виды, свойства, особенности строения и функции
Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.
Свойства и виды мышечной ткани
Морфологические признаки:
- Вытянутая форма миоцитов;
- продольно размещены миофибриллы и миофиламенты;
- митохондрии находятся вблизи сократительных элементов;
- присутствуют полисахариды, липиды и миоглобин.
Свойства мышечной ткани:
- Сократимость;
- возбудимость;
- проводимость;
- растяжимость;
- эластичность.
Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:
- Поперечнополосатая: скелетная, сердечная.
- Гладкая.
Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:
- Мезенхимные — десмальный зачаток;
- эпидермальные — кожная эктодерма;
- нейральные — нервная пластинка;
- целомические — спланхнотомы;
- соматические — миотом.
Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.
Строение и функции гладкой мышечной ткани
Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.
У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).
Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.
Функции гладкой мышечной ткани:
- Поддерживание стабильного давления в полых органах;
- регуляция уровня кровяного давления;
- перистальтика пищеварительного тракта, перемещения по нему содержимого;
- опорожнение мочевого пузыря.
Строение и функции скелетной мышечной ткани
Скелетная мышечная тканьCостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.
Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.
При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.
Функции скелетной мышечной ткани:
- Динамическая — перемещение в пространстве;
- статическая — поддержание определенной позиции частей тела;
- рецепторная — проприорецепторы, воспринимающие раздражение;
- депонирующая — жидкость, минералы, кислород, питательные вещества;
- терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
- мимика — для передачи эмоций.
Строение и функции сердечной мышечной ткани
Сердечная мышечная тканьМиокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.
Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.
Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.
Функции сердечной мышечной ткани:
- Насосная;
- обеспечивает ток крови в кровеносном русле.
Компоненты сократительной системы
Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.
В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O
Таблица. Соответствие между характеристикой мышечной ткани и ее видом
Вид ткани | Характеристика |
---|---|
Гладкомышечная | Входит в состав стенок кровеносных сосудов |
Структурная единица – гладкий миоцит | |
Сокращается медленно, неосознанно | |
Поперечная исчерченность отсутствует | |
Скелетная | Структурная единица – многоядерное мышечное волокно |
Свойственна поперечная исчерченность | |
Сокращается быстро, осознанно |
Где находится мышечная ткань?
Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.
Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.
Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?
Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.
В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.
Ткани животных
☰
У животных выделяют четыре вида ткани:
При этом у определенного типа ткани могут быть свои подтипы.
Из тканей состоят органы животных. В состав одного органа может входить несколько разных тканей. Одна и тот же тип ткани может встречаться в разных органах. Ткань составляют не только клетки, но и межклеточное вещество, которое обычно выделяется клетками самой ткани.
Эпителиальная ткань животных
Эпителий образует внешние покровы животных, а также выстилает полости внутренних органов. Эпителиальная (покровная) ткань есть в полости желудка, в кишечнике, ротовой полости, легких, мочевом пузыре и др.
Клетки эпителиальной ткани животных плотно прилегают друг к другу, межклеточного вещества почти нет. Клетки образуют один или несколько рядов.
В эпителиальной ткани могут быть различные железы, выделяющие секреты. Например, в эпителии кожи есть сальные и потовые железы, в желудке — железы, выделяющие определенные вещества.
Эпителиальная ткань выполняет защитную, секреторную, всасывающую, выделительную и другие функции.
Соединительная ткань животных
Соединительная ткань животных образует кости, хрящи, связки, сухожилия, жировые отложения. Кровь также относится к соединительной ткани.
Особенностью соединительной ткани является большое количество межклеточного вещества. Клетки разбросаны в этом веществе.
Соединительная ткань выполняет в организме животного опорную функцию, защитную, связывающую различные системы органов. Например, кровь переносит кислород от легких к тканям. От тканей уносит углекислый газ в легкие. Вредные вещества кровью доставляются в выделительную систему. Питательные вещества, всасываясь в кровь в кишечнике, разносятся по всему организму.
Мышечная ткань животных
Мышечная ткань животных отвечает за движение как самого организма в пространстве, так и за механическую работу его внутренних органов. Клетки мышечной ткани способны сокращаться и расслабляться в ответ на сигналы нервной системы.
Существуют три вида мышечной ткани: гладкая (входит в состав внутренних органов), скелетная поперечно-полосатая, сердечная поперечно-полосатая.
Нервная ткань животных
Клетки нервной ткани животных имеют тело, короткие и длинны отростки, которыми соединены между собой. По этим клеткам передаются сигналы, имеющие электрическую и химическую природу. От рецепторов и органов чувств сигналы идут в спинной и головной мозг животного, где обрабатываются. В ответ идут обратные сигналы, сокращающие определенные мышцы.
Нервная ткань обеспечивает согласованную работу всех органов и систем организма, отвечает за реакцию на воздействие окружающей среды.
Мышечная и нервные ткани животных
У животных, как и у растений, также есть особые ткани, характерные только для них. Это мышечная и нервная ткани.
Мышечные ткани
Движение животных, перемещение крови по сосудам, пищи в кишечнике, осуществление вдоха и выдоха и многие другие процессы невозможны без участия мышечной ткани. Мышечная ткань подразделяется на поперечно-полосатую и гладкую.
Поперечно-полосатая мышечная ткань состоит из вытянутых волокон. Каждое волокно содержит много ядер и имеет поперечную исчерченность за счет чередования темных и светлых полос. Волокна соединяются в пучки разного размера, образуя скелетные мышцы, прикрепленные к костям.
Каждое волокно может сокращаться. При одновременном сокращении волокон в пучках происходит сокращение всей мышцы. Поперечно-полосатые мышцы сокращаются быстро и быстро утомляются. Человек может управлять их работой, поэтому скелетную мускулатуру называют произвольной. Есть особая поперечно-полосатая мышечная ткань — сердечная.
Гладкая мышечная ткань состоит из вытянутых одноядерных клеток и не имеет поперечной исчерченность. Она выстилает стенки внутренних органов и кровеносных сосудов. Гладкие мышцы сокращаются медленно и медленно утомляются. Гладкая мускулатура (как и сердечная) называется непроизвольной, так как работает независимо от воли человека.
Мышечная ткань возникла в процессе исторического развития многоклеточных организмов на более поздних его стадиях. Ее появление связано с потребностью организмов в передвижении для поиска пищи, благоприятных условий обитания и спасения от врагов. По своему происхождению и функциям мышечная ткань тесно связана с нервной.
Нервная ткань
Другая характерная только для животных ткань — нервная. Ею образованы головной и спинной мозг и отходящие от них нервы. Она представлена нервными клетками — нейронами, состоящими из тела с ядром и коротких и длинных отростков.
Главные свойства нервной ткани — возбудимость и проводимость. Короткие отростки нервных клеток пронизывают различные части тела животных (кожу, мышцы, органы пищеварения). Они испытывают раздражение различными веществами и физическими факторами (пищей, высокой или низкой температурой) и возбуждаются. От коротких отростков возбуждение передается к телу клетки, далее по длинным отросткам — в мозг, а от него — ответное возбуждение к той части тела, которая получила раздражение.
Мышечная и нервная ткани
Мышечные ткани неоднородны по своему происхождению в эмбриогенезе, их строение также различается, но есть одно свойство, которое их объединяет в группу — способность к сокращению. Их клетки имеют вытянутую, удлиненную форму, хорошо воспринимают раздражающий нервный импульс и сокращаются в ответ. Без мышечных тканей организм не смог бы перемещаться в пространстве, а органы не смогли бы функционировать — сердце качать кровь, язык «болтаться», кишечник продвигать пищу, пальцы нажимать на кнопки клавиатуры…
Итак, основные свойства этого вида тканей: возбудимость (способность отреагировать на раздражение), сократимость (умение клеток укорачиваться и вытягиваться), проводимость (способность мембраны клетки «гнать» волну возбуждения, передавать импульс). Существуют два вида мышечной ткани — гладкая и поперечно-полосатая. Разберем подробнее их особенности.
1. Гладкая мышечная ткань присутствует во внутренних органах. Ее клетки напоминают веретена и имеют одно палочковидное ядро. Сокращение гладких мышц происходит непроизвольно, идет медленно, при этом мышцы сжимаются сильно, но утомляются мало. Например, кишечник сокращается до 12 раз за одну минуту, продвигая пищу. Структурная единица — мышечная клетка, миоцит, содержащая гликоген и миофиламенты (миофибриллы), а снаружи покрытая базальной мембраной. Интересно, что миоциты этой ткани могут делиться всю жизнь, в отличие, скажем, от кардиомиоцитов (клеток сердечной ткани), которые делятся в ходе развития эмбриона, но потом эту способность почти утрачивают.
2. Поперечно-полосатая мышечная ткань отличается поперечной исчерченностью волокон и высокой эластичностью. Исчерченность вызвана особым распределением в цитоплазме волокон множества ниточек-миофибрилл (состоящих из белковых саркомеров), которые объединяются в пучки. В итоге мышечное волокно по всей длине плотно заполняется миофибриллами. Именно они является сократительным элементом мышечной клетки. Поперечно-полосатая мышечная ткань бывает двух типов: скелетная и сердечная.
1) Скелетная ткань формирует скелетные мышцы, ею можно управлять произвольно, руководя движениями. Ее структурная единица — мышечное волокно. Состоит оно из миосимпласта (многоядерной структуры, в которой сливаются клетки-саркобласты; в центре находятся миофибриллы) и миосателлитоцитов (одноядерных стволовых клеток). Снаружи эти образования окутывает базальная мембрана. Мышечные волокна тонки, но их длина может достигать нескольких сантиметров. Несколько мышечных волокон образуют пучок и имеют общую оболочку-сарколемму. Несколько пучков также имеют свою оболочку — так образуется мышца. Скелетные мышцы с помощью сухожилий присоединяются к костям или друг к другу.
2) Сердечная ткань характеризуется хорошей проводимостью. Ее клетки обычно содержат одно ядро, реже два. Эта ткань формирует сердечную мышцу — миокард. Структурная единица — клетка кардиомиоцит со множественными митохондриями. Сокращается сердечная ткань непроизвольно, управлять этим процессом извне нельзя.
Нервная ткань
Нервная ткань создает основу нервной системы. Главные свойства ее — возбудимость и проводимость, она воспринимает нервный импульс и передает его. Благодаря нервной ткани взаимодействуют все органы. Эта ткань имеется в составе нервов, головного и спинного мозга. Ее базу составляют нервные клетки — нейроны, и специфическая субстанция нейроглия (вспомогательные клетки), которая обеспечивает питание и защиту нейронов. Нейроны, возможно, самые красивые в ряду прочих клеток. Многие из них имеют форму звезды или деревца, другие похожи на груши, веретена, пирамидки… Состоят они из тела и отростков — дендритов и аксонов. Дендриты (короткие, множественные, разветвленные) воспринимают раздражение, аксоны (длинные, единичные) передают сигнал другим клеткам. Синапс — место, где аксоны контактируют с другими нервными клетками.
Хочешь сдать экзамен на отлично? Жми сюда — курсы ОГЭ по биологииВ ходе эволюционного развития клетки стремились избавиться от взаимопревращения и развивали в себе способность к выполнению какой- то одной функции.
Выделяют четыре вида тканей животных:
• эпителиальная (покровная)
• мышечная
• соединительная
• нервная
Каждый тип ткани имеет множество разновидностей. Например, эпителий, выстилающий кишечник, и кожный эпителий выполняют разные функции.
Каемчатый эпителий кишечника позвоночных животных:
Но не у каждого животного встречаются все типы тканей.
Кратко рассмотрим эволюционное развитие типов тканей животных.
Эпителиальная ткань
Эпителиальная ткань беспозвоночных животных не достигла значительного развития. У них наиболее развит мерцательный эпителий (с ресничками), который служит примитивным органом передвижения у круглых, кольчатых, плоских червей.
У более сложно устроенных организмов мерцательный эпителий начинает преобразовываться в плоский.
У членистоногих животных поверхностный слой эпителия содержит вещество хитин, который входит в состав панциря у ракообразных, раковины у моллюсков, также эпителий формирует железы (паутинные, слюнные, ядовитые).
У хордовых животных эволюция эпителия шла в направлении замены однослойного на многослойный.
Эпителий рыб и земноводных образует слизистые железы.
В связи с выходом животных на сушу, эпителий со слизистыми железами заменяется сухим, имеющим роговой слой.
Для лучшей адаптации и освоения суши из эпителия начинают образовываться множество производных: рога, копыта, клюв, волосы и др.
Соединительная ткань включает кровь, кости, хрящи.
Соединительная ткань развивается у кольчатых червей и формирует кровеносную систему.
Хрящевая ткань впервые встречается у хрящевых рыб, а костная ткань — у костных рыб.
Мышечная ткань
Уже у кишечнополостных можно выделить эпителиально-мышечные клетки, способные к сокращению, но тканью еще их назвать нельзя.
Например, у медуз эпителиально- мышечные клетки имеют поперечнополосатую исчерченность, но отдельных мышечных клеток у них нет.
Отдельные мышечные клетки появляются у плоских червей, хотя они еще сохраняют тесную связь с кожей.
У червей и у низших моллюсков большая часть мускулатуры гладкая, только сердечная мышца и некоторая мускулатура тела имеют поперечную исчерченность.
Поперечнополосатые мышечные волокна впервые появляются у головоногих моллюсков.
У меня есть дополнительная информация к этой части урока!
ЗакрытьГладкая мышечная ткань наиболее древняя по происхождению.
У двустворчатых и брюхоногих моллюсков- улиток, имеется только гладкая мускулатура, которая сокращается очень медленно, но зато «устают» эти мышцы не так быстро.
Например, мышца, сжимающая створки раковины моллюска, может оставаться в состоянии сокращения много дней подряд.
Так выглядит раковина моллюска тридакны:
Нервная ткань
Появление нервных клеток означало качественно новый этап эволюции, позволивший высшим животным и человеку лучше адаптироваться к условиям среды, что увеличивало их выживаемость.
Нервная ткань стала образовываться путем видоизменения эпителиальных клеток.
Начало нервной ткани простейшего типа отмечается у кишечнополостных.
У меня есть дополнительная информация к этой части урока!
ЗакрытьВ процессе эволюции нервная ткань формировала нервную систему у многоклеточных животных.
Наиболее примитивная нервная система у кишечнополостных, где нервные клетки разбросаны по всему телу животного и соединены между собой, а также с мышечными и эпителиальными клетками одновременно.
У кольчатых червей и членистоногих нервные клетки объединяются в нервные узлы, которые связаны между собой нервными волокнами.
Нервные клетки стремились к централизации. Таким образом постепенно произошло образование спинного и головного мозга у позвоночных животных
У высших позвоночных встречаются все четыре типа ткани: эпителиальная, соединительная, мышечная и нервная.
От урока к уроку мы будем переходить к рассмотрению каждого типа тканей.
Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма.
Основные морфологические признаки элементов мышечных тканей- удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов- специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.
Специальные сократительные органеллы- миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков- актина и миозина при обязательном участии ионов кальция . Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образует гликоген липиды. Миоглобин- белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуда.
Классификация.В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы.
Первая подгруппа- поперечнополосатые мышечные ткани.
Вторая подгруппа – гладкие мышечные ткани.
В соответствии с гистогенетическим принципом в зависимости от источников развития мышечные ткани подразделяются на 5 типов: мезенхимные( из десмального зачатка в составе мезенхимы), эпидермальные (из кожной эктодермы и из прехордальной пластинки), нейральные ( из нервной трубки), целомические( из миоэпикардиальной пластинки висцерального листка сомита) и соматические(миотомные).
Первые три типа относятся к подгруппе гладких мышечных тканей, четвертый и пятый- к подгруппе поперечнополосатых.
2. Гладкая мышечная ткань. Источник развития. Морфо- функциональная характеристика гладких мышечных тканей. Структурные основы сокращения. Иннервация. Регенерация.
Различают три группы гладких мышечных тканей- мезенхимные, эпидермальные и нейральные.
Стволовые клетки и клетки – предшественники в гладкой мышечной ткани на этапах эмбрионального развития пока точно не отождествлены. Они мигрируют к местам закладки органов, будучи уже детерминированными. Дифференцируясь, они синтезируют компоненты матрикса и коллагена базальной мембраны, а также эластина. У дефинитивных клеток синтетическая способности снижена, но не исчезает полностью.
Гладкий миоцит- веретеновидная клетка длиной 20-500 мкм, шириной 5-8 мкм. Ядро палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует выпячивания- кавеолы,в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков. Это влечет за собой взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и « миофибриллы» распадаются. Сокращение прекращается. Гладкая МТ иннервируется вегетативной нервной системой, т.е. не подчиняется воле человека. Сокращение ГМТ медленное — тоническое, зато ГМТ малоутомляема. ГМТ в эмбриональном периоде развивается из мезенхимы. Вначале мезенхимные клетки имеют звездчатую, отросчатую форму, а при дифференцировке в ГМ-клетки приобретают веретеновидную форму; в цитоплазме накапливаются органоиды спецназначения — миофибриллы из актина и миозина. Регенерация ГМТ: 1. Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают митохондрии и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты. 2. Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д.Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается. Не исключена, однако, и пролиферация клеток.
3. Скелетная поперечно-полосатая мышечная ткань. Источники развития. Морфо-функциональная характеристика миосимпласта. Структурные основы сокращения. Мышца как орган. Типы мышечных волокон. Регенерация.
Источником развития элементов скелетной поперечнополосатой мышечной ткани являются клетки миотомов- миобласты.Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные сиппласты-мышечные трубочки.
В них происходит дифференцировка специальных органелл- миофибрилл. Клетки другой линии остаются самостоятельными и дифференцируются в миосимпластов. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящие из миосимпласта миосателлитоцитов, покрытых общей базальной мембраной.
Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.
Типы мышечных волокон. Мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов- гликолитических и окислительных. По соотношению миофибрилл, митохондрий и миоглобина различаютбелые, красные и промежуточные волокна. По функциональным особенностям мышечные волокна подразделяют набыстрые, медленные, и промежуточные.Обычно в быстрых волокнах преобладают гликолитические процессы, они более богатыгликогеном, в них меньше миоглобина, поютому их называют такжебелыми.В медленных волокнах, напротив, выше активность окислительных ферментов, они богачемиоглобином, выглядят более красными.
Регенерация. Ядра миосимпластов делиться не могут, так как у них отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты. Пока организм растет, они делятся, а дочерние клетки встраиваются в концы симпластов. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и его фрагменты фагоцитируются макрофагами. Восстановление тканей осуществляется за счет двух механизмов: компенсаторной гипертрофии самого симпласта и пролифирации миосателлитоцитов. В симпласте активизируются гранулярная эндоплазматическая сеть и аппарат Гольджи. Поврежденный конец миосимпластаутолщается, образуя мышечную почку.Миосателлитоциты, сохранившиеся рядом с повреждением, делятся. Одни из них мигрируют к мышечной почке и встраиваются в нее, другие сливаются и образуют миотубы, которые затем входят в состав вновь образованных мышечных волокон или формируют новые волокна.
Скелетная мышца как орган.Передача усилий сокращения на скелет осуществляется посредством сухожилий или прикрепления мышц непосредственно к надкостнице.На конце каждого мышечного волокна плазмолемма образует глубокие узкие впячивания.В них со стороны сухожилия или надкостницы проникают тонкиеколлагеновые волокна. Последние спирально оплетаются ретикулярными волокнами. Концы волокон направляются к базальной мембране, входят в неё, поворачивают назад и по выходе снова оплетают коллагеновые волокна соед.ткани.Между мышечными волокнами находятся тонкие прослойки рыхлой волокнистой соед.ткани— эндомизий.Более толстые прослойки рыхлой соединт.ткани окружают по несколько мышечных волокон,образуяперемизийи разделяя мышцу на пучки. Соединительную ткань ,окружающую поверхность мышцы, называютэпимизием.
4. Сердечная поперечно-полосатая мышечная ткань. Источник развития. Морфофункциональная характеристика кардиомиоцита. Структурные основы совращения. Морфофункциональная характеристика поперечно-полосатой сердечной мышечной ткани.
Гистогенез и виды клеток. Источники развития поперечно-полосатой мышечной ткани-симметричные участки висцерального листка спланхнотома в шейной части зародыша—миоэпикардиальные пластинки.Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 5 видов кардиомиоцитов- рабочие, синусные переходные, проводящие, а также секреторные.
Рабочие кардиомиоциты образуют свои цепочки. Именно они, укорачиваясь, обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Синусныекардиомиоциты передают управляющие сигналыпереходнымкардиомиоцитам, а последние-проводящим.Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее- другим проводящим кардиомиоцитов. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим. Секреторные кардиомиоциты вырабатываютнатрийуретический фактор, участвующий в процессах регуляции мочеобразования и в некоторых других процессах. Все кардиомиоциты покрыты базальной мембраной.
Строение сократительных ( рабочих) кардиомиоцитов. Клетки имеют удлиненную форму, близкую к цилиндрической Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна. В области контактов клеток образуются так называемые вставочные диски. Ядро кардиомиоцита овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Специальные органеллы, которые обеспечивают сокращение, называются миофибриллами.Кардиомиоциты соединяются друг с другом своими торцевыми концами образуются вставочные диски. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами. Это создает между ними метаболические связи и обеспечивает синхронность сокращений.
Нервная ткань
Ткани животных: мышечная и нервная. Функции
- ГДЗ
- 1 Класс
- Окружающий мир
- 2 Класс
- Математика
- Английский язык
- Русский язык
- Немецкий язык
- Литература
- Окружающий мир
- 3 Класс
- Математика
- Английский язык
- Русский язык
- Немецкий язык
- Окружающий мир
- 4 Класс
- Математика
- Английский язык
- Русский язык
- Немецкий язык
- Окружающий мир
- 5 Класс
- Математика
- Английский язык
- Русский язык
- Немецкий язык
- Биология
- История
- География
- Литература
- Обществознание
- Человек и мир
- Технология
- Естествознание
- 6 Класс
- Математика
- Английский язык
- Русский язык
- Немецкий язык
- Биология
- История
- География
- Литература
- Обществознание
- Технология
- 7 Класс
- Английский язык
- Русский язык
- Алгебра
- Геометрия
- Физика
- Нем
Leave A Comment