Все формулы для радиуса вписанной окружности

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

 

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

О — центр вписанной окружности

r — радиус вписанной окружности

 

Формула радиуса вписанной окружности в ромб через диагонали ( r ) :

 

Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :

 

Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :

 

Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :

 

 

2. Радиус вписанной окружности ромба, равен половине его высоты

 

a — сторона ромба

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

 

Формула радиуса вписанной окружности в ромб ( r ) :

 

www-formula.ru

Окружность, вписанная в правильный треугольник

Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.

1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.

Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.

Например, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр вписанной окружности.

AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.

   

   

2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:

   

   

Таким образом, формула для радиуса вписанной в правильный треугольник окружности

   

Обратно, сторона равностороннего треугольника через радиус вписанной окружности:

   

3) Так как формула для нахождения площади равностороннего треугольника через сторону

   

можем найти площадь через r:

   

Таким образом, формула площади правильного треугольника через радиус вписанной окружности —

   

3) Все отрезки, на которые стороны равностороннего треугольника делятся точками касания вписанной окружности, равны половине его стороны:

   

4) Центр вписанной в правильный треугольник окружности является также центром описанной около него окружности.

5) Радиус вписанной в равносторонний треугольник окружности в два раза меньше радиуса описанной окружности:

   

   

www.treugolniki.ru

Окружность, вписанная в правильный треугольник

Определение и формулы окружности, вписанной в правильный треугольник

Окружность, касающаяся всех трех сторон треугольника, называется его вписанной окружностью.

Центр вписанной окружности лежит на пересечении биссектрис углов треугольника.

В любой треугольник можно вписать окружность, причем, только одну.

Если окружность вписана в правильный треугольник (в тот, у которого все стороны равны между собой), то ее радиус вычисляется по формуле

   

где – площадь треугольника, а – его полупериметр; или его можно выразить через сторону следующим образом:

   

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Радиус вписанной окружности | Треугольники

Удобно, когда все формулы, по которым можно найти радиус вписанной в треугольник и в многоугольник окружности, размещены на одной странице.

Радиус вписанной в многоугольник окружности

Если в многоугольник можно вписать окружность, то

формула для вычисления радиуса вписанной окружности:

   

где p — полупериметр, то есть полусумма длин всех сторон этого многоугольника.

Например, для пятиугольника со сторонами a, b, c, d, e радиус вписанной окружности находится по формуле

   

   

откуда

   

По этой же формуле ищут радиус вписанной в треугольник окружности.

Радиус вписанной в треугольник окружности

Формула для нахождения радиуса вписанной в треугольник окружности (верна для треугольника любого вида)

   

где p — полупериметр,

   

где a, b, c — стороны треугольника.

Радиус вписанной в прямоугольный треугольник окружности

Формула для нахождения радиуса окружности, вписанной в прямоугольный треугольник

   

где a и b — катеты, c — гипотенуза.

 

Радиус окружности, вписанной в правильный многоугольник

Формула радиуса вписанной в правильный многоугольник окружности

   

где a — сторона многоугольника, n — количество сторон.

Частные случаи — правильный (равносторонний) треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник.

Радиус окружности, вписанной в правильный треугольник

Формула радиуса вписанной окружности для правильного треугольника:

   

В правильном треугольнике радиус вписанной окружности вдвое меньше радиуса описанной окружности:

   

 

Радиус окружности, вписанной в квадрат

 

Формула радиуса вписанной в квадрат окружности:

   

где a — сторона квадрата.

 

Радиус окружности, вписанной в правильный шестиугольник

 

Формула радиуса вписанной в правильный шестиугольник окружности:

   

где a — сторона правильного шестиугольника.

 

Для любого многоугольника центр вписанной окружности лежит в точке пересечения его биссектрис.

www.treugolniki.ru

Правильный треугольник, площадь правильного треугольника

Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен  градусов.
Правильный треугольник называют еще равносторонним.

Каждая из высот правильного треугольника является также его медианой и биссектрисой.
Центры вписанной и описанной окружностей правильного треугольника совпадают.

Пусть сторона правильного треугольника равна .

Высота правильного треугольника:
Радиус окружности, вписанной в правильный треугольник: .
Радиус описанной окружности в два раза больше: .
Площадь правильного треугольника: .

Все эти формулы легко доказать. Если вы нацелены на решение задач части  — докажите их самостоятельно.

. Сторона правильного треугольника равна . Найдите радиус окружности, вписанной в этот треугольник.

Задача решается в одну строчку. Радиус вписанной окружности .

. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна .

Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен высоты.

Ответ: .

. Сторона правильного треугольника равна . Найдите радиус окружности, описанной около этого треугольника.

Радиус окружности, описанной вокруг правильного треугольника, равен .

Ответ: .

Звоните нам: 8 (800) 775-06-82

(бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике — Планиметрия

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

      Напомним определение биссектрисы угла.

      Определение 1. Биссектрисой угла называют луч, делящий угол на две равные части.

      Теорема 1 (Основное свойство биссектрисы угла). Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

      Доказательство. Рассмотрим произвольную точку D, лежащую на биссектрисе угла BAC, и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE, а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Рис. 2

      Доказательство. Рассмотрим произвольную точку D, лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE, а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

      Определение 2. Окружность называют окружностью, вписанной в угол, если она касается касается сторон этого угла.

      Теорема 3. Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

      Доказательство. Пусть точка D – центр окружности, вписанной в угол BAC, а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

      Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности), а гипотенуза AD – общая. Следовательно

AF = AE,

что и требовалось доказать.

      Замечание. Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных, проведенных к окружности из одной точки, равны.

      Напомним определение биссектрисы треугольника.

      Определение 3. Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

      Теорема 4. В любом треугольнике все три биссектрисы пересекаются в одной точке.

      Доказательство. Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC, и обозначим точку их пересечения буквой O (рис. 4).

Рис. 4

      Опустим из точки O перпендикуляры OD, OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC, то в силу теоремы 1 справедливо равенство:

OD = OE,

      Поскольку точка O лежит на биссектрисе угла ACB, то в силу теоремы 1 справедливо равенство:

OD = OF,

      Следовательно, справедливо равенство:

OE = OF,

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC. Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

     Определение 4. Окружностью, вписанной в треугольник, называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности.

Рис. 5

      Следствие. В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

      Формулы, позволяющие найти радиус вписанной в треугольник окружности, удобно представить в виде следующей таблицы.

ФигураРисунокФормулаОбозначения
Произвольный треугольник

Посмотреть вывод формулы

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

.

Посмотреть вывод формулы

Равнобедренный треугольник

Посмотреть вывод формулы

a – боковая сторона равнобедренного треугольника,
b – основание,
r – радиус вписанной окружности

Равносторонний треугольник

Посмотреть вывод формулы

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Посмотреть вывод формул

a, b – катеты прямоугольного треугольника,
c – гипотенуза,
r – радиус вписанной окружности

Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r –  радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

Равнобедренный треугольник

где
a – боковая сторона равнобедренного треугольника,
b – основание,
r – радиус вписанной окружности

Посмотреть вывод формулы

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Посмотреть вывод формулы

Прямоугольный треугольник

где
a, b – катеты прямоугольного треугольника,
c – гипотенуза,
r – радиус вписанной окружности

Посмотреть вывод формул

Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r –  радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

Равнобедренный треугольник

где
a – боковая сторона равнобедренного треугольника,
b – основание,
r – радиус вписанной окружности

Посмотреть вывод формулы

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Посмотреть вывод формулы

Прямоугольный треугольник

где
a, b – катеты прямоугольного треугольника,
c – гипотенуза,
r – радиус вписанной окружности

Посмотреть вывод формулы

Вывод формул для радиуса окружности, вписанной в треугольник

      Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

Рис. 6

      Доказательство. Из формулы

с помощью формулы Герона получаем:

что и требовалось.

      Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Рис. 7

      Доказательство. Поскольку для произвольного треугольника справедлива формула

где

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

      Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Рис. 8

      Доказательство. Поскольку для равнобедренного треугольника справедлива формула

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

      Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a, b – катеты прямоугольного треугольника, c – гипотенуза, r – радиус вписанной окружности.

      Доказательство. Рассмотрим рисунок 9.

Рис. 9

      Поскольку четырёхугольник CDOF является прямоугольникомпрямоугольником, у которого соседние стороны DO и OF равны, то этот прямоугольник – квадратквадрат. Следовательно,

СD = СF= r,

      В силу теоремы 3 справедливы равенства

      Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Радиус вписанной в треугольник окружности

Радиус вписанной в треугольник окружности можно найти по одной общей формуле.

Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

Радиус вписанной в треугольник окружности для произвольного треугольника

Формула для нахождения радиуса окружности, вписанной в произвольный треугольник: 

   

где S — площадь треугольника, p — его полупериметр.

Для треугольника со сторонами a, b, c полупериметр

   

и формулу можно записать так:

   

Если нужно найти радиус вписанной в треугольник окружности по его сторонам, то площадь треугольника ищут по формуле Герона, соответственно, формула для нахождения радиуса треугольника по трем сторонам имеет вид:

   

 

Радиус вписанной в прямоугольный треугольник окружности

Формула для нахождения радиуса вписанной в прямоугольный треугольник окружности:

   

где a, b — длины катетов, c — длина гипотенузы.

 

 

Радиус окружности, вписанной в правильный (то есть равносторонний) треугольник

Формула для нахождения радиуса окружности, вписанной в правильный треугольник:

   

или (без иррациональности в знаменателе):

   

где a -длина стороны правильного треугольника.

В правильном треугольнике радиус вписанной окружности также можно найти через радиус описанной окружности:

   

www.treugolniki.ru