Веретено деления — Википедия. Что такое Веретено деления

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено деления почкующихся дрожжей

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Структура

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На центромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена

[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются

кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами

[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Сборка веретена деления

Начало сборки веретена в профазе

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено

[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе

Самоорганизация веретена:

1. Нуклеация микротрубочек вблизи хромосом.

2. Соединение и сортировка антипараллельных микротрубочек при участии кинезина-5.

3. Кинезины-4 и -10, закреплённые на плечах хромосом, также участвуют в сортировке и отдаляют минус-концы микротрубочек.

4. Минус-концы микротрубочек скрепляются между собой и образуют полюса деления при участии динеина и кинезина-14.

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе

[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.

[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков

[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом

[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

Примечания

  1. ↑ Льюин и др., 2011, с. 506.
  2. ↑ Льюин и др., 2011, с. 508.
  3. ↑ Redei, 2008, p. 1858.
  4. ↑ Evert, Eichhorn, 2013, p. 66.
  5. ↑ Morgan, 2007, p. 125.
  6. 1 2 Morgan, 2007, p. 130.
  7. ↑ Morgan, 2007, p. 124.
  8. ↑ Morgan, 2007, p. 112.
  9. 1 2 Morgan, 2007, p. 113.
  10. ↑ Льюин и др., 2011, с. 520.
  11. 1 2 Morgan, 2007, p. 128.
  12. ↑ Льюин и др., 2011, с. 521.
  13. ↑ Льюин и др., 2011, с. 518.
  14. ↑ Morgan, 2007, p. 131.
  15. 1 2 Morgan, 2007, p. 132.

Литература

  • Evert R. F., Eichhorn S. E. Raven biology of plants. — 8 edition. — W. H. Freeman and Company, 2013. — 880 p. — ISBN 978-1-4292-1961-7.
  • Morgan D. O. The cell cycle: principles of control. — New science press, 2007. — 297 p. — ISBN 978-0-9539181-2-6.
  • Redei G. P. (ed.). Encyclopedia of genetics, genomics, proteomics, and informatics. — 3 edition. — Springer, 2008. — 1822 p. — ISBN 978-1-4020-6753-2.
  • Льюин Б. и др. Клетки. — М.: БИНОМ. Лаборатория знаний, 2011. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.

wiki.sc

Веретено деления — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Структура

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На цетромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Сборка веретена деления

Начало сборки веретена в профазе

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

Напишите отзыв о статье «Веретено деления»

Примечания

  1. Льюин и др., 2011, с. 506.
  2. Льюин и др., 2011, с. 508.
  3. Redei, 2008, p. 1858.
  4. Evert, Eichhorn, 2013, p. 66.
  5. Morgan, 2007, p. 125.
  6. 1 2 Morgan, 2007, p. 130.
  7. Morgan, 2007, p. 124.
  8. Morgan, 2007, p. 112.
  9. 1 2 Morgan, 2007, p. 113.
  10. Льюин и др., 2011, с. 520.
  11. 1 2 Morgan, 2007, p. 128.
  12. Льюин и др., 2011, с. 521.
  13. Льюин и др., 2011, с. 518.
  14. Morgan, 2007, p. 131.
  15. 1 2 Morgan, 2007, p. 132.

Литература

  • Evert R. F., Eichhorn S. E. Raven biology of plants. — 8 edition. — W. H. Freeman and Company, 2013. — 880 p. — ISBN 978-1-4292-1961-7.
  • Morgan D. O. The cell cycle: principles of control. — New science press, 2007. — 297 p. — ISBN 978-0-9539181-2-6.
  • Redei G. P. (ed.). Encyclopedia of genetics, genomics, proteomics, and informatics. — 3 edition. — Springer, 2008. — 1822 p. — ISBN 978-1-4020-6753-2.
  • Льюин Б. и др. Клетки. — М.: БИНОМ. Лаборатория знаний, 2011. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.

Отрывок, характеризующий Веретено деления

Княжна Марья не отвечала. Она не понимала, куда и кто должен был ехать. «Разве можно было что нибудь предпринимать теперь, думать о чем нибудь? Разве не все равно? Она не отвечала.
– Вы знаете ли, chere Marie, – сказала m lle Bourienne, – знаете ли, что мы в опасности, что мы окружены французами; ехать теперь опасно. Ежели мы поедем, мы почти наверное попадем в плен, и бог знает…
Княжна Марья смотрела на свою подругу, не понимая того, что она говорила.
– Ах, ежели бы кто нибудь знал, как мне все все равно теперь, – сказала она. – Разумеется, я ни за что не желала бы уехать от него… Алпатыч мне говорил что то об отъезде… Поговорите с ним, я ничего, ничего не могу и не хочу…
– Я говорила с ним. Он надеется, что мы успеем уехать завтра; но я думаю, что теперь лучше бы было остаться здесь, – сказала m lle Bourienne. – Потому что, согласитесь, chere Marie, попасть в руки солдат или бунтующих мужиков на дороге – было бы ужасно. – M lle Bourienne достала из ридикюля объявление на нерусской необыкновенной бумаге французского генерала Рамо о том, чтобы жители не покидали своих домов, что им оказано будет должное покровительство французскими властями, и подала ее княжне.
– Я думаю, что лучше обратиться к этому генералу, – сказала m lle Bourienne, – и я уверена, что вам будет оказано должное уважение.
Княжна Марья читала бумагу, и сухие рыдания задергали ее лицо.
– Через кого вы получили это? – сказала она.
– Вероятно, узнали, что я француженка по имени, – краснея, сказала m lle Bourienne.
Княжна Марья с бумагой в руке встала от окна и с бледным лицом вышла из комнаты и пошла в бывший кабинет князя Андрея.
– Дуняша, позовите ко мне Алпатыча, Дронушку, кого нибудь, – сказала княжна Марья, – и скажите Амалье Карловне, чтобы она не входила ко мне, – прибавила она, услыхав голос m lle Bourienne. – Поскорее ехать! Ехать скорее! – говорила княжна Марья, ужасаясь мысли о том, что она могла остаться во власти французов.
«Чтобы князь Андрей знал, что она во власти французов! Чтоб она, дочь князя Николая Андреича Болконского, просила господина генерала Рамо оказать ей покровительство и пользовалась его благодеяниями! – Эта мысль приводила ее в ужас, заставляла ее содрогаться, краснеть и чувствовать еще не испытанные ею припадки злобы и гордости. Все, что только было тяжелого и, главное, оскорбительного в ее положении, живо представлялось ей. «Они, французы, поселятся в этом доме; господин генерал Рамо займет кабинет князя Андрея; будет для забавы перебирать и читать его письма и бумаги. M lle Bourienne lui fera les honneurs de Богучарово. [Мадемуазель Бурьен будет принимать его с почестями в Богучарове.] Мне дадут комнатку из милости; солдаты разорят свежую могилу отца, чтобы снять с него кресты и звезды; они мне будут рассказывать о победах над русскими, будут притворно выражать сочувствие моему горю… – думала княжна Марья не своими мыслями, но чувствуя себя обязанной думать за себя мыслями своего отца и брата. Для нее лично было все равно, где бы ни оставаться и что бы с ней ни было; но она чувствовала себя вместе с тем представительницей своего покойного отца и князя Андрея. Она невольно думала их мыслями и чувствовала их чувствами. Что бы они сказали, что бы они сделали теперь, то самое она чувствовала необходимым сделать. Она пошла в кабинет князя Андрея и, стараясь проникнуться его мыслями, обдумывала свое положение.
Требования жизни, которые она считала уничтоженными со смертью отца, вдруг с новой, еще неизвестной силой возникли перед княжной Марьей и охватили ее. Взволнованная, красная, она ходила по комнате, требуя к себе то Алпатыча, то Михаила Ивановича, то Тихона, то Дрона. Дуняша, няня и все девушки ничего не могли сказать о том, в какой мере справедливо было то, что объявила m lle Bourienne. Алпатыча не было дома: он уехал к начальству. Призванный Михаил Иваныч, архитектор, явившийся к княжне Марье с заспанными глазами, ничего не мог сказать ей. Он точно с той же улыбкой согласия, с которой он привык в продолжение пятнадцати лет отвечать, не выражая своего мнения, на обращения старого князя, отвечал на вопросы княжны Марьи, так что ничего определенного нельзя было вывести из его ответов. Призванный старый камердинер Тихон, с опавшим и осунувшимся лицом, носившим на себе отпечаток неизлечимого горя, отвечал «слушаю с» на все вопросы княжны Марьи и едва удерживался от рыданий, глядя на нее.
Наконец вошел в комнату староста Дрон и, низко поклонившись княжне, остановился у притолоки.
Княжна Марья прошлась по комнате и остановилась против него.
– Дронушка, – сказала княжна Марья, видевшая в нем несомненного друга, того самого Дронушку, который из своей ежегодной поездки на ярмарку в Вязьму привозил ей всякий раз и с улыбкой подавал свой особенный пряник. – Дронушка, теперь, после нашего несчастия, – начала она и замолчала, не в силах говорить дальше.
– Все под богом ходим, – со вздохом сказал он. Они помолчали.
– Дронушка, Алпатыч куда то уехал, мне не к кому обратиться. Правду ли мне говорят, что мне и уехать нельзя?
– Отчего же тебе не ехать, ваше сиятельство, ехать можно, – сказал Дрон.
– Мне сказали, что опасно от неприятеля. Голубчик, я ничего не могу, ничего не понимаю, со мной никого нет. Я непременно хочу ехать ночью или завтра рано утром. – Дрон молчал. Он исподлобья взглянул на княжну Марью.
– Лошадей нет, – сказал он, – я и Яков Алпатычу говорил.
– Отчего же нет? – сказала княжна.
– Все от божьего наказания, – сказал Дрон. – Какие лошади были, под войска разобрали, а какие подохли, нынче год какой. Не то лошадей кормить, а как бы самим с голоду не помереть! И так по три дня не емши сидят. Нет ничего, разорили вконец.
Княжна Марья внимательно слушала то, что он говорил ей.
– Мужики разорены? У них хлеба нет? – спросила она.
– Голодной смертью помирают, – сказал Дрон, – не то что подводы…
– Да отчего же ты не сказал, Дронушка? Разве нельзя помочь? Я все сделаю, что могу… – Княжне Марье странно было думать, что теперь, в такую минуту, когда такое горе наполняло ее душу, могли быть люди богатые и бедные и что могли богатые не помочь бедным. Она смутно знала и слышала, что бывает господский хлеб и что его дают мужикам. Она знала тоже, что ни брат, ни отец ее не отказали бы в нужде мужикам; она только боялась ошибиться как нибудь в словах насчет этой раздачи мужикам хлеба, которым она хотела распорядиться. Она была рада тому, что ей представился предлог заботы, такой, для которой ей не совестно забыть свое горе. Она стала расспрашивать Дронушку подробности о нуждах мужиков и о том, что есть господского в Богучарове.
– Ведь у нас есть хлеб господский, братнин? – спросила она.
– Господский хлеб весь цел, – с гордостью сказал Дрон, – наш князь не приказывал продавать.
– Выдай его мужикам, выдай все, что им нужно: я тебе именем брата разрешаю, – сказала княжна Марья.
Дрон ничего не ответил и глубоко вздохнул.
– Ты раздай им этот хлеб, ежели его довольно будет для них. Все раздай. Я тебе приказываю именем брата, и скажи им: что, что наше, то и ихнее. Мы ничего не пожалеем для них. Так ты скажи.
Дрон пристально смотрел на княжну, в то время как она говорила.
– Уволь ты меня, матушка, ради бога, вели от меня ключи принять, – сказал он. – Служил двадцать три года, худого не делал; уволь, ради бога.
Княжна Марья не понимала, чего он хотел от нее и от чего он просил уволить себя. Она отвечала ему, что она никогда не сомневалась в его преданности и что она все готова сделать для него и для мужиков.

Через час после этого Дуняша пришла к княжне с известием, что пришел Дрон и все мужики, по приказанию княжны, собрались у амбара, желая переговорить с госпожою.
– Да я никогда не звала их, – сказала княжна Марья, – я только сказала Дронушке, чтобы раздать им хлеба.
– Только ради бога, княжна матушка, прикажите их прогнать и не ходите к ним. Все обман один, – говорила Дуняша, – а Яков Алпатыч приедут, и поедем… и вы не извольте…
– Какой же обман? – удивленно спросила княжна
– Да уж я знаю, только послушайте меня, ради бога. Вот и няню хоть спросите. Говорят, не согласны уезжать по вашему приказанию.
– Ты что нибудь не то говоришь. Да я никогда не приказывала уезжать… – сказала княжна Марья. – Позови Дронушку.
Пришедший Дрон подтвердил слова Дуняши: мужики пришли по приказанию княжны.
– Да я никогда не звала их, – сказала княжна. – Ты, верно, не так передал им. Я только сказала, чтобы ты им отдал хлеб.
Дрон, не отвечая, вздохнул.
– Если прикажете, они уйдут, – сказал он.
– Нет, нет, я пойду к ним, – сказала княжна Марья
Несмотря на отговариванье Дуняши и няни, княжна Марья вышла на крыльцо. Дрон, Дуняша, няня и Михаил Иваныч шли за нею. «Они, вероятно, думают, что я предлагаю им хлеб с тем, чтобы они остались на своих местах, и сама уеду, бросив их на произвол французов, – думала княжна Марья. – Я им буду обещать месячину в подмосковной, квартиры; я уверена, что Andre еще больше бы сделав на моем месте», – думала она, подходя в сумерках к толпе, стоявшей на выгоне у амбара.
Толпа, скучиваясь, зашевелилась, и быстро снялись шляпы. Княжна Марья, опустив глаза и путаясь ногами в платье, близко подошла к ним. Столько разнообразных старых и молодых глаз было устремлено на нее и столько было разных лиц, что княжна Марья не видала ни одного лица и, чувствуя необходимость говорить вдруг со всеми, не знала, как быть. Но опять сознание того, что она – представительница отца и брата, придало ей силы, и она смело начала свою речь.
– Я очень рада, что вы пришли, – начала княжна Марья, не поднимая глаз и чувствуя, как быстро и сильно билось ее сердце. – Мне Дронушка сказал, что вас разорила война. Это наше общее горе, и я ничего не пожалею, чтобы помочь вам. Я сама еду, потому что уже опасно здесь и неприятель близко… потому что… Я вам отдаю все, мои друзья, и прошу вас взять все, весь хлеб наш, чтобы у вас не было нужды. А ежели вам сказали, что я отдаю вам хлеб с тем, чтобы вы остались здесь, то это неправда. Я, напротив, прошу вас уезжать со всем вашим имуществом в нашу подмосковную, и там я беру на себя и обещаю вам, что вы не будете нуждаться. Вам дадут и домы и хлеба. – Княжна остановилась. В толпе только слышались вздохи.
– Я не от себя делаю это, – продолжала княжна, – я это делаю именем покойного отца, который был вам хорошим барином, и за брата, и его сына.
Она опять остановилась. Никто не прерывал ее молчания.
– Горе наше общее, и будем делить всё пополам. Все, что мое, то ваше, – сказала она, оглядывая лица, стоявшие перед нею.
Все глаза смотрели на нее с одинаковым выражением, значения которого она не могла понять. Было ли это любопытство, преданность, благодарность, или испуг и недоверие, но выражение на всех лицах было одинаковое.
– Много довольны вашей милостью, только нам брать господский хлеб не приходится, – сказал голос сзади.
– Да отчего же? – сказала княжна.
Никто не ответил, и княжна Марья, оглядываясь по толпе, замечала, что теперь все глаза, с которыми она встречалась, тотчас же опускались.
– Отчего же вы не хотите? – спросила она опять.
Никто не отвечал.
Княжне Марье становилось тяжело от этого молчанья; она старалась уловить чей нибудь взгляд.
– Отчего вы не говорите? – обратилась княжна к старому старику, который, облокотившись на палку, стоял перед ней. – Скажи, ежели ты думаешь, что еще что нибудь нужно. Я все сделаю, – сказала она, уловив его взгляд. Но он, как бы рассердившись за это, опустил совсем голову и проговорил:
– Чего соглашаться то, не нужно нам хлеба.
– Что ж, нам все бросить то? Не согласны. Не согласны… Нет нашего согласия. Мы тебя жалеем, а нашего согласия нет. Поезжай сама, одна… – раздалось в толпе с разных сторон. И опять на всех лицах этой толпы показалось одно и то же выражение, и теперь это было уже наверное не выражение любопытства и благодарности, а выражение озлобленной решительности.
– Да вы не поняли, верно, – с грустной улыбкой сказала княжна Марья. – Отчего вы не хотите ехать? Я обещаю поселить вас, кормить. А здесь неприятель разорит вас…
Но голос ее заглушали голоса толпы.
– Нет нашего согласия, пускай разоряет! Не берем твоего хлеба, нет согласия нашего!
Княжна Марья старалась уловить опять чей нибудь взгляд из толпы, но ни один взгляд не был устремлен на нее; глаза, очевидно, избегали ее. Ей стало странно и неловко.
– Вишь, научила ловко, за ней в крепость иди! Дома разори да в кабалу и ступай. Как же! Я хлеб, мол, отдам! – слышались голоса в толпе.
Княжна Марья, опустив голову, вышла из круга и пошла в дом. Повторив Дрону приказание о том, чтобы завтра были лошади для отъезда, она ушла в свою комнату и осталась одна с своими мыслями.

Долго эту ночь княжна Марья сидела у открытого окна в своей комнате, прислушиваясь к звукам говора мужиков, доносившегося с деревни, но она не думала о них. Она чувствовала, что, сколько бы она ни думала о них, она не могла бы понять их. Она думала все об одном – о своем горе, которое теперь, после перерыва, произведенного заботами о настоящем, уже сделалось для нее прошедшим. Она теперь уже могла вспоминать, могла плакать и могла молиться. С заходом солнца ветер затих. Ночь была тихая и свежая. В двенадцатом часу голоса стали затихать, пропел петух, из за лип стала выходить полная луна, поднялся свежий, белый туман роса, и над деревней и над домом воцарилась тишина.
Одна за другой представлялись ей картины близкого прошедшего – болезни и последних минут отца. И с грустной радостью она теперь останавливалась на этих образах, отгоняя от себя с ужасом только одно последнее представление его смерти, которое – она чувствовала – она была не в силах созерцать даже в своем воображении в этот тихий и таинственный час ночи. И картины эти представлялись ей с такой ясностью и с такими подробностями, что они казались ей то действительностью, то прошедшим, то будущим.
То ей живо представлялась та минута, когда с ним сделался удар и его из сада в Лысых Горах волокли под руки и он бормотал что то бессильным языком, дергал седыми бровями и беспокойно и робко смотрел на нее.

wiki-org.ru

Веретено деления Википедия

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено деления почкующихся дрожжей

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Структура

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На центромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Сборка веретена деления

Начало сборки веретена в профазе

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе

Самоорганизация веретена:

1. Нуклеация микротрубочек вблизи хромосом.

2. Соединение и сортировка антипараллельных микротрубочек при участии кинезина-5.

3. Кинезины-4 и -10, закреплённые на плечах хромосом, также участвуют в сортировке и отдаляют минус-концы микротрубочек.

4. Минус-концы микротрубочек скрепляются между собой и образуют полюса деления при участии динеина и кинезина-14.

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

Примечания

  1. ↑ Льюин и др., 2011, с. 506.
  2. ↑ Льюин и др., 2011, с. 508.
  3. ↑ Redei, 2008, p. 1858.
  4. ↑ Evert, Eichhorn, 2013, p. 66.
  5. ↑ Morgan, 2007, p. 125.
  6. 1 2 Morgan, 2007, p. 130.
  7. ↑ Morgan, 2007, p. 124.
  8. ↑ Morgan, 2007, p. 112.
  9. 1 2 Morgan, 2007, p. 113.
  10. ↑ Льюин и др., 2011, с. 520.
  11. 1 2 Morgan, 2007, p. 128.
  12. ↑ Льюин и др., 2011, с. 521.
  13. ↑ Льюин и др., 2011, с. 518.
  14. ↑ Morgan, 2007, p. 131.
  15. 1 2 Morgan, 2007, p. 132.

Литература

  • Evert R. F., Eichhorn S. E. Raven biology of plants. — 8 edition. — W. H. Freeman and Company, 2013. — 880 p. — ISBN 978-1-4292-1961-7.
  • Morgan D. O. The cell cycle: principles of control. — New science press, 2007. — 297 p. — ISBN 978-0-9539181-2-6.
  • Redei G. P. (ed.). Encyclopedia of genetics, genomics, proteomics, and informatics. — 3 edition. — Springer, 2008. — 1822 p. — ISBN 978-1-4020-6753-2.
  • Льюин Б. и др. Клетки. — М.: БИНОМ. Лаборатория знаний, 2011. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.

wikiredia.ru

Веретено деления Вики

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено деления почкующихся дрожжей

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Структура[ | код]

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На центромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Сборка веретена деления[ | код]

Начало сборки веретена в профазе[ | код]

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе[ | код]

Самоорганизация веретена:

1. Нуклеация микротрубочек вблизи хромосом.

2. Соединение и сортировка антипараллельных микротрубочек при участии кинезина-5.

3. Кинезины-4 и -10, закреплённые на плечах хромосом, также участвуют в сортировке и отдаляют минус-концы микротрубочек.

4. Минус-концы микротрубочек скрепляются между собой и образуют полюса деления при участии динеина и кинезина-14.

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена[ | код]

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом[ | код]

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену[ | код]

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид[ | код]

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

Примечания[ | код]

  1. ↑ Льюин и др., 2011, с. 506.
  2. ↑ Льюин и др., 2011, с. 508.
  3. ↑ Redei, 2008, p. 1858.
  4. ↑ Evert, Eichhorn, 2013, p. 66.
  5. ↑ Morgan, 2007, p. 125.
  6. 1 2 Morgan, 2007, p. 130.
  7. ↑ Morgan, 2007, p. 124.
  8. ↑ Morgan, 2007, p. 112.
  9. 1 2 Morgan, 2007, p. 113.
  10. ↑ Льюин и др., 2011, с. 520.
  11. 1 2 Morgan, 2007, p. 128.
  12. ↑ Льюин и др., 2011, с. 521.
  13. ↑ Льюин и др., 2011, с. 518.
  14. ↑ Morgan, 2007, p. 131.
  15. 1 2 Morgan, 2007, p. 132.

Литература[ | код]

  • Evert R. F., Eichhorn S. E. Raven biology of plants. — 8 edition. — W. H. Freeman and Company, 2013. — 880 p. — ISBN 978-1-4292-1961-7.
  • Morgan D. O. The cell cycle: principles of control. — New science press, 2007. — 297 p. — ISBN 978-0-9539181-2-6.
  • Redei G. P. (ed.). Encyclopedia of genetics, genomics, proteomics, and informatics. — 3 edition. — Springer, 2008. — 1822 p. — ISBN 978-1-4020-6753-2.
  • Льюин Б. и др. Клетки. — М.: БИНОМ. Лаборатория знаний, 2011. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.

ru.wikibedia.ru

Веретено деления — Википедия

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено деления почкующихся дрожжей

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На цетромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Сборка веретена деления[править]

Начало сборки веретена в профазе[править]

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе[править]

Самоорганизация веретена:
1. Нуклеация микротрубочек вблизи хромосом.
2. Соединение и сортировка антипараллельных микротрубочек при участии кинезина-5.
3. Кинезины-4 и -10, закреплённые на плечах хромосом, также участвуют в сортировке и отдаляют минус-концы микротрубочек.
4. Минус-концы микротрубочек скрепляются между собой и образуют полюса деления при участии динеина и кинезина-14.

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена[править]

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом[править]

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену[править]

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид[править]

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

  1. ↑ Льюин и др., 2011, с. 506
  2. ↑ Льюин и др., 2011, с. 508
  3. ↑ Redei, 2008, p. 1858
  4. ↑ Evert, Eichhorn, 2013, p. 66
  5. ↑ Morgan, 2007, p. 125
  6. 6,06,1 Morgan, 2007, p. 130
  7. ↑ Morgan, 2007, p. 124
  8. ↑ Morgan, 2007, p. 112
  9. 9,09,1 Morgan, 2007, p. 113
  10. ↑ Льюин и др., 2011, с. 520
  11. 11,011,1 Morgan, 2007, p. 128
  12. ↑ Льюин и др., 2011, с. 521
  13. ↑ Льюин и др., 2011, с. 518
  14. ↑ Morgan, 2007, p. 131
  15. 15,015,1 Morgan, 2007, p. 132
  • Evert R. F., Eichhorn S. E. Raven biology of plants. — 8 edition. — W. H. Freeman and Company, 2013. — 880 p. — ISBN 978-1-4292-1961-7.
  • Morgan D. O. The cell cycle: principles of control. — New science press, 2007. — 297 p. — ISBN 978-0-9539181-2-6.
  • Redei G. P. (ed.). Encyclopedia of genetics, genomics, proteomics, and informatics. — 3 edition. — Springer, 2008. — 1822 p. — ISBN 978-1-4020-6753-2.
  • Льюин Б. и др. Клетки. — М.: БИНОМ. Лаборатория знаний, 2011. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.

wp.wiki-wiki.ru

Веретено деления — WiKi

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено деления почкующихся дрожжей

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На центромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Начало сборки веретена в профазе

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе

Самоорганизация веретена:

1. Нуклеация микротрубочек вблизи хромосом.

2. Соединение и сортировка антипараллельных микротрубочек при участии кинезина-5.

3. Кинезины-4 и -10, закреплённые на плечах хромосом, также участвуют в сортировке и отдаляют минус-концы микротрубочек.

4. Минус-концы микротрубочек скрепляются между собой и образуют полюса деления при участии динеина и кинезина-14.

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

ru-wiki.org

Веретено деления — Википедия (с комментариями)

Ты — не раб!
Закрытый образовательный курс для детей элиты: «Истинное обустройство мира».
http://noslave.org

Материал из Википедии — свободной энциклопедии

Веретено деления в животной клетке

Веретено деления в растительной клетке

Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. Типичное веретено является биполярным — между двумя полюсами образуется веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к кинетохорам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.

Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны, когда цитоплазматические микротрубочки и центросомы (у животных) получают доступ к хромосомам и другим компонентам веретена. Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра.

Структура

Веретено деления типичной клетки млекопитающих состоит из трёх структурных элементов — центросом, микротрубочек и хромосом, — которые образуют симметричную биполярную структуру. На полюсах веретена располагаются центросомы — небольшие органеллы, функционирующие как центры организации микротрубочек. Каждая центросома состоит из пары центриолей, окруженных множеством разных белков. Между полюсами веретена находятся конденсированные хромосомы, состоящие из пары хроматид, скреплённых в области центромеры. На цетромерных участках хромосом находятся кинетохоры — сложные структуры, отвечающие за прикрепление к микротрубочкам веретена[1].

Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называются кинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называются межполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными[2].

У растений, а также в ооцитах некоторых животных центросомы отсутствуют, и образуется ацентросомальное веретено с широкими полюсами[3]. Также на полюсах ацентросомального веретена отсутствуют астральные микротрубочки. В остальном структура веретена растительной клетки соответствует структуре веретена животной клетки.

Сборка веретена деления

Начало сборки веретена в профазе

Сборка веретена деления начинается в профазе. Однако на данном этапе образование полноценного веретена невозможно по причине изоляции хромосом, а также важных моторных, регуляторных и стабилизирующих белков внутри ядра.

У растений, по причине отсутствия центросом, роль центра организации микротрубочек в профазе выполняет ядерная оболочка. Микротрубочки собираются вблизи поверхности ядра и к окончанию профазы ориентируются вдоль оси будущего веретена деления, образуя так называемое профазное веретено[4] .

В животных клетках центром организации микротрубочек является центросома. Поэтому образование веретена деления начинается с разделения и расхождения пары центросом во время профазы. Расхождение центросом в профазе обеспечивают моторные белки динеины. Они закрепляются на внутренней стороне клеточной мембраны и на внешней поверхности ядра. Закреплённые в мембране динеины присоединяются к астральным микротрубочкам и движутся в направлении минус-конца микротрубочки. За счёт этого центросомы перемещаются к противоположным участкам клеточной мембраны и расходятся дальше друг от друга[5].

Сборка веретена в прометафазе

Файл:Self-organization of a bipolar microtubule array.svg Самоорганизация веретена:
1. Нуклеация микротрубочек вблизи хромосом.
2. Соединение и сортировка антипараллельных микротрубочек при участии кинезина-5.
3. Кинезины-4 и -10, закреплённые на плечах хромосом, также участвуют в сортировке и отдаляют минус-концы микротрубочек.
4. Минус-концы микротрубочек скрепляются между собой и образуют полюса деления при участии динеина и кинезина-14.

Сборка веретена зависит от двух ключевых процессов. Во-первых, от формирования биполярного скопления микротрубочек вокруг хромосом. Во-вторых, от прикрепления хромосом к микротрубочкам от противоположных полюсов деления[6]. Присоединение сестринских хроматид к микротрубочкам является неотъемлемой частью процесса сборки веретена. Однако, хромосомы и многие моторные и другие белки, участвующие в формировании полноценного веретена деления изолированы внутри клеточного ядра. А микротрубочки и центросомы (у животных) находятся в цитоплазме. Таким образом, сборка веретена зависит от разрушения ядерной оболочки в прометафазе[7].

Исключение составляет веретено деления почкующихся дрожжей, которое формируется внутри ядра[8].

Самоорганизация веретена

У всех эукариот сборка биполярного веретена деления зависит по большей части от способности компонентов веретена к самоорганизации. Самоорганизация — единственный механизм сборки веретена деления в клетках лишённых центросом[9]. Сборка биполярного веретена без участия центросом называется ацентросомальной. Она характерна для высших растений, а также наблюдается при мейозе на ранних стадиях развития некоторых животных.[10] Более того, предполагается, что самоорганизация микротрубочек является преобладающим механизмом сборки веретена, даже в животных клетках, содержащих центросомы[11].

Самоорганизация веретена начинается после разрушения ядерной мембраны. Цитоплазматические микротрубочки собираются (нуклеируются) вокруг хромосом. Здесь при участии локальных стабилизирующих факторов происходит удлинение накапливающихся микротрубочек. Далее начинается организация микротрубочек с участием трёх групп моторных белков[11][12]:

  • Моторные белки семейства кинезин-5[en] (Eg5) связываются с двумя противоположно ориентированными микротрубочками и одновременно движутся в направлении плюс-конца каждой из них. В итоге происходит сортировка антипараллельных поляризованных микротрубочек и их «сшивка» в районе плюс-конца.
  • Хромокинезины — белковые моторы семейства кинезин-4 и -10, локализованные на плечах хромосом, — связывают микротрубочки находящиеся вблизи хромосом и перемещаются в направлении плюс-конца микротрубочки. Тем самым плечо хромосомы оказывается связано с плюс-концом микротрубочки, а минус-конец оказывается дистанцирован от хромосомы.
  • Третья группа моторных белков перемещается в направлении минус-концов микротрубочек и обеспечивает связку минус-концов на полюсах веретена. К данной группе моторов относятся цитоплазматические динеины, кинезин-14. Динеин участвует в фокусировке полюсов деления совместно с многочисленными ядерными белками, например NuMA1[en] (англ. Nuclear Microtubule-Associated protein 1).
Сборка с участием центросом

Во многих животных клетках, включая человеческие, в сборке веретена участвуют центросомы, являющиеся полюсами веретена деления. Также как и при сборке ацентросомального веретена, моторные и другие белки участвуют в самоорганизации микротрубочек в биполярную структуру, которая фокусируется с помощью минус-концов микротрубочек в области центросом. Центросомы при этом тоже участвуют в сборке веретена и способствуют формированию полюсов деления, но не являются неотъемлемым компонентом веретена, так как процесс сборки может протекать даже при инактивации центросом[9].

В зависимости от времени расхождения центросом относительно момента разрушения ядерной оболочки выделяют два механизма образования веретена[13]:

  1. Если ядерная оболочка разрушается до начала расхождения центросом, то высвободившиеся хромосомы распределяются по цитоплазме, и образуется «однополюсное» веретено с микротрубочками, расходящимися от спаренных центросом. Дальнейшее образование двухполюсного веретена происходит за счёт сил отталкивания перекрывающихся микротрубочек и под действием тянущих сил астральных микротрубочек. Отталкивающее усилие между перекрывающимися микротрубочками создаётся кинезиноподобными белками Eg5. Тянущие силы, приложенные к астральным микротрубочкам, создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны.
  2. Второй вариант сопряжён с расхождением центросом и образованием первичного веретена до разрушения ядерной оболочки. Первичное веретено образуется за счёт тянущих сил астральных микротрубочек, которые создаются цитоплазматическими динеинами, закреплёнными на внутренней поверхности клеточной мембраны и на поверхности ядерной оболочки. Направление расхождения центросом задаётся актиновыми филаментами, которые взаимодействуют с миозином, расположенным в самих центросомах или вдоль микротрубочек. Первичное веретено является нестабильным. Для его устойчивости необходимо взаимодействие с кинетохорами хромосом и другими белками, находящимися внутри клеточного ядра.
Присоединение хромосом к веретену

Наиболее изучен механизм присоединения хромосом к веретену в животных клетках содержащих центросомы. Во время профазы вокруг центросом формируется звёздчатая структура из микротрубочек, расходящихся в радиальном направлении. Область ядра после разрушения ядерной мембраны активно зондируется динамически нестабильными микротрубочками, которые захватываются кинетохорами хромосом. Часть хромосом быстро связывается с микротрубочками от противоположных полюсов. Другая часть хромосом сначала присоединяется к микротрубочкам исходящим от одного из полюсов. После чего перемещается в направлении соответствующего полюса. Затем связанные с одним полюсом хромосомы захватывают микротрубочки от противоположного полюса. В процессе метафазы к каждому кинетохору присоединяется порядка 10—40 микротрубочек, которые образуют кинетохорный пучок. Все хромосомы оказываются связанными с противоположными полюсами деления и собираются в метафазную пластинку в центре веретена[6].

Существует также альтернативная модель присоединения кинетохоров к веретену, подходящая как для клеток с центросомами, так и для клеток лишённых центросом. Согласно этой модели вблизи хромосом происходит нуклеация коротких микротрубочек при участии гамма-тубулинового кольцевого комплекса. Своим плюс-концом микротрубочки встраиваются в кинетохоры. Вслед за этим происходит регулируемый рост (полимеризация) микротрубочек. Удлиняющиеся минус-концы микротрубочек «сшиваются» и фокусируются в области полюсов деления при участии моторных белков. Центросомы (в случае их наличия) способствуют присоединению кинетохорных микротрубочек к полюсам деления[14].

Биполярная ориентация сестринских хроматид

Для равного распределения хромосом между дочерними клетками, важно, чтобы кинетохоры парных хроматид были присоединены к микротрубочкам, исходящим от противоположных полюсов. Нормальное биполярное прикрепление кинетохоров к противоположным полюсам называется амфителическим. Однако в процессе сборки веретена могут возникать иные прикрепления хромосом. Присоединение одного кинетохора к одному полюсу деления называется монотелическим. Присоединение сразу двух кинетохоров одной хромосомы к одному полюсу деления называется синтелическим. Возможно также и меротелическое прикрепление, при котором один кинетохор соединяется сразу с двумя полюсами[15].

Неверное присоединение отчасти предотвращается за счёт самой геометрии сестринских кинетохоров, которые находятся на противоположных сторонах центромерной области хромосом. К тому же неправильные прикрепления являются нестабильными и обратимыми, а нормальное биполярное крепление кинетохоров является стабильным. Стабильное соединение достигается за счёт сил натяжения, исходящих от противоположных полюсов деления. Основным компонентом регуляторной системы, ответственной за правильное присоединение кинетохоров к противоположным полюсам, является протеинкиназа aurora B[15].

Напишите отзыв о статье «Веретено деления»

Примечания

  1. Льюин и др., 2011, с. 506.
  2. Льюин и др., 2011, с. 508.
  3. Redei, 2008, p. 1858.
  4. Evert, Eichhorn, 2013, p. 66.
  5. Morgan, 2007, p. 125.
  6. 1 2 Morgan, 2007, p. 130.
  7. Morgan, 2007, p. 124.
  8. Morgan, 2007, p. 112.
  9. 1 2 Morgan, 2007, p. 113.
  10. Льюин и др., 2011, с. 520.
  11. 1 2 Morgan, 2007, p. 128.
  12. Льюин и др., 2011, с. 521.
  13. Льюин и др., 2011, с. 518.
  14. Morgan, 2007, p. 131.
  15. 1 2 Morgan, 2007, p. 132.

Литература

  • Evert R. F., Eichhorn S. E. Raven biology of plants. — 8 edition. — W. H. Freeman and Company, 2013. — 880 p. — ISBN 978-1-4292-1961-7.
  • Morgan D. O. The cell cycle: principles of control. — New science press, 2007. — 297 p. — ISBN 978-0-9539181-2-6.
  • Redei G. P. (ed.). Encyclopedia of genetics, genomics, proteomics, and informatics. — 3 edition. — Springer, 2008. — 1822 p. — ISBN 978-1-4020-6753-2.
  • Льюин Б. и др. Клетки. — М.: БИНОМ. Лаборатория знаний, 2011. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.

Отрывок, характеризующий Веретено деления

Но, с другой стороны, он был ещё и очень умным человеком, и, несмотря на жажду что-то иметь, он почти всегда умел мыслить. Поэтому буквально через какое-то мгновение, его взгляд понемножечку начал темнеть, и расширившиеся чёрные глаза уставились на меня с немым, но очень настойчивым вопросом, и я с удовлетворением увидела, что он наконец-то начал понимать настоящий смысл, показанного ему, моего маленького «трюка»…
– Значит, всё это время Вы могли просто «уйти»?!.. Почему же Вы не ушли, Изидора?!! – почти не дыша, прошептал Караффа.
В его взгляде горела какая-то дикая, неисполнимая надежда, которая, видимо, должна была исходить от меня… Но по мере того, как я отвечала, он увидел, что ошибался. И «железный» Караффа, к величайшему моему удивлению, поник!!! На мгновение мне даже показалось, что внутри у него что-то оборвалось, будто он только что обрёл и тут же потерял что-то для него очень жизненно важное, и возможно, в какой-то степени даже дорогое…
– Видите ли, жизнь не всегда так проста, как нам кажется… или как нам хотелось бы её видеть, Ваше святейшество. И самое простое нам иногда кажется самым правильным и самым реальным. Но это далеко не всегда, к сожалению, является правдой. Да, я давным-давно могла уйти. Но что от этого изменилось бы?.. Вы нашли бы других «одарённых», наверняка не столь сильных, как я, из которых бы также попытались бы «выбить» интересующие Вас знания. А у этих бедняг не было бы даже малейшей надежды на сопротивление вам.
– И Вы считаете, что она есть у Вас?.. – с каким-то болезненным напряжением спросил Караффа.
– Без надежды человек мёртв, Ваше святейшество, ну, а я, как видите, ещё живая. И пока я буду жить – надежда, до последней минуты, будет теплиться во мне… Такой уж мы – ведьмы – странный народ, видите ли.
– Что ж, думаю, на сегодня разговоров достаточно! – неожиданно зло воскликнул Караффа. И не дав мне даже испугаться, добавил: – Вас отведут в ваши комнаты. До скорой встречи, мадонна!
– А как же мой отец, Ваше святейшество? Я хочу присутствовать при том, что будет происходить с ним. Каким бы ужасным это не являлось…
– Не беспокойтесь, дорогая Изидора, без Вас это даже не было бы таким «забавным»! Обещаю, Вы увидите всё, и я очень рад, что Вы изъявили такое желание.
И довольно улыбнувшись, уже повернулся к двери, но вдруг что-то вспомнив, остановился:
– Скажите, Изидора, когда Вы «исчезаете» – имеет ли для Вас значение, откуда Вы это делаете?..
– Нет, Ваше святейшество, не имеет. Я ведь не прохожу сквозь стены. Я просто «таю» в одном месте, чтобы тут же появиться в другом, если такое объяснение даст Вам хоть какую-то картинку, – и, чтобы его добить, нарочно добавила, – Всё очень просто, когда знаешь как это делать… святейшество.
Караффа ещё мгновение пожирал меня своими чёрными глазами, а потом повернулся на каблуках и быстро вышел из комнаты, будто боясь, что я вдруг для чего-то его остановлю.
Я прекрасно понимала, почему он задал последний вопрос… С той же самой минуты, как он увидел, что я могу вдруг взять и так просто исчезнуть, он ломал свою гордую голову, как бы покрепче меня куда-то «привязать», или, для надёжности, посадить в какой-нибудь каменный мешок, из которого уж точно у меня не осталось бы надежды никуда «улететь»… Но, своим ответом, я лишила его покоя, и моя душа искренне радовалась этой маленькой победе, так как я знала наверняка, что с этого момента Караффа потеряет сон, стараясь придумать, куда бы понадёжнее меня упрятать.
Это, конечно же, были только лишь забавные, отвлекающие от страшной реальности моменты, но они помогали мне хотя бы уж при нём, при Караффе на мгновение забыться и не показывать, как больно и глубоко ранило меня происходящее. Я дико хотела найти выход из нашего безнадёжного положения, желая этого всеми силами своей измученной души! Но только лишь моего желания победить Караффу было недостаточно. Я должна была понять, что делало его таким сильным, и что же это был за «подарок», который он получил в Мэтэоре, и который я никак не могла увидеть, так как он был для нас совершенно чужим. Для этого мне нужен был отец. А он не отзывался. И я решила попробовать, не отзовётся ли Север…
Но как я не пыталась – он тоже почему-то не хотел выходить со мной на контакт. И я решила попробовать то, что только что показала Караффе – пойти «дуновением» в Мэтэору… Только на этот раз я понятия не имела, где находился желанный монастырь… Это был риск, так как, не зная своей «точки проявления», я могла не «собрать» себя нигде вообще. И это была бы смерть. Но пробовать стоило, если я надеялась получить в Мэтэоре хоть какой-то ответ. Поэтому, стараясь долго не думать о последствиях, я пошла…
Настроившись на Севера, я мысленно приказала себе проявиться там, где в данное мгновение мог находиться он. Я никогда не шла вслепую, и большой уверенности моей попытке это, естественно, не прибавляло… Но терять всё равно было нечего, кроме победы над Караффой. А из-за этого стоило рискнуть…
Я появилась на краю очень крутого каменного обрыва, который «парил» над землёй, будто огромный сказочный корабль… Вокруг были только горы, большие и малые, зеленеющие и просто каменные, где-то в дали переходящие в цветуще луга. Гора, на которой стояла я, была самой высокой и единственной, на верхушке которой местами держался снег… Она гордо высилась над остальными, как сверкающий белый айсберг, основание которого прятало в себе невидимую остальными загадочную тайну…
От свежести чистого, хрустящего воздуха захватывало дыхание! Искрясь и сверкая в лучах жгучего горного солнца, он лопался вспыхивающими снежинками, проникая в самые «глубинки» лёгких… Дышалось легко и свободно, будто в тело вливался не воздух, а удивительная животворная сила. И хотелось вдыхать её бесконечно!..
Мир казался прекрасным и солнечным! Будто не было нигде зла и смерти, нигде не страдали люди, и будто не жил на земле страшный человек, по имени Караффа…
Я чувствовала себя птицей, готовой расправить свои лёгкие крылья и вознестись высоко-высоко в небо, где уже никакое Зло не смогло бы меня достать!..
Но жизнь безжалостно возвращала на землю, жестокой реальностью напоминая причину, по которой я сюда пришла. Я огляделась вокруг – прямо за моей спиной высилась слизанная ветрами, сверкающая на солнце пушистым инеем, серая каменная скала. А на ней… белой звёздной россыпью качались роскошные, крупные, невиданные цветы!.. Гордо выставив под солнечные лучи свои белые, словно восковые, остроконечные лепестки, они были похожи на чистые, холодные звёзды, по ошибке упавшие с небес на эту серую, одинокую скалу… Не в состоянии оторвать глаза от их холодной, дивной красоты, я опустилась на ближайший камень, восторженно любуясь завораживающей игрой светотеней на слепяще-белых, безупречных цветках… Моя душа блаженно отдыхала, жадно впитывая чудесный покой этого светлого, чарующего мгновения… Кругом витала волшебная, глубокая и ласковая тишина…
И вдруг я встрепенулась… Я вспомнила! Следы Богов!!! Вот, как назывались эти великолепные цветы! По старой-престарой легенде, которую давным-давно рассказывала мне моя любимая бабушка, Боги, приходя на Землю, жили высоко в горах, вдали от мирской суеты и людских пороков. Долгими часами размышляя о высоком и вечном, они закрывались от Человека завесой «мудрости» и отчуждения… Люди не знали, как их найти. И только нескольким посчастливилось узреть ИХ, но зато, позже этих «удачливых» никто никогда больше не видывал, и не у кого было спросить путь к гордым Богам… Но вот однажды умирающий воин забрался высоко в горы, не желая живым сдаваться врагу, победившему его.
Жизнь оставляла грустного воина, вытекая последними каплями остывающей крови… И никого не было рядом, чтобы проститься, чтобы омыть слезами его последний путь… Но вот, уже ускользая, его взгляд зацепился за дивную, невиданную, божественную красоту!.. Непорочные, снежно-белые, удивительнейшие цветы окружали его… Их чудесная белизна омывала душу, возвращая ушедшую силу. Призывала к жизни … Будучи не в силах шевельнуться, он внимал их холодный свет, открывая ласке одинокое сердце. И тут же, у него на глазах, закрывались его глубокие раны. Жизнь возвращалась к нему, ещё сильнее и яростнее, чем при рождении. Снова почувствовав себя героем, он поднялся… прямо перед его взором стоял высокий Старец…
– Ты вернул меня, Боже? – восторженно спросил воин.
– Кем ты есть, человече? И почему рекёшь меня Господом? – удивился старец.
– Кто же другой мог совершить подобное? – прошептал человек. – И живёшь ты почти, что в небе… Значит ты Бог.
– Я не Бог, Я потомок его… Благо – истинный… Заходи, коль пришёл, в нашу обитель. С чистым сердцем и чистым помыслом ты пришёл жизнь пращать… Вот и возвратили тебя. Радуйся.
– Кто возвратил меня, Старче?
– Они, радимые, «стопы господние»… – указав на дивные цветы, качнул головой Старец.
Вот с тех пор и пошла легенда о Цветах Господних. Говорят, они всегда растут у обителей Божьих, чтобы путь указать пришедшим…
Задумавшись, я не заметила, что осматриваюсь вокруг… и буквально тут же очнулась!.. Мои удивительные чудо-цветы росли лишь вокруг узенькой, тёмной щели, зиявшей в скале, как почти невидимый, «природный» вход!!! Обострившееся вдруг чутьё, повело меня именно туда…
Никого не было видно, никто не выходил. Чувствуя себя неуютно, приходя непрошенной, я всё же решила попробовать и подошла к щели. Опять же, ничего не происходило… Ни особой защиты, ни каких либо других неожиданностей не было. Всё оставалось величественным и спокойным, как от начала времён… Да и от кого было здесь защищаться? Только от таких же одарённых, какими были сами хозяева?.. Меня вдруг передёрнуло – но ведь мог появиться ещё один такой же «Караффа», который был бы в какой-то степени одарённым, и так же просто бы их «нашёл»?!..
Я осторожно вошла в пещеру. Но и здесь ничего необычного не произошло, разве что, воздух стал каким-то очень мягким и «радостным» – пахло весной и травами, будто я находилась на сочной лесной поляне, а не внутри голой каменной скалы… Пройдя несколько метров, я вдруг поняла, что становится всё светлее, хотя, казалось бы, должно было быть наоборот. Свет струился откуда-то сверху, здесь внизу распыляясь в очень мягкое «закатное» освещение. В голове тихо и ненавязчиво зазвучала странная, успокаивающая мелодия – ничего подобного мне никогда раньше не приходилось слышать… Необычайное сочетание звуков делало мир вокруг лёгким и радостным. И безопасным…
В странной пещере было очень тихо и очень уютно… Единственное, что чуточку настораживало – всё сильнее нарастало ощущение чужого наблюдения. Но оно не было неприятным. Просто – заботливый взгляд родителя за несмышлёным малышом…
Коридор, по которому я шла, начал расширяться, переходя в огромный высокий каменный зал, по краям которого располагались простые каменные сидения, похожие на длинные скамьи, выбитые кем-то прямо в скале. А посередине этого странного зала высился каменный постамент, на котором «горел» всеми цветами радуги огромный бриллиантовый кристалл… Он сверкал и переливался, ослепляя разноцветными вспышками, и был похож на маленькое солнце, почему-то вдруг кем-то запрятанное в каменную пещеру.
Я подошла поближе – кристалл засиял ярче. Это было очень красиво, но не более, и никакого восторга или приобщения к чему-то «великому» не вызывало. Кристалл был материальным, просто невероятно большим и великолепным. Но и только. Он не был чем-то мистическим или значимым, а всего лишь необычайно красивым. Только вот я пока никак не могла понять, почему этот с виду совершенно вроде бы простой «камень» реагировал на приближение человека? Могло ли оказаться возможным, что его каким-то образом «включало» человеческое тепло?
– Ты совершенно права, Изидора… – вдруг послышался чей-то ласковый голос. – Недаром, тебя ценят Отцы!
Вздрогнув от неожиданности, я обернулась, тут же радостно воскликнув – рядом стоял Север! Он был по-прежнему приветливым и тёплым, только чуточку грустным. Как ласковое солнце, которое вдруг закрыла случайная туча…
– Здравствуй Север! Прости, что пришла непрошенной. Я звала тебя, но ты не явился… Тогда я решила сама попробовать найти тебя. Скажи, что означают твои слова? В чём моя правота?
Он подошёл к кристаллу – тот засиял ещё ярче. Свет буквально слепил, не давая на него смотреть.
– Ты права насчёт этого «дива»… Мы нашли его очень давно, много сотен лет тому назад. И теперь он служит хорошую службу – защитой против «слепых», тех, которые случайно попали сюда. – Север улыбнулся. – Для «желающих, но не могущих»… – и добавил. – Как Караффа. Но это не твой зал, Изидора. Пойдём со мной. Я покажу тебе твою Мэтэору.
Мы двинулись вглубь зала, проходя, стоящие по краям, какие-то огромные белые плиты с выбитыми на них письменами.
– Это не похоже на руны. Что это, Север? – не выдержала я.
Он опять дружески улыбнулся:
– Руны, только очень древние. Твой отец не успел тебя научить… Но если захочешь – я научу тебя. Только приходи к нам, Изидора.
Он повторял уже слышанное мною.
– Нет! – сразу же отрезала я. – Я не поэтому сюда пришла, ты знаешь, Север. Я пришла за помощью. Только вы можете помочь мне уничтожить Караффу. Ведь в том, что он творит – и ваша вина. Помогите же мне!
Север ещё больше погрустнел… Я заранее знала, что он ответит, но не намеревалась сдаваться. На весы были поставлены миллионы хороших жизней, и я не могла так просто отказаться от борьбы за них.
– Я уже объяснил тебе, Изидора…
– Так объясни ещё! – резко прервала его я. – Объясни мне, как можно спокойно сидеть, сложа руки, когда человеческие жизни гаснут одна за другой по твоей же вине?! Объясни, как такая мразь, как Караффа, может существовать, и ни у кого не возникает желание даже попробовать уничтожить его?! Объясни, как ты можешь жить, когда рядом с тобой происходит такое?..
Горькая обида клокотала во мне, пытаясь выплеснуться наружу. Я почти кричала, пытаясь достучаться до его души, но чувствовала, что теряю. Обратного пути не было. Я не знала, получится ли ещё когда-нибудь попасть туда, и должна была использовать любую возможность, прежде чем уйти.

o-ili-v.ru