Закон Ампера — Студопедия
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
Направление силы Ампера определяется по правилу левой руки.
Правило левой руки: если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90
МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.
Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой
где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.
Рис.1
Модуль вектора магнитной индукции (1) находится по формуле
где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv
Действие МП на движущийся заряд.
Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В — индукция магнитного поля, в котором заряд движется.
Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.
Модуль силы Лоренца, как уже известно, равен F = QvB sin a; где α — угол между v и В.
МП не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.
Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.
Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает.
В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы Лоренца: F = QE + Q[v,B]
Сила Ампера, Лоренца.
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.
Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:
F = B.I.l. sin α — закон Ампера.
Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:
Явление электромагнитной индукции. Закон Фарадея. ЭДС индукции в движущихся проводниках. Самоиндукция.
Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.
Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит. Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током.
Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром.
Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.
Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.
Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:
где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.
Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.
Обобщением закона Фарадея и правила Ленца является закон Фарадея — Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:
Это выражение представляет собой основной закон электромагнитной индукции.
При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.
Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности
Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае
Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять
dA = IdФm,
где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.
εIdt = IdФm + I2Rdt.
Разделив обе части равенства на Idt, получим
Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции
Электромагнитные колебания. Колебательной контур.
Электромагнитные колебания — это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.
Колебательный контур — это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:
Электромагнитные волны и их свойства.
В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.
Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.
Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.
Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;
Объемная плотность энергии электромагнитного поля . Практическое использование электромагнитных явлений весьма широкое. Это — системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назначения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.
Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.
Геометрическая оптика. Законы ГО.
Геометрическая (лучевая) оптика использует идеализированное представление о световом луче – бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ – длина световой волны, – характерный размер
предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:
h/D << 1 т. е. геометрическая оптика, строго говоря, применима лишь к бесконечно коротким волнам.
В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.
Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.
Основные законы геометрической оптики.
Перечислим основные законы оптики, следующие из опытных данных:
1) Прямолинейное распространение.
2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.
3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу
Отражения.
4) Закон преломления света.
Закон преломления: луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости – плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.
Sin i1/ sin i2 = n2/n1 = n21
где – относительный показатель преломления второй среды относительно первой среды. n21
Если вещество 1 – пустота, вакуум, то n12 → n2 – абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 – воздух, 2 – стекло), а справа – отношение их абсолютных показателей преломления.
5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.
Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.
Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin
(i1)пр = n2 / n1 .
Магнитная сила Ампера
Возьмем прямой проводник, изготовленный из алюминия, и подвесим его на тонких и гибких проводах таким образом, чтобы он находился между полюсами подковообразного постоянного магнита как на рисунке (а). Если в проводнике пропустить ток, проводник отклонится от положения равновесия — рисунок (б). Причиной такого отклонения является сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, французский физик, математик и химик Андре Мари Ампер. Именно поэтому это явление называют магнитной силой Ампера.
Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.
Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, которая расположена в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.
Значение силы Ампера (FA) вычисляют по формуле:
где В — магнитная индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Угол α — это угол между направлением вектора магнитной индукции и направлением тока в проводникеОбратите внимание! Магнитное поле не будет действовать на проводник с током (FA= 0), если проводник расположен параллельно магнитным линиям поля (sin α = 0).
Определениенаправления силы Ампера
по правилу левой руки
Чтобы определить направление силы Ампера, используют правило левой руки:
Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
На рисунке слева показано определения направления силы Ампера, действующая на проводник, расположенный в однородном магнитном поле. Давайте определим направление тока в проводнике, направление магнитной индукции и направление силы Ампера.
Получаем формулу для определения модуля магнитной индукции
Если проводник расположен перпендикулярно к линиям магнитной индукции (α = 90 °, sin α = 1), то поле действует на проводник с максимальной силой:
Отсюда получаем формулу для определения модуля магнитной индукции:
Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.
Например, если уменьшить силу тока в проводнике, то изменится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.
В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:
1Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.
Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера
Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.
Анализ задачи:
Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.
Решение:
В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.
Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.
1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).
2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.
3) Приходим к выводу: проводник А привлекается к проводнику В.
Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.
1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).
2) Определим направление силы Ампера, действующая на проводник В.
3) Приходим к выводу: проводник В привлекается к проводнику А.
Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.
Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?
Анализ задачи:
Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:
- сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх)
- значение силы Ампера равна значению силы тяжести FA = Fтяж
Направление тока определим, воспользовавшись правилом левой руки.
Решение:
Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.
Учитываем, что FA = Fтяж. FA= BIlsinα, где sin α = 1; Fтяж = mg
Из последнего выражения найдем силу тока: I = mg/Bl
Проверим единицу, найдем значение искомой величины.
Ответ: I = 8 А; Ток в направлении от нас.
Подводим итоги
Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
Закон Ампера
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: \( \overrightarrow{F} \),\( \overrightarrow{F}_{A} \). Сила (\( \overrightarrow{F} \)), которая действует на прямолинейный проводник с током (I), всегда перпендикулярна проводнику и направлению вектора магнитной индукции (\( \overrightarrow{B} \)). В том случае, если прямолинейный проводник расположен параллельно вдоль направления линий магнитного поля, поле не действует.
Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.
Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.
Закон Ампера
Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.
Для прямолинейного проводника сила Ампера имеет вид:
\[ \large{\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot \overrightarrow{l} \cdot sin(α) \]
где: \( I \) — сила тока, которая течет в проводнике, \( \overrightarrow{B} \) — вектор индукции магнитного поля, в которое проводник помещен, \( \overrightarrow{l} \) — длина проводника в поле, направление задано направлением тока, \( \alpha \) — угол между векторами \( \overrightarrow{l\ }и\ \overrightarrow{B} \).
Этой формулой можно пользоваться:
- если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
- если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
\[ \large{d\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot d\overrightarrow{l} \cdot sin(α) \]
Значение закона Ампера
На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \( 2\cdot {10}^{-7}Н \) на каждый метр длины.
Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \( 2\cdot {10}^{-7} \) Ньютона.
Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Источник
| Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Физический справочник / / Физика для самых маленьких. Шпаргалки. Школа. / / Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля Поделиться:
|
Если внести проводник с током в магнитном поле (рис. 86, а), то в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление магнитных линий, и они, стремясь сократиться, будут выталкивать проводник вниз, (рис. 86, б).
Сила, действующая на проводник с током, помещенный в магнитное иоле, называется электромагнитной силой. Направление этой силы можно определить по «правилу левой руки»: если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы (рис. 87).
Из рис. 88 видно, что направление силы, действующей на проводник, можно изменить, либо меняя полюсы и изменяя этим направление магнитного поля, либо меняя направление тока в проводнике.
Если же поменять направление поля и направление тока в проводнике одновременно, то направление силы, действующей на проводник, не изменится.
Сила F, действующая на проводник с током, помещенный в магнитное поле (рис. 89), зависит от величины магнитной индукции В, величины тока I в проводнике, активной длины проводника l и синуса углаαмежду вектором индукции и направлением тока в проводнике:
Для прямолинейного проводника с током, помещенного перпендикулярно к направлению магнитного поля, сила, действующая на проводник, будет равна
так как в этом случае
Вышеприведенная формула является выражением закона электромагнитных сил. Электромагнитные силы, действующие на проводники с током, которые расположены в магнитном поле, используются в различных электродвигателях для получения вращающего момента, иными словами, для преобразования электрической энергии в механическую. В электрических генераторах (т. е. машинах, преобразующих механическую энергию в электрическую) эти силы создают тормозящий (противодействующий) момент, который преодолевается первичным двигателем, приводящим в движение генератор.
Электромеханические воздействия магнитного поля на проводники с током используются также в магнитоэлектрических измерительных приборах, применяемых в цепях постоянного тока.
План решения задач
1. При расчете силы Ампера, действующей на проводник с током в магнитном поле, решение следует начать с рисунка, на котором нужно отразить форму проводника и направление вектора магнитной индукции поля, в котором находится проводник.
2. Необходимо иметь в виду, что формула силы Ампера справедлива только для прямого проводника с током длиной , который находится в однородном магнитном поле с индукцией . В случае неоднородного МП, а также для проводника криволинейной формы, проводник следует разделить на элементы тока и показать на рисунке векторы сил , действующих на элементы тока. Для этого необходимо выбрать два элемента тока, расположенных симметрично. Направление векторов определяем по правилу векторного произведения или по правилу левой руки: располагаем руку так, чтобы линии магнитной индукции входили в ладонь, четыре пальца направляем вдоль тока , тогда отогнутый большой палец покажет направление силы Сила, действующая на весь проводник, определяется как сумма векторов элементарных сил по всей длине проводника :
.
3. Свободный замкнутый контур с током (рамка или виток) устанавливается в магнитном поле так, чтобы его магнитный момент был сонаправлен с вектором магнитной индукции . При этом механический (вращающий) момент , а силы Ампера , действующие на элементы тока контура, растягивают его. Такое положение ( контура с током в однородном магнитном поле является состоянием устойчивого равновесия контура.
Задача 32. По трем параллельным прямым проводникам, находящимся на одинаковом расстоянии друг от друга (рис. 63 а) текут одинаковые токи В двух проводниках направления токов совпадают. Вычислите для каждого проводника силу, действующую на единицу длины проводника.
Дано Решение
Сначала рассмотрим взаимодействие двух проводников – первого и второго (рис. 63 б). На второй проводник с током действует магнитное поле с индукцией , созданное током в первом проводе (соответственно, и на первый проводник действует магнитное поле , созданное вторым проводом). Выберем на втором проводнике элемент тока , проведем линию магнитной индукции (это окружность радиусом ) и по касательной к ней направим вектор . Сила Ампера, действующая на выбранный элемент тока второго проводника со стороны МП первого тока
(1)
Модуль этой силы
, (2)
где угол между векторами и (линия магнитного поля расположена в плоскости, перпендикулярной проводу). Согласно формуле (2), сила, действующая со стороны первого провода на единицу длины второго провода:
(3)
В формуле (3) индукция МП, созданная прямым длинным проводом с током в точках на расстоянии от провода, определяется следующим выражением:
(4)
Направление силы определяем по правилу левой руки, располагая ладонь в плоскости рисунка: элемент тока притягивается к первому проводнику. По третьему закону Ньютона, на элемент тока первого проводника будет действовать сила , т. е. равная по модулю (см. формулу (3)) и противоположно направленная (см. рис. 63 б). Таким образом, параллельные токи одинакового направления притягиваются друг к другу. Изменим мысленно на рис. 63 б направление второго тока на противоположное (как ток ) и правило левой руки покажет, что сила, действующая на элемент тока , направлена вправо, т. е. параллельные токи противоположных направлений взаимно отталкиваются.
На каждый из проводников действуют магнитные поля двух других токов. Величину каждой силы парного взаимодействия -того и -того проводов запишем, подставляя индукцию магнитного поля, определяемую формулой (4) (в данной задаче ), в формулу (3):
. (5)
В соответствии с полученным выражением (5), величина силы парного взаимодействия на единицу длины одинакова для каждого проводника.
Результирующую силу, действующую на каждый проводник, находим с помощью принципа суперпозиции сил:
(6)
Покажем эти силы магнитного взаимодействия токов на рис. 63 в, учитывая, во-первых, взаимное направление токов, и во-вторых, равенство модулей всех сил парного взаимодействия . На рисунке заменим элементарную силу силой, действующей на весь i-тый провод со стороны -того тока, так как эти силы сонаправлены: .
Согласно формулам (6), сложим по два вектора сил, действующих на каждый проводник, геометрически: по правилу параллелограмма (треугольника) (см. рис. 63 в). Так как треугольники, имеющие сторонами векторы сил , равносторонние, то модули этих сил
(7)
Модуль силы найдем по теореме косинусов:
(8)
Силы, действующие на единицу длины провода, с учетом формулы (5), представятся выражениями, соответствующими формулам (7) и (8):
; (9)
(10)
Вычисляем силы: а) на единицу длины первого и второго провода:
.
б) на единицу длины третьего провода:
.
Задача 33. Квадратная проволочная рамка со стороной расположена в одной плоскости с длинным прямым поводом (рис. 64 а). Расстояние от провода до ближайшей стороны рамки . Ток в проводе , в рамке . Определите силы , действующие на каждую сторону рамки, и силу, действующую на всю рамку.
Дано Решение
Индукция магнитного поля, создаваемого длинным прямым проводом с током в точке, находящейся на расстоянии от провода, определяется следующей формулой:
. (1)
Величина уменьшается по мере увеличения расстояния , следовательно, это магнитное поле неоднородное. Направление вектора определяем по такому вращению буравчика, чтобы винт перемещался бы вдоль тока . В области, где находится рамка, вектор направлен перпендикулярно плоскости рамки «от нас» (рис. 64 б).
Найдем силу , действующую на сторону , суммируя бесконечно малые силы , действующие на элементы тока :
; (2)
(3)
По правилу левой руки определяем, что все векторы , перпендикулярные вектору магнитной индукции , лежат в плоскости рамки, а в этой плоскости они перпендикулярны стороне . Силы являются сонаправленными, причем, сторона притягивается к проводу, так как ток в ней одинакового направления с током в проводе (см. рис. 64 б). Модуль силы :
(4)
Здесь величина (в соответствии с формулой (1), в которой для стороны ) одинакова во всех точках МП, где находится сторона рамки . Тогда действующая на нее сила
(5)
Аналогичный расчет будет и для силы , действующей на сторону рамки , так как вдоль этой стороны величина также одинакова, но меньше, чем для стороны , так как расстояние от провода больше: . Соответственно и модуль силы :
(6)
Вектор также перпендикулярен стороне рамки ( ), но он направлен от провода с током : токи в проводе и в стороне противоположных направлений, поэтому они отталкиваются (см. рис. 64 б).
Силы , действующие на стороны и рамки с током, также перпендикулярны элементам тока и вектору магнитной индукции , в соответствии с векторным произведением в формуле (2), и направления их определяем также по правилу левой руки (см. рис. 64 б). Стороны рамки и расположены одинаково по отношению к проводу с током , магнитное поле которого действует на ток в рамке. Следовательно, модули этих сил одинаковы: .
Рассчитаем, например, силу , суммируя элементарные силы по длине стороны :
. (7)
Здесь величина не одинакова вдоль стороны , но уменьшается по мере удаления элемента тока от провода, согласно формуле (1). В подинтегральном выражении (7) заменим (см. рис. 64 б), чтобы перейти к одной переменной – расстоянию элемента тока от провода; пределы по этой переменной: , – соответствуют начальному и конечному элементам тока на стороне . Продолжим расчет силы
(8)
Вычислим модули сил, действующих на стороны рамки, по формулам (5), (6) и (8):
.
.
.
Найдем результирующую силу, действующую на рамку в целом, складывая векторы сил, действующих на стороны рамки:
(9)
Здесь , так как и вектор (см. рис. 64 б). Так как сила , то модуль результирующей силы
Направление вектора результирующей силы совпадает с направлением большего из векторов сил – с вектором .
Таким образом, в неоднородном магнитном поле на данную рамку с током действует сила в направлении градиента индукции МП: , который направлен в область более сильного МП. Силы растягивают рамку с током, что соответствует данному случаю , где – магнитный момент рамки с током.
Задача 34.На оси контура с током, магнитный момент которого , находится другой такой же контур. Магнитный момент второго контура перпендикулярен оси первого контура. Расстояние межу контурами , причем, размеры контуров малы по сравнению с расстоянием Определите механический момент , действующий на второй контур.
Магнитный момент контура с током – это вектор , направленный по нормали к плоскости контура так, что направление вектора связано с направлением тока в контуре правилом буравчика (правого винта). Первый контур с током создает магнитное поле с индукцией . Величина в точках на оси кругового контура рассчитана в решении задачи 27:
, (1)
где – расстояние от точек контура до точки в МП, в которой определяется величина . Так как по условию задачи расстояние велико по сравнению с радиусом контура, то величина .
На второй контур с током в магнитном поле с индукцией действует механический (вращающий) момент , величина которого определяется следующей формулой:
. (2)
Так как размеры второго контура тоже малы, то величина несущественно изменяется вдоль плоскости второго контура. Поэтому примем ее равной , определяемой формулой (1), в которой . Согласно векторному произведению в формуле (2), вектор перпендикулярен плоскости, в которой лежат векторы и , т. е. он перпендикулярен плоскости рисунка (см. рис. 65). Этот механический момент будет стремиться повернуть второй контур до положения, в котором вектор (при этом величина обратится в нуль).
Модуль вращающего момента, согласно формуле (2),
, (3)
где – угол между векторами магнитного момента контура и индукцией магнитного поля . По условию задачи вектор , а последний создает магнитное поле , следовательно, вектор (см. рис. 65) и .
Подставляя величину магнитной индукции по формуле (1) в выражение (3), получаем следующую расчетную формулу:
. (4)
Вычисляем по формуле (4) механический момент, действующий на второй контур с током в магнитном поле, созданном первым контуром с током:
.
Задача 35.Два прямолинейных длинных параллельных проводника находятся на расстоянии друг от друга. По проводникам в одном направлении текут токи и . Какую работу (на единицу длины проводника) нужно совершить, чтобы раздвинуть эти проводники до расстояния ?
Дано Решение
Параллельные токи одинакового направления притягиваются друг к другу, т. е. второй проводник с током притягивается к первому силой Ампера . Чтобы его отодвинуть от первого проводника, нужно приложить внешнюю силу , незначительно превышающую силу притяжения проводников: . Работа этой внешней силы
(1)
Найдем силу Ампера – силу магнитного взаимодействия проводников с током, как силу, с которой магнитное поле первого проводника действует на ток во втором проводнике:
(2)
В уравнении (2) суммируются элементарные силы , действующие на элементы тока , расположенные по всей длине второго проводника с током. Направление сил определяем по правилу левой руки, размещая ладонь в плоскости рисунка (рис. 66), так как вектор магнитной индукции перпендикулярен плоскости рисунка (он направлен «к нам»). Силы , действующие на элементы тока , сонаправлены, поэтому можем складывать их модули:
(3)
Здесь , так как вектор ; – магнитная индукция поля, созданного прямым током , она определяется формулой
, (4)
где – расстояние от проводника с током до точки, в которой определяется индукция магнитного поля.
Подставим величину в подинтегральное выражение (3) и выполним интегрирование, отметив, что расстояние всех элементов тока второго проводника от первого одинаково, так как проводники параллельные:
(5)
Сила Ампера, действующая на единицу длины проводника, в соответствии с формулой (5), представится следующим выражением:
(6)
Согласно полученной формуле, эта сила уменьшается с увеличением расстояния между проводниками, т. е. имеем дело с работой переменной силы, которая определяется, как сумма элементарных работ, интегралом (1). Работу на единицу длины проводника найдем, подставляя силу по формуле (6) в подинтегральное выражение (1):
(7)
Вычислим работу, которую совершает внешняя сила при удалении от первого проводника с током второго проводника с током на единицу его длины, принимая, что магнитная проницаемость воздуха :
.
Задача 36.Тонкий проводник в виде полукольца радиусом находится в однородном магнитном поле с индукцией . Плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода расположены вдоль линий . По проводнику протекает ток . Определите силу , действующую на проводник.
Выделим на полукольце элемент тока и определим направление действующей на него силы Ампера
(1)
Для этого используем правило левой руки, располагая ладонь в плоскости рисунка (рис. 67). Так как элементы тока кольцевого проводника имеют различную ориентацию, то векторы , перпендикулярные элементам тока , образуют «веер векторов» в плоскости полукольца. Для сложения таких векторов каждый элементарный вектор силы разложим на составляющие по осям :
(2)
Силу, действующую на весь проводник длины , находим, суммируя по всей длине полукольца векторы сил, действующих на элементы тока:
(3)
«Действие магнитного поля на проводник с током»
Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.
Сила Ампера зависит от длины проводника с током, силы тока в проводнике, модуля магнитной индукции и расположения проводника относительно линий магнитной индукции: FA = BIlsinа.
Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.
Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.
Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника l и силе тока I в проводнике. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции В. Соответственно, F = BIl. В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записывается в том случае, если линии магнитной индукции перпендикулярны проводнику с током. Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.
Единица магнитной индукции [В] = 1Н / 1А • 1м = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1Н при силе тока в проводнике 1 А.
Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.
Электрический двигатель
Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.
Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.
В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.
Действие магнитного поля на проводник с током
Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».
Следующая тема: «Электромагнитная индукция. Опыты Фарадея».
Магнитное поле
- Классы
- Класс 1 — 3
- Класс 4 — 5
- Класс 6 — 10
- Класс 11 — 12
- КОНКУРСЫ
- BBS
- 000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса 9
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12 9000al Aggar
Agard Agard Agard Agard Agulis Class 12- Классы
- RS Решения Aggarwal класса 10
- RS Решения Aggarwal класса 11
- RS Решения Aggarwal класса 10 90 003 Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- Решения RD Sharma
- Решения класса RD Sharma
- Решения класса 9 Шарма 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- S0003
- Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Предыдущий год Вопросник
- CBSE Предыдущий год Вопросники Класс 10
- CBSE Предыдущий год Вопросник класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
- CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
- Дополнительные вопросы CBSE 8 класса
- Дополнительные вопросы CBSE 8 по естественным наукам
- CBSE 9 класса Дополнительные вопросы
- CBSE 9 дополнительных вопросов по науке CBSE 9000 Класс 10 Дополнительные вопросы по математике
- Класс 3
- Класс 4
- Класс 5
- Класс 6
- Класс 7
- Класс 8
- Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для физики класса 11
- Решения NCERT для класса 11 Химия Решения для класса 11 Биология
- NCERT Solutions для Класс 12 Физика
- Решения NCERT для 12 класса Химия
- Решения NCERT для 12 класса Биология
- Решения NCERT для 12 класса Математика
- Решения NCERT Класс 12 Бухгалтерский учет
- Решения NCERT Класс 12 Бизнес исследования
- Решения NCERT Класс 12 Экономика
- NCERT Solutions Class 12 Бухгалтерский учет Часть 1
- NCERT Solutions Class 12 Бухгалтерский учет Часть 2
- NCERT Solutions Class 12 Микроэкономика
- NCERT Solutions Class 12 Коммерция
- NCERT Solutions Class 12 Макроэкономика
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6 Maths
- Решения NCERT для класса 6 Science
- Решения NCERT для класса 6 Общественные науки
- Решения NCERT для класса 6 Английский
- Решения NCERT для класса 7 Математика
- Решения NCERT для 7 класса Science
- Решения NCERT для 7 класса Общественные науки
- Решения NCERT для 7 класса Английский
- для 8 класса Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для класса 8 Общественные науки
- NCERT Solutio ns для класса 8 Английский
- Решения NCERT для класса 9 Общественные науки
- Решения NCERT для класса 9 Математика Глава 1
- Решения NCERT Для класса 9 Математика 9 класса Глава 2
- Решения NCERT для математики 9 класса Глава 3
- Решения NCERT для математики 9 класса Глава 4
- Решения NCERT для математики 9 класса Глава 5
- Решения NCERT для математики 9 класса Глава 6
- Решения NCERT для Математика 9 класса Глава 7
- Решения NCERT для математики 9 класса Глава 8
- Решения NCERT для математики 9 класса Глава 9
- Решения NCERT для математики 9 класса Глава 10
- Решения NCERT для математики 9 класса Глава 11
- Решения NCERT для Математика 9 класса Глава 12
- Решения NCERT для математики 9 класса Глава 13
- Решения NCERT для математики 9 класса Глава 14
- Решения NCERT для математики класса 9 Глава 15
- Решения NCERT для науки 9 класса Глава 1
- Решения NCERT для науки 9 класса Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для 9 класса Наука Глава 4
- Решения NCERT для 9 класса Наука Глава 5
- Решения NCERT для 9 класса Наука Глава 6
- Решения NCERT для 9 класса Наука Глава 7
- Решения NCERT для 9 класса Научная глава 8
- Решения NCERT для 9 класса Научная глава
- Научные решения NCERT для 9 класса Научная глава 10
- Научные решения NCERT для 9 класса Научная глава 12
- Научные решения NCERT для 9 класса Научная глава 11
- Решения NCERT для 9 класса Научная глава 13
- Решения NCERT для 9 класса Научная глава 14
- Решения NCERT для класса 9 Science Глава 15
- Решения NCERT для класса 10 Общественные науки
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- решения NCERT для математики класса 10 глава 3
- решения NCERT для математики класса 10 глава 4
- решения NCERT для математики класса 10 глава 5
- решения NCERT для математики класса 10 глава 6
- решения NCERT для математики класса 10 Глава 7
- решения NCERT для математики класса 10 глава 8
- решения NCERT для математики класса 10 глава 9
- решения NCERT для математики класса 10 глава 10
- решения NCERT для математики класса 10 глава 11
- решения NCERT для математики класса 10, глава 12
- Решения NCERT для математики класса 10, глава 13
- соль NCERT Решения для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
- Решения NCERT для науки 10 класса Глава 1 Решения NCERT для науки 10 класса Глава 2
- Класс 11 Коммерческая программа Syllabus
- Учебный курс по бизнес-классу 11000
- Учебная программа по экономическому классу
- Учебная программа по 12 классу
- Учебная программа по 12 классу
- Учебная программа по экономическому классу
- Решения TS Grewal Класс 12 Бухгалтерский учет
- Решения TS Grewal Класс 11 Бухгалтерский учет
- ML Aggarwal Solutions Class 10 Maths
- ML Aggarwal Solutions Class 9 Maths
магнетизм | Определение, примеры, физика и факты
Магнетизм , явление, связанное с магнитными полями, возникающими при движении электрических зарядов. Это движение может принимать разные формы. Это может быть электрический ток в проводнике или заряженных частицах, движущихся в пространстве, или это может быть движение электрона на атомной орбите. Магнетизм также связан с элементарными частицами, такими как электрон, которые имеют свойство, называемое спином.
Основы
Основой магнетизма являются магнитные поля и их влияние на вещество, например, отклонение движущихся зарядов и моментов на других магнитных объектах.Доказательством наличия магнитного поля является магнитная сила на зарядах, движущихся в этом поле; сила находится под прямым углом как к полю, так и к скорости заряда. Эта сила отклоняет частицы без изменения их скорости. Отклонение можно наблюдать по крутящему моменту на стрелке компаса, которая действует для выравнивания иглы с магнитным полем Земли. Игла представляет собой тонкий железный намагниченный кусок, то есть маленький стержневой магнит. Один конец магнита называется северным полюсом, а другой конец — южным полюсом.Сила между северным и южным полюсами привлекательна, тогда как сила между одинаковыми полюсами отталкивающая. Магнитное поле иногда называют магнитной индукцией или плотностью магнитного потока; это всегда символизируется B . Магнитные поля измеряются в единицах тесла (Т). (Другой единицей измерения, обычно используемой для B , является гаусса, хотя она больше не считается стандартной единицей. Один гаусс равен 10 −4 тесла.)
Основным свойством магнитного поля является то, что его поток через любую замкнутую поверхность исчезает.(Закрытая поверхность — это та, которая полностью окружает объем.) Это математически выражается div B = 0 и может быть физически понято с точки зрения линий поля, представляющих B . Эти линии всегда замыкаются на себя, поэтому, если они входят в определенный объем в какой-то момент, они также должны покинуть этот объем. В этом отношении магнитное поле сильно отличается от электрического поля. Линии электрического поля могут начинаться и заканчиваться на заряде, но эквивалентный магнитный заряд не был найден, несмотря на многие поиски так называемых магнитных монополей.
Наиболее распространенным источником магнитных полей является петля электрического тока. Это может быть электрический ток в кольцевом проводнике или движение орбитального электрона в атоме. С обоими этими типами токовых петель связан магнитный дипольный момент, значение которого составляет i , A , произведение тока i и площадь контура A . Кроме того, электроны, протоны и нейтроны в атомах имеют магнитный дипольный момент, связанный с их собственным спином; такие магнитные дипольные моменты представляют собой другой важный источник магнитных полей.Частица с магнитным дипольным моментом часто называется магнитным диполем. (Магнитный диполь можно рассматривать как крошечный стержневой магнит. Он имеет то же магнитное поле, что и магнит, и ведет себя так же во внешних магнитных полях.) При помещении во внешнее магнитное поле магнитный диполь может подвергаться воздействию крутящий момент, который стремится выровнять его с полем; если внешнее поле не является однородным, диполь также может подвергаться воздействию силы.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской.Подпишитесь сегодняВсе вещество проявляет магнитные свойства в некоторой степени. При помещении в неоднородное поле вещество либо притягивается, либо отталкивается в направлении градиента поля. Это свойство описывается магнитной восприимчивостью вещества и зависит от степени намагниченности вещества в поле. Намагниченность зависит от размера дипольных моментов атомов в веществе и степени, в которой дипольные моменты выровнены относительно друг друга.Некоторые материалы, такие как железо, проявляют очень сильные магнитные свойства из-за выравнивания магнитных моментов их атомов в определенных небольших областях, называемых доменами. При нормальных условиях у разных доменов есть поля, которые отменяются, но они могут быть выровнены друг с другом для создания очень больших магнитных полей. Различные сплавы, такие как NdFeB (сплав неодима, железа и бора), сохраняют свои домены выровненными и используются для изготовления постоянных магнитов. Сильное магнитное поле, создаваемое типичным магнитом толщиной в три миллиметра из этого материала, сравнимо с электромагнитом, изготовленным из медной петли, с током в несколько тысяч ампер.Для сравнения, ток в типичной лампочке составляет 0,5 А. Поскольку выравнивание доменов материала создает магнит, дезорганизация упорядоченного выравнивания разрушает магнитные свойства материала. Тепловое перемешивание, возникающее в результате нагревания магнита до высокой температуры, разрушает его магнитные свойства.
Магнитные поля сильно различаются по силе. Некоторые репрезентативные значения приведены в таблице.
Типичные магнитные поля | |
---|---|
внутри атомных ядер | 10 11 Т |
в сверхпроводящих соленоидах | 20 Т |
в сверхпроводящей катушке циклотрон | 5 Т |
возле маленького керамического магнита | 0.1 Т |
Земное поле на экваторе | 4 (10 −5 ) T |
в межзвездном пространстве | 2 (10 −10 ) T |
% PDF-1.3 % 1970 0 объект> endobj Xref 1970 87 0000000016 00000 n 0000003458 00000 n 0000002081 00000 n 0000003717 00000 n 0000004107 00000 n 0000004387 00000 n 0000004537 00000 n 0000004688 00000 n 0000004839 00000 n 0000004985 00000 n 0000005136 00000 n 0000005282 00000 n 0000005428 00000 n 0000005579 00000 n 0000005725 00000 n 0000005875 00000 n 0000006021 00000 n 0000006167 00000 n 0000006318 00000 n 0000006469 00000 n 0000006620 00000 n 0000006766 00000 n 0000006912 00000 n 0000007058 00000 n 0000007204 00000 n 0000007355 00000 n 0000007506 00000 n 0000007652 00000 n 0000007798 00000 n 0000007944 00000 n 0000008090 00000 n 0000008235 00000 n 0000008381 00000 n 0000008527 00000 n 0000008672 00000 n 0000009270 00000 n 0000009623 00000 n 0000010177 00000 n 0000010255 00000 n 0000010496 00000 n 0000010769 00000 n 0000011040 00000 n 0000011601 00000 n 0000011948 00000 n 0000011986 00000 n 0000012209 00000 n 0000012781 00000 n 0000013347 00000 n 0000013840 00000 n 0000014337 00000 n 0000014826 00000 n 0000014968 00000 n 0000015014 00000 n 0000015496 00000 n 0000015975 00000 n 0000018646 00000 n 0000050676 00000 n 0000062631 00000 n 0000062684 00000 n 0000062738 00000 n 0000062792 00000 n 0000062846 00000 n 0000062900 00000 n 0000062954 00000 n 0000063008 00000 n 0000063062 00000 n 0000063116 00000 n 0000063170 00000 n 0000063224 00000 n 0000063278 00000 n 0000063332 00000 n 0000063386 00000 n 0000063440 00000 n 0000063494 00000 n 0000063548 00000 n 0000063602 00000 n 0000063656 00000 n 0000063710 00000 n 0000063764 00000 n 0000063818 00000 n 0000063872 00000 n 0000063926 00000 n 0000063980 00000 n 0000064034 00000 n 0000064089 00000 n 0000064144 00000 n 0000003242 00000 n прицеп ] >> startxref 0 %% EOF 1972 0 obj> stream xb«`b` $ @ (@C @ i) ́OdoHJIl; 3 / R {q- & g͌ = ~ hl8] A # lf $ && xVPҫ @ 5l ՙ 7 Ν 4od * B? ڛ = jd + Nz [K | fZɄS> q.$ ULZŞj> ܴ AMrtccWDi / 3pIou21 ߜ /%.$’]+ ix`;
Leave A Comment