  • Решите радикальные уравнения
  • Использование квадратного корня в приложениях

Прежде чем начать, пройдите тест на готовность.

  1. Упростить: ⓐ ⓑ.
    Если вы пропустили эту проблему, просмотрите (Рисунок) и (Рисунок).
  2. Решить:.
    Если вы пропустили эту проблему, просмотрите (рисунок).
  3. Решить:.
    Если вы пропустили эту проблему, просмотрите (рисунок).

Решите радикальные уравнения

В этом разделе мы решим уравнения, в которых переменная находится в подкоренном выражении квадратного корня. Уравнения этого типа называются радикальными уравнениями.

Радикальное уравнение

Уравнение, в котором переменная находится в корневом выражении квадратного корня, называется радикальным уравнением.

Как обычно, решая эти уравнения, то, что мы делаем с одной стороной уравнения, мы должны делать и с другой стороной. Поскольку возведение величины в квадрат и извлечение квадратного корня являются «противоположными» операциями, мы возведем обе стороны в квадрат, чтобы убрать знак корня и найти переменную внутри.

Но помните, что когда мы пишем, мы имеем в виду главный квадратный корень. Так всегда. Когда мы решаем радикальные уравнения, возводя обе части в квадрат, мы можем получить алгебраическое решение, которое будет отрицательным.Это алгебраическое решение не было бы решением исходного радикального уравнения; это постороннее решение . Мы видели посторонние решения и при решении рациональных уравнений.

Для уравнения:

ⓐ Есть решение? Ⓑ Есть решение?

Для уравнения:

ⓐ Есть решение? Ⓑ Есть решение?

ⓐ нет ⓑ

Для уравнения:

ⓐ Есть решение? Ⓑ Есть решение?

ⓐ нет ⓑ

Теперь посмотрим, как решить радикальное уравнение.Наша стратегия основана на соотношении извлечения квадратного корня и возведения в квадрат.

Как решать радикальные уравнения

Решить:.

Решить:.

Решить:.

Решите радикальное уравнение.

  1. Выделите радикал на одной стороне уравнения.
  2. Возведите обе части уравнения в квадрат.
  3. Решите новое уравнение.
  4. Проверьте ответ.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Когда мы используем знак корня, мы имеем в виду главный или положительный корень. Если квадратный корень уравнения равен отрицательному числу, это уравнение не будет иметь решения.

Решить:.

Решение

The figure then says, “Since the square root is equal to a negative number, the equation has no solution.”» data-label=»»>
Чтобы выделить радикал, вычтите 1 с обеих сторон.
Упростить.
Поскольку квадратный корень равен отрицательному числу, уравнение не имеет решения.

Решить:.

Решить:.

Если одна сторона уравнения является биномом, мы используем формулу биномиальных квадратов, когда возводим ее в квадрат.

Биномиальные квадраты

Не забывайте про средний семестр!

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Когда перед радикалом стоит коэффициент, мы также должны возвести его в квадрат.

Решить:.

Решить:.

Решить:.

Решить:.

Решение

Решить:.

Решить:.

Иногда после возведения в квадрат обеих частей уравнения внутри радикала все еще остается переменная. Когда это произойдет, мы повторяем шаги 1 и 2 нашей процедуры. Выделяем радикал и снова возводим в квадрат обе части уравнения.

Решить:.

Решение

Решить:.

Решить:.

Решить:.

Решение

Решить:.

Решить:.

Использование квадратного корня в приложениях

По мере прохождения курсов в колледже вы будете сталкиваться с формулами, включающими квадратные корни во многих дисциплинах. Мы уже использовали формулы для решения геометрических приложений.

Мы будем использовать нашу стратегию решения проблем для геометрических приложений с небольшими изменениями, чтобы дать нам план решения приложений с формулами из любой дисциплины.

Решайте приложения с помощью формул.

  1. Прочтите задачу и убедитесь, что все слова и идеи понятны. При необходимости нарисуйте фигуру и пометьте ее данной информацией.
  2. Определите то, что мы ищем.
  3. Назовите то, что мы ищем, выбирая переменную для его представления.
  4. Переведите в уравнение, написав соответствующую формулу или модель для ситуации. Подставьте в данную информацию.
  5. Решите уравнение , используя хорошие методы алгебры.
  6. Проверьте ответ в задаче и убедитесь, что он имеет смысл.
  7. Ответьте на вопрос полным предложением.

Мы использовали формулу, чтобы найти площадь прямоугольника длиной L и шириной W . Квадрат — это прямоугольник, у которого длина и ширина равны. Если мы допустим, что s будет длиной стороны квадрата, площадь квадрата равна.

Формула дает нам площадь квадрата, если мы знаем длину стороны.Что, если мы хотим найти длину стороны для данной области? Затем нам нужно решить уравнение для s .

Мы можем использовать формулу, чтобы найти длину стороны квадрата для заданной площади.

Площадь квадрата

Мы покажем это в следующем примере.

Кэти хочет посадить квадратный газон перед своим домом. У нее достаточно дерна, чтобы покрыть площадь в 370 квадратных футов. Воспользуйтесь формулой, чтобы найти длину каждой стороны ее газона.Округлите ответ до ближайшей десятой доли фута.

Серджио хочет сделать квадратную мозаику в качестве инкрустации для стола, который он строит. У него достаточно плитки, чтобы покрыть площадь в 2704 квадратных сантиметра. Воспользуйтесь формулой, чтобы найти длину каждой стороны его мозаики. Округлите ответ до ближайшей десятой доли фута.

Другое применение квадратных корней связано с гравитацией.

Падающие предметы

На Земле, если объект падает с высоты футов, время в секундах, которое потребуется, чтобы достичь земли, определяется по формуле

Например, если объект падает с высоты 64 фута, мы можем вычислить время, необходимое для достижения земли, подставив его в формулу.

Извлеките квадратный корень из 64.
Упростим дробь.

Чтобы объект, упавший с высоты 64 фута, достиг земли, потребуется 2 секунды.

Кристи уронила свои солнцезащитные очки с моста на высоте 400 футов над рекой. Используйте формулу, чтобы узнать, сколько секунд потребовалось солнцезащитным очкам, чтобы добраться до реки.

Вертолет сбросил спасательный пакет с высоты 1296 футов. Используйте формулу, чтобы определить, сколько секунд потребовалось, чтобы посылка достигла земли.

Мойщик окон сбросил ракель с платформы на высоте 196 футов над тротуаром. Используйте формулу, чтобы определить, сколько секунд прошло, чтобы ракель достиг тротуара.

Сотрудники полиции, расследующие автомобильные аварии, измеряют длину следов заноса на тротуаре.Затем они используют квадратные корни, чтобы определить скорость в милях в час, с которой машина ехала до того, как затормозила.

Следы заноса и скорость автомобиля

Если длина пятен скольжения составляет d футов, то скорость с автомобиля до того, как были применены тормоза, может быть определена по формуле

После автомобильной аварии следы заноса одной машины достигли 190 футов. Используйте формулу, чтобы найти скорость автомобиля до того, как были применены тормоза.Округлите ответ до ближайшей десятой.

Следователь ДТП измерил следы заноса автомобиля. Длина следов заноса составляла 76 футов. Используйте формулу, чтобы найти скорость автомобиля до того, как были применены тормоза. Округлите ответ до ближайшей десятой.

Следы заноса автомобиля, попавшего в аварию, были длиной 122 фута. Используйте формулу, чтобы найти скорость автомобиля до того, как были задействованы тормоза. Округлите ответ до ближайшей десятой.

Ключевые понятия

  • Для решения радикального уравнения:
    1. Выделите радикал на одной стороне уравнения.
    2. Возведите обе части уравнения в квадрат.
    3. Решите новое уравнение.
    4. Проверьте ответ. Некоторые полученные решения могут не работать в исходном уравнении.
  • Решение приложений с помощью формул
    1. Прочтите задачу и убедитесь, что все слова и идеи понятны.При необходимости нарисуйте фигуру и пометьте ее данной информацией.
    2. Определите то, что мы ищем.
    3. Назовите то, что мы ищем, выбирая переменную для его представления.
    4. Переведите в уравнение, написав соответствующую формулу или модель для ситуации. Подставьте в данную информацию.
    5. Решите уравнение , используя хорошие методы алгебры.
    6. Проверьте ответ в задаче и убедитесь, что он имеет смысл.
    7. Ответьте на вопрос полным предложением.
  • Площадь квадрата
  • Падающие предметы
    • На Земле, если объект падает с высоты футов, время в секундах, которое потребуется, чтобы достичь земли, определяется по формуле.
  • Следы заноса и скорость автомобиля
    • Если длина следов заноса составляет d футов, то скорость с автомобиля до того, как были задействованы тормоза, может быть определена с помощью формулы.
Письменные упражнения

Объясните, почему уравнение вида не имеет решения.

  1. ⓐ Решите уравнение.
  2. ⓑ Объясните, почему одно из найденных «решений» на самом деле не было решением уравнения.
Самопроверка

ⓐ После выполнения упражнений используйте этот контрольный список, чтобы оценить свое мастерство в достижении целей этого раздела.

ⓑ Что вы будете делать, изучив этот контрольный список, чтобы достичь уверенности в достижении всех целей?

Глоссарий

радикальное уравнение
Уравнение, в котором переменная находится в подкоренном выражении квадратного корня, называется радикальным уравнением

Функция квадратного корня Python — настоящий Python

Вы пытаетесь решить квадратное уравнение? Возможно, вам нужно рассчитать длину одной стороны прямоугольного треугольника. Для этих и других типов уравнений функция квадратного корня Python sqrt () может помочь вам быстро и точно рассчитать ваши решения.

К концу этой статьи вы узнаете:

  • Что такое квадратный корень
  • Как использовать функцию квадратного корня Python, sqrt ()
  • Когда sqrt () может пригодиться в реальном мире

Погружаемся!

Python Pit Stop: Этот учебник представляет собой быстрый и практический способ найти нужную информацию, так что вы сразу же вернетесь к своему проекту!

Квадратные корни в математике

В алгебре квадрат , x , является результатом умножения числа n на само себя: x = n²

Вы можете вычислить квадраты с помощью Python:

>>>
  >>> п = 5
>>> х = п ** 2
>>> х
25
  

Оператор Python ** используется для вычисления степени числа. В этом случае 5 в квадрате или 5 в степени 2 равно 25.

Таким образом, квадратный корень — это число n , которое при умножении само на себя дает квадрат x .

В этом примере n , квадратный корень, равен 5.

25 — это пример полного квадрата . Совершенные квадраты — это квадраты целых чисел:

>>>
  >>> 1 ** 2
1

>>> 2 ** 2
4

>>> 3 ** 2
9
  

Возможно, вы запомнили некоторые из этих совершенных квадратов, когда выучили свои таблицы умножения на уроках элементарной алгебры.

Если вам дан маленький идеальный квадрат, может быть достаточно просто вычислить или запомнить его квадратный корень. Но для большинства других квадратов этот расчет может быть немного более утомительным. Часто оценки бывает достаточно, когда у вас нет калькулятора.

К счастью, как разработчик Python, у вас есть калькулятор, а именно интерпретатор Python!

Функция квадратного корня Python

Модуль math

Python в стандартной библиотеке может помочь вам работать с математическими задачами в коде. Он содержит множество полезных функций, таких как restder () и factorial () . Он также включает функцию извлечения квадратного корня Python sqrt () .

Начнем с импорта math :

Вот и все, что нужно! Теперь вы можете использовать math.sqrt () для вычисления квадратных корней.

sqrt () имеет простой интерфейс.

Требуется один параметр, x , который (как вы видели ранее) обозначает квадрат, для которого вы пытаетесь вычислить квадратный корень.В приведенном выше примере это будет 25 .

Возвращаемое значение sqrt () — это квадратный корень из x в виде числа с плавающей запятой. В примере это будет 5,0 .

Давайте рассмотрим несколько примеров того, как использовать (и как не использовать) sqrt () .

Квадратный корень положительного числа

Один из типов аргументов, который вы можете передать функции sqrt () , — это положительное число. Сюда входят типы int и float .

Например, вы можете найти квадратный корень из 49 , используя sqrt () :

Возвращаемое значение — 7,0 (квадратный корень из 49 ) в виде числа с плавающей запятой.

Наряду с целыми числами вы также можете передать значения с плавающей запятой :

>>>
  >>> math.sqrt (70.5)
8,396427811873332
  

Вы можете проверить точность этого квадратного корня, вычислив его обратную величину:

>>>
  >>> 8.396427811873332 ** 2
70,5
  

Квадратный корень нуля

Даже 0 — правильный квадрат для передачи функции квадратного корня Python:

Хотя вам, вероятно, не нужно часто вычислять квадратный корень из нуля, вы можете передать переменную в sqrt () , значение которой вы на самом деле не знаете. Итак, хорошо знать, что в таких случаях он может обрабатывать ноль.

Квадратный корень отрицательных чисел

Квадрат любого действительного числа не может быть отрицательным.Это потому, что отрицательный результат возможен только в том случае, если один фактор положительный, а другой отрицательный. Квадрат по определению представляет собой произведение числа и самого себя, поэтому получить отрицательный действительный квадрат невозможно:

>>>
  >>> math.sqrt (-25)
Отслеживание (последний вызов последний):
  Файл "", строка 1, в 
ValueError: ошибка математического домена
  

Если вы попытаетесь передать отрицательное число в sqrt () , то получите ValueError , потому что отрицательные числа не входят в область возможных действительных квадратов.Вместо этого квадратный корень отрицательного числа должен быть сложным, что выходит за рамки функции квадратного корня Python.

Квадратных корней в реальном мире

Чтобы увидеть реальное применение функции квадратного корня Python, давайте обратимся к теннису.

Представьте, что Рафаэль Надаль, один из самых быстрых игроков в мире, только что ударил справа из заднего угла, где базовая линия пересекается с боковой линией теннисного корта:

Теперь предположим, что его соперник нанес контратакующий удар (тот, который закроет мяч с небольшим ускорением вперед) в противоположный угол, где другая боковая линия встречается с сеткой:

Как далеко Надаль должен бежать, чтобы дотянуться до мяча?

Из стандартных размеров теннисного корта можно определить, что длина базовой линии составляет 27 футов, а длина боковой линии (на одной стороне сетки) — 39 футов.По сути, это сводится к решению гипотенузы прямоугольного треугольника:

Используя ценное уравнение геометрии, теорему Пифагора, мы знаем, что a² + b² = c² , где a и b — катеты прямоугольного треугольника, а c — гипотенуза.

Таким образом, мы можем рассчитать расстояние, которое Надаль должен пробежать, переписав уравнение, чтобы найти c :

Вы можете решить это уравнение, используя функцию квадратного корня Python:

>>>
  >>> a = 27
>>> b = 39
>>> математика. sqrt (а ** 2 + b ** 2)
47.434164569
  

Итак, Надаль должен пробежать около 47,4 фута (14,5 метра), чтобы дотянуться до мяча и сохранить точку.

Заключение

Поздравляем! Теперь вы знаете все о функции квадратного корня Python.

Вы покрыли:

  • Краткое введение в квадратные корни
  • Особенности функции извлечения квадратного корня в Python, sqrt ()
  • Практическое применение sqrt () на реальном примере

Знание того, как использовать sqrt () , — это только половина дела.Другое дело — понять, когда его использовать. Теперь вы знаете и то, и другое, так что примените свое новое мастерство в функции квадратного корня Python!

.