Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ВикипСдия

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΠΎΠ»Π΅ тяТСсти Π—Π΅ΠΌΠ»ΠΈ. На рисункС Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ складываСтся ΠΈΠ· прямолинСйного Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния ΠΈ свободного падСния

Равноуско́рСнноС двиТС́ниС β€” Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΅Π³ΠΎ ускорСниС aβ†’{\displaystyle {\vec {a}}} постоянно ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ[1].

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ этом опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ

v→(t)=v→0+a→t{\displaystyle {\vec {v}}(t)={\vec {v}}_{0}+{\vec {a}}t},

Π³Π΄Π΅ vβ†’0{\displaystyle {\vec {v}}_{0}} β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π°, t{\displaystyle t} β€” врСмя. ВраСктория ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ участка ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈΠ»ΠΈ прямой.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся ΠΏΠΎΠ»Ρ‘Ρ‚ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ Ξ±{\displaystyle \alpha } ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ Π² ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ силы тяТСсти: камСнь Π»Π΅Ρ‚ΠΈΡ‚ с постоянным ускорСниСм aβ†’=gβ†’{\displaystyle {\vec {a}}={\vec {g}}}, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ Π²Π½ΠΈΠ·.

Частным случаСм равноускорСнного двиТСния являСтся

Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ vβ†’{\displaystyle {\vec {v}}} ΠΈ aβ†’{\displaystyle {\vec {a}}} ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ (Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ с ΠΊΠ°ΠΌΠ½Π΅ΠΌ рСализуСтся для Ξ±=900{\displaystyle \alpha =90^{0}} ΠΏΡ€ΠΈ ΠΏΠΎΠ΄ΡŠΡ‘ΠΌΠ΅).

Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ равноускорСнного двиТСния

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит Π² плоскости, содСрТащСй Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ускорСния aβ†’{\displaystyle {\vec {a}}} ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости vβ†’0{\displaystyle {\vec {v}}_{0}}. Π‘ ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ vβ†’=drβ†’/dt{\displaystyle {\vec {v}}={\rm {d}}{\vec {r}}/{\rm {d}}t} (здСсь rβ†’{\displaystyle {\vec {r}}} β€” радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€), траСктория описываСтся Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ

r→(t)=r→0+v→0t+a→t22{\displaystyle {\vec {r}}(t)={\vec {r}}_{0}+{\vec {v}}_{0}t+{\frac {{\vec {a}}t^{2}}{2}}}.

На Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½Π° прСдставляСт собой участок ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ со- ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎ- направлСнности) Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² aβ†’{\displaystyle {\vec {a}}} ΠΈ vβ†’0{\displaystyle {\vec {v}}_{0}} прСвращаСтся Π² ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой.

Для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, скаТСм y{\displaystyle y}, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ записаны Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎ структурС выраТСния:

y(t)=y0+v0yt+ayt22{\displaystyle y(t)=y_{0}+v_{0y}t+{\frac {a_{y}t^{2}}{2}}},

Π³Π΄Π΅ ay{\displaystyle a_{y}} β€” ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ ускорСния вдоль оси y{\displaystyle y}, Π° rβ†’0=x0iβ†’+y0jβ†’+z0kβ†’{\displaystyle {\vec {r}}_{0}=x_{0}{\vec {i}}+y_{0}{\vec {j}}+z_{0}{\vec {k}}} β€” радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ t=0{\displaystyle t=0} (iβ†’{\displaystyle {\vec {i}}}, jβ†’{\displaystyle {\vec {j}}}, kβ†’{\displaystyle {\vec {k}}} β€” ΠΎΡ€Ρ‚Ρ‹).

Π’ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ с ΠΊΠ°ΠΌΠ½Π΅ΠΌ x0=y0=z0=0{\displaystyle x_{0}=y_{0}=z_{0}=0}, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ускорСния ax=az=0{\displaystyle a_{x}=a_{z}=0}, ay=βˆ’g{\displaystyle a_{y}=-g}, Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости vx0=v0cos⁑α{\displaystyle v_{x0}=v_{0}\cos \alpha }, vy0=v0sin⁑α{\displaystyle v_{y0}=v_{0}\sin \alpha }, vz0=0{\displaystyle v_{z0}=0}, ΠΏΡ€ΠΈ этом x(t)=v0xt{\displaystyle x(t)=v_{0x}t}, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, y=tg⁑α⋅xβˆ’g/2v02cos2⁑α⋅x2{\displaystyle y=\operatorname {tg} \alpha \cdot x-g/2v_{0}^{2}\cos ^{2}\alpha \cdot x^{2}}.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ

Π’ случаС равноускорСнного двиТСния любая ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ скорости, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ vx{\displaystyle v_{x}}, зависит ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ:

vx=v0x+axt{\displaystyle v_{x}=v_{0x}+a_{x}t}.

ΠŸΡ€ΠΈ этом ΠΈΠΌΠ΅Π΅Ρ‚ мСсто ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ связь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ (Ξ”x=xβˆ’x0{\displaystyle \Delta x=x-x_{0}}) вдоль ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x{\displaystyle x} ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ вдоль Ρ‚ΠΎΠΉ ΠΆΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹:

Ξ”x=vx2βˆ’v0x22ax{\displaystyle \Delta x={\frac {v_{x}^{2}-v_{0x}^{2}}{2a_{x}}}}.

ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для x{\displaystyle x}-ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ извСстных x{\displaystyle x}-ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости ΠΈ ускорСния:

vx=Β±v0x2+2axΞ”x{\displaystyle v_{x}=\pm {\sqrt {v_{0x}^{2}+2a_{x}\Delta x}}}.

Если ax=0{\displaystyle a_{x}=0}, Ρ‚ΠΎ vx=vox{\displaystyle v_{x}=v_{ox}}, Π° Ξ”x=v0xt{\displaystyle \Delta x=v_{0x}t}.

ВыраТСния для смСщСний Ξ”y{\displaystyle \Delta y}, Ξ”z{\displaystyle \Delta z} ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ скорости вдоль ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ y{\displaystyle y} ΠΈ z{\displaystyle z} ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ Π²ΠΈΠ΄, ΠΊΠ°ΠΊ для Ξ”x{\displaystyle \Delta x} ΠΈ vx{\displaystyle v_{x}}, Π½ΠΎ символ x{\displaystyle x} Π²ΡΡŽΠ΄Ρƒ замСняСтся Π½Π° y{\displaystyle y} ΠΈΠ»ΠΈ z{\displaystyle z}.

Π‘ΡƒΠΌΠΌΠ°Ρ€Π½ΠΎ, ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ составит

|Δr→|=(Δx)2+(Δy)2+(Δz)2{\displaystyle |\Delta {\vec {r}}|={\sqrt {(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}}}},

Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости находится ΠΊΠ°ΠΊ

|v→|=vx2+vy2+vz2{\displaystyle |{\vec {v}}|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}}.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π½Π΅ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎ Π΄ΠΎΠ»Π³ΠΎ: это ΠΎΠ·Π½Π°Ρ‡Π°Π»ΠΎ Π±Ρ‹, Ρ‡Ρ‚ΠΎ, начиная с ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Ρ‚ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t{\displaystyle t}, ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚Π΅Π»Π° |vβ†’|{\displaystyle |{\vec {v}}|} прСвысит Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ скорости свСта Π² Π²Π°ΠΊΡƒΡƒΠΌΠ΅ c{\displaystyle c}, Ρ‡Ρ‚ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ кинСтичСской энСргии Ρ‚ΠΎΡ‡ΠΊΠΈ

Π€ΠΎΡ€ΠΌΡƒΠ»Π° пСрСмСщСния ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ кинСтичСской энСргии. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ пСрСнСсти ускорСниС Π² Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΈ Π΄ΠΎΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ ΠΎΠ±Π΅ части Π½Π° массу Ρ‚Π΅Π»Π°:

maxΞ”x=mvx22βˆ’mv0x22{\displaystyle ma_{x}\Delta x={\frac {mv_{x}^{2}}{2}}-{\frac {mv_{0x}^{2}}{2}}}.

Записав Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ для ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ y{\displaystyle y} ΠΈ z{\displaystyle z} ΠΈ просуммировав всС Ρ‚Ρ€ΠΈ равСнства, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅:

Fβ†’β‹…Ξ”rβ†’=mv22βˆ’mv022{\displaystyle {\vec {F}}\cdot \Delta {\vec {r}}={\frac {mv^{2}}{2}}-{\frac {mv_{0}^{2}}{2}}}.

Π‘Π»Π΅Π²Π° стоит Ρ€Π°Π±ΠΎΡ‚Π° постоянной Ρ€Π°Π²Π½ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ силы Fβ†’{\displaystyle {\vec {F}}}, Π° справа β€” Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ кинСтичСских энСргий Π² ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ двиТСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° прСдставляСт собой матСматичСскоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ кинСтичСской энСргии Ρ‚ΠΎΡ‡ΠΊΠΈ для случая равноускорСнного двиТСния[2].

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ равноускорСнным (Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ) называСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ любой ΠΊΡ€ΠΈΠ²ΠΎΠΉ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ ускорСния, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ скорости, являСтся постоянной. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΏΠΎΠ΄ΠΏΠ°Π΄Π°Π΅Ρ‚ ΠΏΠΎΠ΄ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ равноускорСнного, Π½ΠΎ Π² матСматичСском ΠΏΠ»Π°Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ рассмотрСно Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ.

Π’ этом случаС вводится обобщённая ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° S{\displaystyle S}, часто называСмая ΠΏΡƒΡ‚Ρ‘ΠΌ. Π­Ρ‚Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° соотвСтствуСт Π΄Π»ΠΈΠ½Π΅ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ (Π΄Π»ΠΈΠ½Π΅ Π΄ΡƒΠ³ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ Π²ΠΈΠ΄:

Ξ”S=v2βˆ’v022aΟ„{\displaystyle \Delta S={\frac {v^{2}-v_{0}^{2}}{2a_{\tau }}}},

Π³Π΄Π΅ aΟ„{\displaystyle a_{\tau }} β€” Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ускорСниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Β«ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚Β» Π·Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ модуля скорости Ρ‚Π΅Π»Π°. Для скорости ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

v=Β±v02+2aτΔS{\displaystyle v=\pm {\sqrt {v_{0}^{2}+2a_{\tau }\Delta S}}}.

ΠŸΡ€ΠΈ aΟ„=0{\displaystyle a_{\tau }=0} ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с постоянной ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ

wikiredia.ru

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | Π€ΠΈΠ·ΠΈΠΊΠ° для всСх

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это частный случай Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния.

НСравномСрноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ°) Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ пСрСмСщСния. НапримСр, городской автобус двиТСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ состоит Π² основном ΠΈΠ· Ρ€Π°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

УскорСниС Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ остаётся постоянным ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ (a = const).

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ равноускорСнным ΠΈΠ»ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ разгоняСтся с Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ускорСниСм. Π’ случаС равноускорСнного двиТСния ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ возрастаСт, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости двиТСния.

Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ замСдляСтся. ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΈ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ любоС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся ускорСнным, поэтому Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ отличаСтся ΠΎΡ‚ ускорСнного лишь Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния Π½Π° Π²Ρ‹Π±Ρ€Π°Π½Π½ΡƒΡŽ ось систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния опрСдСляСтся ΠΏΡƒΡ‚Ρ‘ΠΌ дСлСния пСрСмСщСния Ρ‚Π΅Π»Π° Π½Π° врСмя, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΠΎ. Π•Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния срСднСй скорости – ΠΌ/с.

vcp = s / t

МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости

Π½Π° ось ОΠ₯:

vx = x’

это производная ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси).

УскорСниС – это Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая опрСдСляСт быстроту измСнСния скорости Ρ‚Π΅Π»Π°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Β 

Если Ρ‚Π΅Π»ΠΎ двиТСтся прямолинСйно вдоль оси ОΠ₯ прямолинСйной Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚Π΅Π»Π°, Ρ‚ΠΎ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° эту ось опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

vx = v0x Β± axt

Π—Π½Π°ΠΊ Β«-Β» (минус) ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния относится ΠΊ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡƒ двиТСнию. Аналогично Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ уравнСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ускорСниС являСтся постоянным (a = const), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ускорСния – это прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси 0t (оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, рис. 1.15).

Рис. 1.15. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ускорСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ

– это линСйная функция, Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся прямая линия (рис. 1.16).

Рис. 1.16. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 1.16) ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ

ΠŸΡ€ΠΈ этом ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ числСнно Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ 0abc (рис. 1.16).

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ полусуммы Π΄Π»ΠΈΠ½ Π΅Ρ‘ оснований Π½Π° высоту. Основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ 0abc числСнно Ρ€Π°Π²Π½Ρ‹:

0a = v0
bc = v

Высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ проСкция пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π°:

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния проСкция ускорСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния ΠΏΠ΅Ρ€Π΅Π΄ ускорСниСм ставится Π·Π½Π°ΠΊ «–» (минус).

ΠžΠ±Ρ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ускорСниях ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.17. Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости пСрСмСщСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.18.

Рис. 1.17. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ускорСния.

Рис. 1.18. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t1 Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΈ осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Если врСмя двиТСния Ρ‚Π΅Π»Π° нСизвСстно, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ пСрСмСщСния, Ρ€Π΅ΡˆΠ°Ρ систСму ΠΈΠ· Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° сокращённого умноТСния разности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΌ вывСсти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ опрСдСляСтся суммой Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния, Ρ‚ΠΎΒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x(t) Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния), Π½ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ совпадаСт с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈ Π°x < 0 ΠΈ Ρ…0 = 0 Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ· (рис. 1.18).

av-mag.ru

Π’ΠΈΠΏΡ‹ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ | Π£Ρ‡Π΅Π±Π°-Π›Π΅Π³ΠΊΠΎ.Π Π€ — ΠΊΡ€ΡƒΠΏΠ½Π΅ΠΉΡˆΠΈΠΉ ΠΏΠΎΡ€Ρ‚Π°Π» ΠΏΠΎ ΡƒΡ‡Π΅Π±Π΅

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π΅ измСняСтся (v = const) ΠΈ ускорСния ΠΈΠ»ΠΈ замСдлСния Π½Π΅ происходит (Π° = 0).

ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ прямой Π»ΠΈΠ½ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ траСктория прямолинСйного двиТСния – это прямая линия.

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ пСрСмСщСния. НапримСр, Ссли ΠΌΡ‹ Ρ€Π°Π·ΠΎΠ±ΡŒΡ‘ΠΌ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ сСкундС, Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ расстояниС Π·Π° ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· этих ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π½Π΅ зависит ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Ρ‚Π°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°. Π’ΠΎ Π΅ΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния совпадаСт ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ скорости. ΠŸΡ€ΠΈ этом срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π° любой ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ€Π°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости:

vcp = v

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния – это физичСская вСкторная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ пСрСмСщСния Ρ‚Π΅Π»Π° Π·Π° любой ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° t:

= / t

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, ΠΊΠ°ΠΊΠΎΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

= β€’ t

ΠŸΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΈ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ€Π°Π²Π΅Π½ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ пСрСмСщСния. Если ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси ОΠ₯ совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния, Ρ‚ΠΎ проСкция скорости Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ скорости ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°:

vx = v,	Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ v > 0

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π°:

s = vt = x – x0

Π³Π΄Π΅ x0 – Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π°, Ρ… – конСчная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ)

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ… = Ρ…(t), ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄:

Ρ… = x0 + vt

Если ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси ОΠ₯ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния Ρ‚Π΅Π»Π°, Ρ‚ΠΎ проСкция скорости Ρ‚Π΅Π»Π° Π½Π° ось ОΠ₯ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ мСньшС нуля (v < 0), ΠΈ Ρ‚ΠΎΠ³Π΄Π° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄:

Ρ… = x0 - vt

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это частный случай Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния.

НСравномСрноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ°) Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ пСрСмСщСния. НапримСр, городской автобус двиТСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ состоит Π² основном ΠΈΠ· Ρ€Π°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

– это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

УскорСниС Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ остаётся постоянным ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ (a = const).

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ равноускорСнным ΠΈΠ»ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ разгоняСтся с Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ускорСниСм. Π’ случаС равноускорСнного двиТСния ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ возрастаСт, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости двиТСния.

Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ замСдляСтся. ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΈ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ любоС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся ускорСнным, поэтому Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ отличаСтся ΠΎΡ‚ ускорСнного лишь Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния Π½Π° Π²Ρ‹Π±Ρ€Π°Π½Π½ΡƒΡŽ ось систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Β 

Β 

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния опрСдСляСтся ΠΏΡƒΡ‚Ρ‘ΠΌ дСлСния пСрСмСщСния Ρ‚Π΅Π»Π° Π½Π° врСмя, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΠΎ. Π•Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния срСднСй скорости – ΠΌ/с.

vcp = s / t

МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

= ‘

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° ось ОΠ₯:

vx = x’

это производная ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси).

УскорСниС – это Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая опрСдСляСт быстроту измСнСния скорости Ρ‚Π΅Π»Π°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

= ‘ = » Учитывая, Ρ‡Ρ‚ΠΎ 0 – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ), – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ), t – ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ускорСния Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ:

ΠžΡ‚ΡΡŽΠ΄Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° скорости Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

= 0 + t Если Ρ‚Π΅Π»ΠΎ двиТСтся прямолинСйно вдоль оси ОΠ₯ прямолинСйной Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚Π΅Π»Π°, Ρ‚ΠΎ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° эту ось опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

vx = v0x Β± axt

Π—Π½Π°ΠΊ Β«-Β» (минус) ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния относится ΠΊ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡƒ двиТСнию. Аналогично Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ уравнСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ускорСниС являСтся постоянным (a = const), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ускорСния – это прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси 0t (оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, рис. 1.15).

Рис. 1.15. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ускорСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ – это линСйная функция, Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся прямая линия (рис. 1.16).

Рис. 1.16. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 1.16) ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ

ΠŸΡ€ΠΈ этом ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ числСнно Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ 0abc (рис. 1.16).

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ полусуммы Π΄Π»ΠΈΠ½ Π΅Ρ‘ оснований Π½Π° высоту. Основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ 0abc числСнно Ρ€Π°Π²Π½Ρ‹:

0a = v0
bc = v

Высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ проСкция пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π°:

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния проСкция ускорСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния ΠΏΠ΅Ρ€Π΅Π΄ ускорСниСм ставится Π·Π½Π°ΠΊ «–» (минус).

ΠžΠ±Ρ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ускорСниях ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.17. Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости пСрСмСщСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.18.

Рис. 1.17. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ускорСния.

Рис. 1.18. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t1 Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΈ осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Если врСмя двиТСния Ρ‚Π΅Π»Π° нСизвСстно, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ пСрСмСщСния, Ρ€Π΅ΡˆΠ°Ρ систСму ΠΈΠ· Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° сокращённого умноТСния разности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΌ вывСсти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ опрСдСляСтся суммой Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x(t) Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния), Π½ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ совпадаСт с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈ Π°x < 0 ΠΈ Ρ…0 = 0 Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ· (рис. 1.18).

uclg.ru

Π Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€-ΠΎΠ½Π»Π°ΠΉΠ½ β€” ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΊ Π¦Π’

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся вдоль оси Ox. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π΅Π΅ скорости с тСчСниСм Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ мСняСтся ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρƒ vΒ =Β 9,0 βˆ’ 1,5t, Π³Π΄Π΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Π½Π° Π²Β ΠΌΠ΅Ρ‚Ρ€Π°Ρ… в сСкунду, врСмя — в сСкундах. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π·Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ 4,0 с Π΄ΠΎ 7,0 с.

РСшСниС. ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

vx = v0x + axt,

Π³Π΄Π΅ v0x = 9,0Β ΠΌ/с — проСкция Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости; ax = βˆ’1,5Β ΠΌ/с2Β β€” проСкция ускорСния Π½Π° ΡƒΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось.

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ:

x(t)=x0+v0xt+axt22=x0+9,0tβˆ’0,75t2,

Π³Π΄Π΅ x0Β β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’ΠΎΡ‡ΠΊΠ° остановки, вычислСнная ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

τост=v0a=9,01,5=6,0 c,


ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π²Β ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΉ в условии Π·Π°Π΄Π°Ρ‡ΠΈ.

Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ t1 = 4,0 c Π΄ΠΎ τост = 6,0 с Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ вычисляСм ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

S1=|x(τост)βˆ’x(t1)|,

Π³Π΄Π΅

x(τост)=x0+9,0Ο„ΠΎΡΡ‚βˆ’0,75τост2=

=x0+9,0β‹…6,0βˆ’0,75β‹…(6,0)2=(x0+27) ΠΌ;

x(t1)=x0+9,0t1βˆ’0,75t12=x0+9,0β‹…4,0βˆ’0,75β‹…(4,0)2=(x0+24)Β ΠΌ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡƒΡ‚ΡŒ S1, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π²Β ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ€Π°Π²Π΅Π½:

S1=|x(τост)βˆ’x(t1)|=|(x0+27)βˆ’(x0+24)|=3,0 ΠΌ.

Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ τост = 6,0 с Π΄ΠΎ t2 = 7,0 c Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся равноускорСнно. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ вычисляСм ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

S1=|x(t2)βˆ’x(τост)|,

Π³Π΄Π΅

x(τост)=x0+9,0Ο„ΠΎΡΡ‚βˆ’0,75τост2=

=x0+9,0β‹…6,0βˆ’0,75β‹…(6,0)2=(x0+27) ΠΌ;

x(t2)=x0+9,0t2βˆ’0,75t22=

=x0+9,0β‹…7,0βˆ’0,75β‹…(7,0)2=(x0+26,25) ΠΌ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡƒΡ‚ΡŒ S2, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π²Β ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ€Π°Π²Π΅Π½:

S2=|x(t2)βˆ’x(τост)|=|(x0+26,25)βˆ’(x0+27)|=0,75Β ΠΌβ‰ˆ0,8Β ΠΌ.

Π‘ΡƒΠΌΠΌΠ°Ρ€Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ S, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π²Β ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ 4,0 с Π΄ΠΎ 7,0 с, составляСт

S=S1+S2β‰ˆ3,0+0,8=3,8 ΠΌ.

vedy.by

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. УскорСниС. | ОбъСдинСниС ΡƒΡ‡ΠΈΡ‚Π΅Π»Π΅ΠΉ Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³Π°

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. УскорСниС.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° измСняСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, называСтся Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

Β 

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ: — Π²Π΅ΠΊΡ‚ΠΎΡ€ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости, Β — ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости, Π° Ξ”t — ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠŸΡƒΡΡ‚ΡŒΒ  Ξ”t1= Ξ”t2=Ξ”t3=…, Ρ‚ΠΎΠ³Π΄Π° ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ

Β 

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,

Β 

Π’.ΠΎ., это характСристика двиТСния.

Β 

Если t0=0, Ρ‚ΠΎΒ Β Β Β 

Π£Π‘ΠšΠžΠ Π•ΠΠ˜Π• физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ быстроту измСнСния скорости ΠΈ (ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ) числСнно равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° измСнСния скорости ΠΊ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ.

Β 

УскорСниС ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, насколько мСняСтся мгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ‚Π΅Π»Π° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π•Π΄ΠΈΠ½ΠΈΡ†Π° ускорСния Π² БИ —Β Β  Β ΠΌ/с2.

НапримСр, ускорСниС Ρ€Π°Π²Π½ΠΎ 5 ΠΌ/с2Β  — это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ, двигаясь равноускорСнно, Ρ‚Π΅Π»ΠΎ измСняСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π° 5 ΠΌ/с Π·Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ сСкунду своСго двиТСния.

Π’ случаС Π½Π΅ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния:

Ρ‚ΠΎΠ³Π΄Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ΅ ускорСниС

Β 

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ называСтся равноускорСнным, Ссли ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости возрастаСт.

УсловиС Ρ€.Ρƒ.Π΄. —.

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ называСтся Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ, Ссли ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

УсловиС Ρ€.Π·.Π΄. — .

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния.

ΠΈΠ»ΠΈ Β — Π² проСкциях;

ΠΈΠ»ΠΈ – Ρ‡Π΅Ρ€Π΅Π· ΠΌΠΎΠ΄ΡƒΠ»ΠΈ.

ЛинСйная функция. Π“Ρ€Π°Ρ„ΠΈΠΊ — прямая.

Β 

ДвиТСния, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠ΅ с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси:

  1. равноускорСнноСс Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ
  2. равноускорСнноС Π±Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости
  3. Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ ДвиТСния ΠΏΡ€ΠΎΡ‚ΠΈΠ² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси.
  4. Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅
  5. равноускорСнноС Π±Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости
  6. равноускорСнноС с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости числСнно Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ.

РСшСниС основной Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ для Ρ€.Ρƒ.Π΄. :

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ пСрСмСщСния ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ Β  ΠΈΒ Β  — ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅. Π“Ρ€Π°Ρ„ΠΈΠΊ – ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°!

www.eduspb.com

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это частный случай Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния.

НСравномСрноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ°) Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ пСрСмСщСния. НапримСр, городской автобус двиТСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ состоит Π² основном ΠΈΠ· Ρ€Π°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

УскорСниС Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ остаётся постоянным ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ (a = const).

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ равноускорСнным ΠΈΠ»ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ разгоняСтся с Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ускорСниСм. Π’ случаС равноускорСнного двиТСния ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ возрастаСт, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости двиТСния.

Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ замСдляСтся. ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΈ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ любоС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся ускорСнным, поэтому Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ отличаСтся ΠΎΡ‚ ускорСнного лишь Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния Π½Π° Π²Ρ‹Π±Ρ€Π°Π½Π½ΡƒΡŽ ось систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния опрСдСляСтся ΠΏΡƒΡ‚Ρ‘ΠΌ дСлСния пСрСмСщСния Ρ‚Π΅Π»Π° Π½Π° врСмя, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΠΎ. Π•Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния срСднСй скорости – ΠΌ/с.

vcp = s / t
МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

= ‘

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° ось ОΠ₯:

vx = x’
это производная ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси).

УскорСниС – это Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая опрСдСляСт быстроту измСнСния скорости Ρ‚Π΅Π»Π°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

 = ' = "
Учитывая, Ρ‡Ρ‚ΠΎ 0 – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ), – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ), t – ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ускорСния Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ:

ΠžΡ‚ΡΡŽΠ΄Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° скорости Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

 = 0 + t
Если Ρ‚Π΅Π»ΠΎ двиТСтся прямолинСйно вдоль оси ОΠ₯ прямолинСйной Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚Π΅Π»Π°, Ρ‚ΠΎ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° эту ось опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:
vx = v0x Β± axt
Π—Π½Π°ΠΊ Β«-Β» (минус) ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния относится ΠΊ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡƒ двиТСнию. Аналогично Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ уравнСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ускорСниС являСтся постоянным (a = const), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ускорСния – это прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси 0t (оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, рис. 1.15).

Рис. 1.15. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ускорСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ – это линСйная функция, Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся прямая линия (рис. 1.16).

Рис. 1.16. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 1.16) ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ

ΠŸΡ€ΠΈ этом ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ числСнно Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ 0abc (рис. 1.16).

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ полусуммы Π΄Π»ΠΈΠ½ Π΅Ρ‘ оснований Π½Π° высоту. Основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ 0abc числСнно Ρ€Π°Π²Π½Ρ‹:

0a = v0
bc = v
Высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ проСкция пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π°:

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния проСкция ускорСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния ΠΏΠ΅Ρ€Π΅Π΄ ускорСниСм ставится Π·Π½Π°ΠΊ «–» (минус).

ΠžΠ±Ρ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ускорСниях ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.17. Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости пСрСмСщСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.18.

Рис. 1.17. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ускорСния.

Рис. 1.18. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t1 Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΈ осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Если врСмя двиТСния Ρ‚Π΅Π»Π° нСизвСстно, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ пСрСмСщСния, Ρ€Π΅ΡˆΠ°Ρ систСму ΠΈΠ· Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° сокращённого умноТСния разности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΌ вывСсти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ опрСдСляСтся суммой Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x(t) Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния), Π½ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ совпадаСт с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈ Π°x < 0 ΠΈ Ρ…0 = 0 Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ· (рис. 1.18).


av-physics.narod.ru

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹. УскорСниС. ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΏΡƒΡ‚ΡŒ, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° вдоль прямой, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π΅ΡΡ постоянным ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ ускорСниСм.

ВраСктория Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния β€”  прямая, поэтому Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… Ρ€Π°Π²Π½ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ понятия ΠΏΡƒΡ‚ΠΈ ΠΈ модуля пСрСмСщСния. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описано нСсколькими ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΠΈ:

  • вСктор скорости Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

Β 

(1)
  • Π³Π΄Π΅
  • Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

(2)
  • Π³Π΄Π΅
    • β€” Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Ρ‚Π΅Π»Π°

Однако это Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ уравнСния, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ достаточно слоТно, Π° ΠΈΠ½ΠΎΠ³Π΄Π°, просто Π½Π΅ хочСтся. ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠ΅ΠΌ, анализируя условия Π·Π°Π΄Π°Ρ‡ΠΈ, ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ уравнСния скалярного Π²ΠΈΠ΄Π°, спроСцировав Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° Π½Π΅ΠΊΡƒΡŽ ось.

Рис. 1. РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ 1

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π’Π΅Π»ΠΎ двиТСтся прямо с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽΒ  ΠΈ ускоряСтся. По Π·Π°Π΄Π°Ρ‡Π΅ выставляСм Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° ось OX (Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ прямолинСйноС) (рис. 1). Π‘ΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Π»ΠΎ двиТСтся вдоль оси (Π²Π΅ΠΊΡ‚ΠΎΡ€

Β Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΠΎ оси) ΠΈ ускоряСтся (Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ вдоль оси). ΠžΡΡ‚Π°Π»ΠΎΡΡŒ зафиксированныС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΡΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ:
  • Для уравнСния (1):Β 
  • Для уравнСния (2):Β 

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС, ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€Π΅Π΄ΡƒΠ³Π°Π΄Π°Ρ‚ΡŒ направлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²Β 

ΠΈΒ , соотвСтствСнно, ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Π²Ρ‹Π±Ρ€Π°Π½Π½ΡƒΡŽ ось. Но Π½Π΅ заморачиваСмся: Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ число, Π΄Π°ΠΆΠ΅ Ссли ΠΎΡˆΠΈΠ±Ρ‘ΠΌΡΡ. Π’.Π΅. Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ направлСния ΠΊΠ°ΠΊ Ρ…ΠΎΡ‚ΠΈΠΌ, Π° ΠΏΠΎΡ‚ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌ ΠΎΡ‚Π²Π΅Ρ‚.

www.abitur.by