{2} — 14 x + 49\right) \log{\left (x — 2 \right )} \leq 0$$
            /    2             \     
   /29    \ |/29\    14*29     |     
log|-- - 2|*||--|  - ----- + 49| 
  1681*log(10)   1681*log(9)     
- ------------ + ----------- 
значит одно из решений нашего неравенства будет при:
$$x \leq 3$$
 _____           _____          
      \         /
-------•-------•-------
       x1      x2

Другие решения неравенства будем получать переходом на следующий полюс
и т.д.
Ответ:
$$x \leq 3$$
$$x \geq 7$$

Логарифмические уравнения

   Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях «Тригонометрические уравнения», «Решение рациональных уравнений». В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение  в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Определение

Логарифмом числа a  по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.

Основное логарифмическое тождество:

Например:

 log39 = 2, так как  32 = 9

Свойства логарифмов:

Частные случаи логарифмов:

Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

Найдите корень уравнения:  log3(4–x) = 4

Используем основное логарифмическое тождество.

Так как  logba = x   bx = a,  то

34 = 4 – x

x = 4 – 81

x =  – 77

Проверка:

log3(4–(–77)) = 4

log381 = 4

34 = 81  Верно.

Ответ: – 77

Решите самостоятельно:

Найдите корень уравнения:  log(4 – x) = 7

Посмотреть решение 

Найдите корень уравнения log5 (4 + x) = 2

Используем основное логарифмическое тождество.

Так как   logab = x       bx = a,   то

52 = 4 + x

x =52 – 4

x = 21

Проверка:

log5(4 + 21) = 2

log525 = 2

52 = 25 Верно.

Ответ: 21

Найдите корень уравнения  log3(14 – x) = log35.

Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

 Если    logca = logcb,   то  a = b

14 – x = 5

x = 9

Сделайте проверку.

Ответ: 9

Решите самостоятельно:

Найдите корень уравнения  log5(5 – x) = log53.

Посмотреть решение 

Найдите корень уравнения: log4(x + 3) = log4(4x – 15).

Если   logca = logcb,   то  a = b

x + 3 = 4x – 15

3x = 18

x = 6

Сделайте проверку.

Ответ: 6

Найдите корень уравнения   log1/8(13 – x) = – 2.

(1/8)–2 = 13 – x

82 = 13 – x

x = 13 – 64

x = – 51

Сделайте проверку.

Небольшое дополнение – здесь используется свойство

степени (отрицательная степень дроби).

Ответ: – 51

Решите самостоятельно: 

Найдите корень уравнения:  log1/7(7 – x) = – 2

Посмотреть решение 

Найдите корень уравнения  log(4 – x) = 2 log5.

Преобразуем правую часть. воспользуемся свойством:

logabm = m∙logab

log2(4 – x) = log252

Если    logca = logcb,   то  a = b

4 – x = 52

4 – x = 25

x = – 21

Сделайте проверку.

Ответ: – 21

Решите самостоятельно: 

Найдите корень уравнения:  log5(5 – x) = 2 log3

Посмотреть решение 

Решите уравнение   log5(x2 + 4x) = log5(x2 + 11)

Если    logca = logcb,   то  a = b

x2 + 4x = x2 + 11

4x = 11

x = 2,75

Сделайте проверку.

Ответ: 2,75

Решите самостоятельно: 

Найдите корень уравнения  log5(x2 + x) = log5(x2 + 10).

Посмотреть решение 

Решите уравнение   log2(2 – x) = log2(2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

log2 (……)

Представляем 1 как логарифм с основанием 2:

1 = log2

Далее применяем свойство:

logс(ab) = logсa + logсb

log2(2 – x) = log2(2 – 3x) + log22

Получаем:

log2(2 – x) = log2 2 (2 – 3x)

Если    logca = logcb,   то  a = b, значит

2 – x = 4 – 6x

5x = 2

x = 0,4

Сделайте проверку.

Ответ: 0,4

Решите самостоятельно: 

Найдите корень уравнения  log5(7 – x) = log5(3 – x) +1

Посмотреть решение 

Решите уравнение logх–125 = 2.  Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Воспользуемся основным логарифмическим тождеством:

(x – 1)2= 25

Далее необходимо решить квадратное уравнение. Кстати, квадратное уравнение, как вы поняли, это очень важная «буковка» в математической азбуке. К нему сводятся очень многие решения совершенно различных задач. Помнить формулы дискриминанта и корней нужно обязательно, и уметь решать такое уравнение вы должны очень быстро, периодически практикуйтесь.

Конечно же, опытный глаз сразу увидит, что в нашем примере выражение, стоящее под знаком квадрата равно 5 или – 5, так как только эти два числа  при возведении в квадрат дают 25, устно можно посчитать:

корни равны 6  и  – 4.

Корень  «–4» не является решением, так как основание логарифма должно быть больше нуля, а при  «– 4» оно равно «–5». Решением является корень 6. Сделайте проверку.

Ответ: 6.

Решите самостоятельно: 

Решите уравнение logx–5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Посмотреть решение

 

Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать  свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Как найти область определения функции?

Для того, чтобы понять, что такое область определения функции, необходимо знать области определения основных элементарных функций. Для этого нужно углубить знания данной статьей. Будут рассмотрены  различные сложнейшие комбинации функций вида y=x+x-2 или y=5·x2+1·x3, y=xx-5 или y=x-15-3. Рассмотрим теорию  и решим несколько примеров с подобными заданиями.

Что значит найти область определения

После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y=f(x) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.

Ограничение области определения

Область определения рассматривается еще в школьной курсе. у действительных чисел она может быть (0, +∞) или такой [−3, 1)∪[5, 7). Еще по виду функции можно визуально определить ее ОДЗ. Рассмотрим, на что может указывать наличие области определения:

Определение 1
  • при имеющемся знаменателе необходимо производить деление такого типа функции как y=x+2·xx4-1;
  • при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа y=x+1 или y=23·x+3x;
  • при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как y=5·(x+1)-3, y=-1+x113, y=(x3-x+1)2, которые определены не для всех чисел;
  • при наличии переменной под знаком логарифма или в основании вида y=lnx2+x4 или y=1+logx-1(x+1) причем основание является числом положительным, как и число под знаком логарифма;
  • при наличии переменной, находящейся под знаком тангенса и котангенса вида y=x3+tg2·x+5 или y=ctg(3·x3-1), так как они существуют не для любого числа;
  • при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида y=arcsin(x+2)+2·x2, y=arccosx-1+x, область определения которых определяется ни интервале от -1 до 1.

При отсутствии хотя бы одного признака, область определения приходится искать другим образом. Рассмотрим пример функции вида y=x4+2·x2-x+12+223·x. Видно, что никаких ограничений она не имеет, так как в знаменателе нет переменной.

Правила нахождения области определения

Для примера рассмотрим функцию типа y=2·x+1. Для вычисления ее значения можем определить x. Из выражения 2·x+1 видно, что функция определена на множестве всех действительных чисел. Рассмотрим еще один пример для подробного определения.

Если задана функция типа y=3x-1, а необходимо найти область определения, тогда понятно, что следует обратить внимание на знаменатель. Известно, что на ноль делить нельзя. Отсюда получаем, что 3x-1знаменатель равняется нулю при х=1, поэтому искомая область определения данной функции примет вид (−∞, 1)∪(1, +∞) и считается числовым множеством.

На рассмотрении примера y=x2-5·x+6 видно, что имеется подкоренное выражение, которое всегда больше или равно нулю.

Значит запись примет вид x2−5·x+6≥0. После решения неравенства получим, что имеются две точки, которые делят область определения на отрезки, которые записываются как (−∞, 2]∪[3, +∞).

При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.

Область определения суммы, разности и произведения функций

Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:

Когда функция ff считается суммой n функций f1, f2, …, fn, иначе говоря, эта функция задается при помощи формулы y=f1(x)+f2(x)+…+fn(x)

, тогда ее область определения считается пересечением областей определения функций  f1, f2, …, fn. Данное утверждение можно записать как:

D(f)=D(f1)D(f2)…D(fn)

Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом для понимания перечисления числовых множеств.

Пример 1

Найти область определения функции вида y=x7+x+5+tgx.

Решение

Заданная функция представляется как сумма четырех: степенной с показателем 7,степенной с показателем 1, постоянной, функции тангенса.

По таблице определения видим, что D(f1)=(−∞, +∞), D(f2)=(−∞, +∞), D(f3)=(−∞, +∞), причем область определения тангенса включает в себя все действительные числа, кроме π2+π·k, k∈Z.

Областью определения заданной функции f является пересечение областей определения f1, f2, f3 и f4. То есть для функции существует такое количество действительных чисел, куда не входит π2+π·k, k∈Z.

Ответ: все действительные числа кроме π2+π·k, k∈Z.

Для нахождения области определения произведения функций необходимо применять правило:

Определение 2

Когда функция f считается произведением n функций f1, f2, f3 и fn, тогда существует такая функция f, которую можно задать при помощи формулы y=f1(x)·f2(x)·…·fn(x)

, тогда ее область определения считается областью определения для всех функций.

Запишется D(f)=D(f1)D(f2)…D(fn)

Пример 2

Найти область определения функции y=3·arctg x·ln x.

Решение

Правая часть формулы рассматривается как f1(x)·f2(x)·f3(x), где за f1является постоянной функцией, f2является арктангенсом, f3– логарифмической функцией с основанием e. По условию имеем, что D(f1)=(−∞, +∞), D(f2)=(−∞, +∞) и  D(f3)=(0, +∞). Мы получаем, что

D(f)=D(f1)D(f2)D(fn)=(-∞, +∞)(-∞, +∞)D(0, +∞)=(0, +∞)

Ответ: область определения y=3·arctg x·ln x – множество всех действительных чисел.

Необходимо остановиться на нахождении области определения y=C·f(x), где С является действительным числом.  Отсюда видно, что ее областью определения и областью определения f совпадающими. 

Функция y=C·f(x)– произведение постоянной функции и f. Область определения – это все действительные числа области определения D(f). Отсюда видим, что область определения функции y=C·f(x)является -∞, +∞D(f)=D(f).

Получили, что область определения y=f(x) и y=C·f(x), где C является некоторое действительное число, совпадают. Это видно на примере определения корня y=x считается [0, +∞), потому как область определения функции y=-5·x — [0, +∞).

Области определения y=f(x) и y=−f(x)совпадают , что говорит о том, что его область определения разности функции такая же, как и область определения их суммы.

Пример 3

Найти область определения  функции y=log3x−3·2x.

Решение

Необходимо рассмотреть как разность двух функций f1 и f2.

f1(x)=log3x и f2(x)=3·2x. Тогда получим, что D(f)=D(f1)D(f2).

Область определения записывается как D(f1)=(0, +∞)

. Приступим к области определения f2 . в данном случае она совпадает с областью определения показательной, тогда получаем, что D(f2)=(−∞, +∞).

Для нахождения области определения функции y=log3x−3·2x получим, что

D(f)=D(f1)D(f2)=(0, +∞)-∞, +∞

Ответ: (0, +∞).

Необходимо озвучить утверждение о том, что областью определения y=anxn+an-1xn-1+…+a1x+a0 является множество действительных чисел.

Рассмотрим y=anxn+an-1xn-1+…+a1x+a0, где  в правой части имеется многочлен с одной переменной стандартного вида в виде степени n с действительными коэффициентами. Допускается рассматривать ее в качестве суммы (n+1)-ой функции. Область определения для каждой из таких функций включается множество действительных чисел, которое называется R.

Пример 4

Найти область определения f1(x)=x5+7×3-2×2+12.

Решение

Примем обозначение f за разность двух функций, тогда получим, что f1(x)=x5+7×3-2×2+12 и f2(x)=3·x-ln 5. Выше  было показано, что D(f1)=R. Область определения для f2 является совпадающей со степенной при показателе –ln5, иначе говоря, что D(f2)=(0, +∞).

Получаем, что D(f)=D(f1)D(f2)=-∞, +∞(0, +∞)=(0, +∞).

Ответ: (0, +∞).

Область определения сложной функции

Для решения данного вопроса необходимо рассмотреть сложную функцию вида  y=f1(f2(x))

. Известно, что D(f)является множеством всех x из определения функции f2, где область определения f2(x) принадлежит области определения f1.

Видно, что область определения сложной функции вида y=f1(f2(x)) находится на пересечении двух множеств таких, где x∈D(f2) и f2(x)∈D(f1). В стандартном обозначении это примет вид

x∈D(f2)f2(x)∈D(f1)

Рассмотрим решение нескольких примеров.

Пример 5

Найти область определения y=ln x2.

Решение

Данную функцию представляем в виде y=f1(f2(x)), где имеем, что f1 является логарифмом с основанием e, а f2 – степенная функция с показателем 2.

Для решения необходимо использовать известные области определения D(f1)=(0, +∞) и D(f2)=(−∞, +∞).

Тогда получим систему неравенств вида

x∈D(f2)f2(x)∈D(f1)⇔x∈-∞, +∞x2∈(0, +∞)⇔⇔x∈(-∞, +∞)x2>0⇔x∈(-∞, +∞)x∈(-∞, 0)∪(0, +∞)⇔⇔x∈(-∞, 0)∪(0, +∞)

Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.

Ответ: (−∞, 0)∪(0, +∞).

Пример 6

Найти область определения функции y=(arcsin x)-12.

Решение

Так как дана сложная функция, необходимо рассматривать ее как y=f1(f2(x)), где f1 является степенной функцией с показателем -12, а f2 функция арксинуса, теперь необходимо искать ее область определения. Необходимо рассмотреть D(f1)=(0, +∞) и D(f2)=[−1, 1].  Теперь найдем все множества значений x, где x∈D(f2) и f2(x)∈D(f1). Получаем систему неравенств вида

x∈D(f2)f2(x)∈D(f1)⇔x∈-1, 1arcsin x∈(0, +∞)⇔⇔x∈-1, 1arcsin x>0

Для решения arcsin x>0 необходимо прибегнуть к свойствам функции арксинуса. Его возрастание происходит на области определения [−1, 1], причем обращается в ноль при х=0, значит, что arcsin x>0 из определения x принадлежит промежутку (0, 1].

Преобразуем систему вида

x∈-1, 1arcsin x>0⇔x∈-1, 1x∈(0, 1]⇔x∈(0, 1]

Область определения искомой функции имеет интервал равный (0, 1].

Ответ: (0, 1].

Постепенно подошли к тому, что будем работать со сложными функциями общего вида y=f1(f2(…fn(x)))). Область определения такой функции ищется из x∈D(fn)fn(x)∈D(fn-1)fn-1(fn(x))∈D(fn-2)…f2(f3(…(fn(x)))∈D(f1).

Пример 7

Найти область определения y=sin(lg x4).

Решение

Заданная функция может быть расписана, как y=f1(f2(f3(x))), где имеем f1 – функция синуса, f2 – функция с корнем 4 степени, f3– логарифмическая функция.

Имеем, что по условию D(f1)=(−∞, +∞), D(f2)=[0, +∞), D(f3)=(0, +∞). Тогда областью определения  функции – это пересечение множеств таких значений, где x∈D(f3), f3(x)∈D(f2), f2(f3(x))∈D(f1). Получаем, что

x∈D(f3)f3(x)∈D(f2)f2(f3(x))∈D(f1)⇔x∈(0, +∞)lg x∈[0, +∞)lg x4∈-∞, +∞

Условие lg x4∈-∞, +∞ аналогично условию lg x∈[0, +∞), значит

x∈(0, +∞)lg x∈[0, +∞)lg x4∈-∞, +∞⇔x∈(0, +∞)lg x∈[0, +∞)lg x∈[0, +∞)⇔⇔x∈(0, +∞)lg x∈[0, +∞)⇔x∈(0, +∞)lg x≥0⇔⇔x∈(0, +∞)lg x≥lg 1⇔x∈(0, +∞)x≥1⇔⇔x∈[1, +∞)

Ответ: [1, +∞).

При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.

Область определения дроби

Рассмотрим функцию вида f1(x)f2(x). Стоит обратить внимание на то, что данная дробь определяется из множества обеих функций, причем f2(х) не должна обращаться  в ноль. Тогда получаем, что область определения f для всех x записывается в виде x∈D(f1)x∈D(f2)f2(x)≠0.

Запишем функцию y=f1(x)f2(x) в виде y=f1(x)·(f2(x))-1. Тогда получим произведение функций вида y=f1(x) с y=(f2(x))-1. Областью определения функции y=f1(x) является множество D(f1), а для сложной y=(f2(x))-1 определим из системы вида x∈D(f2)f2(x)∈(-∞, 0)∪(0, +∞)⇔x∈D(f2)f2(x)≠0.

Значит, x∈D(f1)x∈D(f2)f2(x)∈(-∞, 0)∪(0, +∞)⇔x∈D(f1)x∈D(f2)f2(x)≠0.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание Пример 8

Найти область определения y=tg(2·x+1)x2-x-6.

Решение

Заданная функция дробная, поэтому f1 – сложная функция, где y=tg(2·x+1) и f2 – целая рациональная функция, где y=x2−x−6, а область определения считается множеством всех чисел. Можно записать это в виде

x∈D(f1)x∈D(f2)f2(x)≠0

Представление сложной функции y=f3(f4(x)), где f3–это функция тангенс, где в область определения включены все числа, кроме π2+π·k, k∈Z, а f4– это целая рациональная функция y=2·x+1 с областью определения D(f4)=(−∞, +∞). После чего приступаем к нахождению области определения f1:

x∈D(f4)2·x+1∈D(f3)⇔x∈(-∞, +∞)2x+1≠π2+π·k, k∈Z⇔x≠π4-12+π2·k, k∈Z

Еще необходимо рассмотреть нижнюю область определения y=tg(2·x+1)x2-x-6. Тогда получаем, что

x∈D(f1)x∈D(f2)f2(x)≠0⇔x≠π4-12+π2·k, k∈Zx∈-∞, +∞x2-x-6≠0⇔⇔x≠π4-12+π2·k, k∈Zx≠-2x≠3

Ответ: множество действительных чисел, кроме -2, 3 и π4-12+π2·k, k∈Z.

Область определения логарифма с переменной в основании

Определение 3

Определение логарифма существует для положительных оснований не равных 1. Отсюда видно, что функция y=logf2(x)f1(x) имеет область определения, которая выглядит так:

x∈D(f1)f1(x)>0x∈D(f2)f2(x)>0f2(x)≠1

А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:

y=logaf1(x)logaf2(x), a>0, a≠1. После чего можно приступать к области определения дробной функции.

Область определения логарифмической функции – это множество действительных положительных чисел, тогда области определения сложных функций типа y=logaf1(x) и y=logaf2(x) можно определить из получившейся системы вида x∈D(f1)f1(x)>0 и x∈D(f2)f2(x)>0. Иначе эту область можно записать в виде y=logaf1(x)logaf2(x), a>0, a≠1, что означает нахождение y=logf2(x)f1(x) из самой системы вида

x∈D(f1)f1(x)>0x∈D(f2)f2(x)>0logaf2(x)≠0=x∈D(f1)f1(x)>0x∈D(f2)f2(x)>0f2(x)≠1

Пример 9

Обозначить область определения функции y=log2·x(x2-6x+5).

Решение

Следует принять обозначения f1(x)=x2−6·x+5 и f2(x)=2·x, отсюда D(f1)=(−∞, +∞) и D(f2)=(−∞, +∞). Необходимо приступить к поиску множества x, где  выполняется условие x∈D(f1), f1(x)>0, x∈D(f2), f2(x)>0, f2(x)≠1. Тогда получаем систему вида

x∈(-∞, +∞)x2-6x+5>0x∈(-∞, +∞)2·x>02·x≠1⇔x∈(-∞, +∞)x∈(-∞, 1)∪(5, +∞)x∈(-∞, +∞)x>0x≠12⇔⇔x∈0, 12∪12, 1∪(5, +∞)

Отсюда видим, что искомой областью функции y=log2·x(x2-6x+5) считается множнство, удовлетворяющее условию 0, 12∪12, 1∪(5, +∞).

Ответ: 0, 12∪12, 1∪(5, +∞).

Область определения показательно-степенной функции

Показательно-степенная функция задается формулой вида y=(f1(x))f2(x).  Ее область определения  включает в себя такие значения x, которые удовлетворяют системе x∈D(f1)x∈D(f2)f1(x)>0.

Эта область позволяет переходить от показательно-степенной к сложной вида y=aloga(f1(x))f2(x)=af2(x)·logaf1(x), где где a>0, a≠1.

Пример 10

Найти область определения показательно-степенной функции y=(x2-1)x3-9·x.

Решение

Примем за обозначение f1(x)=x2−1 и f2(x)=x3-9·x.

Функция f1определена на множестве действительных чисел, тогда получаем область определения вида D(f1)=(−∞, +∞). Функция f2является сложной, поэтому ее представление примет вид y=f3(f4(x)), а f3 – квадратным корнем с областью определения  D(f3)=[0, +∞), а функция f4 – целой рациональной,D(f4)=(−∞, +∞). Получаем систему вида

x∈D(f4)f4(x)∈D(f3)⇔x∈(-∞, +∞)x3-9·x≥0⇔⇔x∈(-∞, +∞)x∈-3, 0∪[3, +∞)⇔x∈-3, 0∪[3, +∞)

Значит, область определения для функции  f2имеет вид D(f2)=[−3, 0]∪[3, +∞). После чего необходимо найти область определения показательно-степенной функции по условию x∈D(f1)x∈D(f2)f1(x)>0.

Получаем систему вида x∈-∞, +∞x∈-3, 0∪[3, +∞)x2-1>0⇔x∈-∞, +∞x∈-3, 0∪[3, +∞)x∈(-∞, -1)∪(1, +∞)⇔⇔x∈-3, -1∪[3, +∞)

Ответ: [−3, −1)∪[3, +∞)

В общем случае

Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.

Таблицы основных результатов

Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф

ФункцияЕе область определения

Сумма, разность, произведение функций

f1, f2,…, fn

Пересечение множеств

D(f1), D(f2), …, D(fn)

Сложная функция

y=f1(f2(f3(…fn(x))))

 

 

 

В частности, 

y=f1(f2(x))

Множество всех x, одновременно удовлетворяющих условиям

x∈D(fn),fn(x)∈D(fn-1),fn-1(fn(x))∈D(fn-2),… ,f2(f3(…fn(x)))∈D(f1)

 

x∈D(f2),f2(x)∈D(f1)

Расположим функции и их области определения.

ФункцияЕе область определения

Прямая пропорциональность y=k·x

R
Линейная y=k·x+bR

Обратная пропорциональность  y=kx

-∞, 0∪0, +∞
Квадратичная y=a·x2+b·x+cR
y=anxn+an-1xn-1+…+a1x+a0R
Целая рациональнаяR
y=C·f(x), где C — числоD(f)

Дробная y=f1(x)f2(x)

 

 

В частности, если f1(x), f2(x) — многочлены

Множество всех x, которые одновременно удовлетворяют условиям
x∈D(f1), x∈D(f2), f2(x)≠0

 

f2(x)≠0

y=f(x)n, где n — четноеx∈D(f1), f(x)≥0

y=logf2(x)f1(x)

 

 

В частности, y=logaf1(x)

 

В частности, y=logf2(x)a

x∈D(f1), f1(x)>0,x∈D(f2), f2(x)>0, f2(x)≠1

 

x∈D(f1), f1(x)>0

 

x∈D(f2), f2>0, f2(x)≠1

Показательно-степенная y=(f1(x))f2(x)x∈D(f1), x∈D(f2), f1(x)>0

Отметим, что преобразования можно выполнять, начиная с правой части выражения. Отсюда видно, что допускаются тождественные преобразования, которые на область определения не влияют. Например, y=x2-4x-2 и y=x+2 являются разными функциями, так как первая определяется на (−∞, 2)∪(2, +∞),  а вторая из множества действительных чисел.  Из преобразования y=x2-4x-2=x-2x+2x-2=x+2 видно, что  функция имеет смысл при x≠2.

Решение логарифмических уравнений с экспонентами

Purplemath

Второй тип логарифмического уравнения требует использования отношения:

—Взаимосвязь—

y = b x

……….. эквивалентно …………
(означает то же самое, что и)

журнал b ( y ) = x

В анимированной форме два уравнения связаны, как показано ниже:

MathHelp.

com

Обратите внимание, что основание как в экспоненциальной форме уравнения, так и в логарифмической форме уравнения — «b», но что x и y меняют сторону при переключении между двумя уравнениями.Если вы помните это — что бы ни было , было аргументом журнала, становится «равно», а все, что было «равно», становится экспонентой в экспоненте, и наоборот — тогда у вас не должно быть слишком много проблема с решением уравнений журнала.


Поскольку это уравнение имеет форму «журнал (чего-то) равен числу», а не «журнал (чего-то) равен журналу (чего-то еще)», я могу решить уравнение, используя Соотношение:

журнал 2 ( x ) = 4

2 4 = x

16 = x


Я могу решить эту проблему, преобразовав логарифмический оператор в его эквивалентную экспоненциальную форму, используя соотношение:

Но 8 = 2 3 , поэтому я могу приравнять степени двойки:


Обратите внимание, что это также можно было решить, работая непосредственно с определением логарифма.

Какая сила, когда поставлена ​​на «2», даст вам 8? Конечно же, сила 3!

Если вы хотите много работать, вы также можете сделать это в своем калькуляторе, используя формулу замены базы:

Вставьте это в свой калькулятор, и вы получите «3» в качестве ответа. Хотя этот метод смены базы не особенно полезен в данном случае, вы можете видеть, что он действительно работает. (Попробуйте это на своем калькуляторе, если вы еще этого не сделали, чтобы быть уверенным, что вы знаете, какие клавиши нажимать и в каком порядке.Эта техника понадобится вам в последующих задачах.

Я не говорю, что вам обязательно понадобится, чтобы решал уравнения, используя формулу изменения базы, или всегда используя определение журналов, или любой другой конкретный метод. Но я предлагаю вам убедиться, что вы знакомы с различными методами, и что вы не должны паниковать, если вы и ваш друг использовали совершенно разных методов для решения одного и того же уравнения.


  • Журнал решения
    2 ( x ) + лог 2 ( x — 2) = 3

Я пока ничего не могу сделать с этим уравнением, потому что у меня его еще нет в форме «журнал (чего-то) равно числу». Поэтому мне нужно использовать правила журнала, чтобы объединить два члена в левой части уравнения:

журнал 2 ( x ) + журнал 2 ( x — 2) = 3

журнал 2 [( x ) ( x — 2)] = 3

журнал 2 ( x 2 -2 x ) = 3

Теперь уравнение устроено в удобной форме.На этом этапе я могу использовать Отношение для преобразования логарифмической формы уравнения в соответствующую экспоненциальную форму, а затем могу решить результат:

журнал 2 ( x 2 -2 x ) = 3

2 3 = x 2 -2 x

8 = x 2 -2 x

0 = x 2 — 2 x — 8

0 = ( x -4) ( x + 2)

x = 4, –2

Но если x = –2, тогда аргумент «log 2 ( x )» из исходного логарифмического уравнения будет иметь отрицательное число (как и термин «log 2 ( x — 2) «). Поскольку журналы не могут иметь нулевых или отрицательных аргументов, решение исходного уравнения не может быть x = –2.

Тогда мое решение:


Имейте в виду, что вы всегда можете проверить свои ответы на любое упражнение «решение», вставив эти ответы обратно в исходное уравнение и проверив, что решение «работает». В этом случае я вставлю свое значение решения в любую сторону исходного уравнения и проверю, что каждая сторона оценивает одно и то же число:

левая сторона:

бревно 2 ( x ) + полено 2 ( x -2)

= журнал 2 (4) + журнал 2 (4-2) 3

= журнал 2 (4) + журнал 2 (2)

= журнал 2 (2 2 ) + журнал 2 (2 1 )

= 2 + 1 = 3

Правая часть исходного уравнения уже была упрощена до «3», поэтому это решение проверяется.


Это уравнение может показаться слишком сложным, но это всего лишь еще одно логарифмическое уравнение. Чтобы решить эту проблему, мне нужно дважды применить The Relationship. Я начинаю с исходного уравнения и работаю с «внешним» журналом:

Отношение преобразует вышеуказанное в:

Теперь я применю Отношение во второй раз:

Тогда решение:


  • Журнал решения
    2 ( x 2 ) = (журнал 2 ( x )) 2

Сначала я раскрою квадрат справа, чтобы он был явным произведением двух журналов:

журнал 2 ( x 2 ) = [журнал 2 ( x )] 2

журнал 2 ( x 2 ) = [журнал 2 ( x )] [журнал 2 ( x )]

Затем я применяю правило журнала, чтобы переместить «квадрат» изнутри журнала в левой части уравнения, вынимая его перед этим журналом в качестве множителя:

2 · журнал 2 ( x ) = [журнал 2 ( x )] [журнал 2 ( x )]

Затем я перенесу этот член из левой части уравнения в правую:

0 = [журнал 2 ( x )] [журнал 2 ( x )] — 2 · журнал 2 ( x )

Это уравнение может выглядеть плохо, но внимательно присмотритесь. На данный момент это не более чем упражнение по факторингу. Итак, я фактор, а затем я решу факторы, используя The Relationship:

0 = [журнал 2 ( x )] [журнал 2 ( x ) — 2]

журнал 2 ( x ) = 0 или журнал 2 ( x ) — 2 = 0

2 0 = x или лог 2 ( x ) = 2

1 = x или 2 2 = x

1 = x или 4 = x

Тогда мое решение:


Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в решении логарифмических уравнений (или пропустите виджет и продолжите урок).Попробуйте выполнить указанное упражнение или введите свое собственное. Затем нажмите кнопку, чтобы сравнить свой ответ с ответом Mathway.

(Нажмите «Нажмите, чтобы просмотреть шаги», чтобы перейти непосредственно на сайт Mathway для платного обновления.)



URL: https://www.purplemath.com/modules/solvelog2.htm

log (2x-3) + log (x-2) = 2logx Решите для x и покажите работу, спасибо

  • Нажмите здесь, чтобы увидеть ВСЕ проблемы с логарифмом

Вопрос 311717: log (2x-3) + log (x-2) = 2logx
Решите для x и покажите работу, спасибо

Найдено 2 решения от ankor @ dixie-net.2
Они не равны
Следовательно; x = 1, а не решение
Таким образом, значение x в данном вопросе будет 6 (x = 6)
Удачи!

Mohamed G. Gouda CS 313K Осень 2012, упражнение 13 1. Покажите прямым выводом, что функция f (x) = 10 есть Theta (g (x)), где г (х) = 1. Sol: Доказательство того, что f (x) есть O (g (x)): | f (x) | = | 10 | = 10 = 10 * 1 = C * | 1 | для C = 10 == C * | g (x) | для K любое значение и C = 10 2.2 | для C = (1/2) = C * | g (x) | для K = 4 и C = (1/2) 4. Покажите прямым выводом, что f (x) = 5 * log (x) есть Theta (g (x)), где г (х) = журнал (х). Sol: Доказательство того, что f (x) есть O (g (x)): | f (x) | = | 5 * журнал (x) | = 5 * log (x) для x> 2 = C * log (x) для C = 5 = C * | журнал (x) | = 2 > = (4) * журнал (x) = C * log (x) для C = 4 = C * | журнал (x) | = C * | g (x) | для K = 2 и C = 4 5. Покажите прямым выводом, что f (x) = потолок (x) есть Theta (g (x)), где г (х) = х. Sol: Доказательство того, что f (x) есть O (g (x)): | f (x) | = | потолок (x) | = потолок (x) для x> 1 = 1 > = х = C * | x ​​| для C = 1 = C * | g (x) | для K = 1 и C = 1 6. 2) / (2 * х) = (1/2) * х = C * | x ​​| для C = (1/2) = C * | g (x) | для K = 1 и C = (1/2) 7. Покажите прямым выводом, что (f1 (x) равно O (g1 (x))) и (f2 (x) равно O (g2 (x))) => (f1 (x) * f2 (x) равно O (g1 (x) * g2 (x))) Sol: (f1 (x) равно O (g1 (x))) и (f2 (x) равно O (g2 (x))) => {Определение «О»} (Существуют K1, C1, K2, C2, (Все x> K1, | f1 (x) | = K2, | f2 (x) | = {Пусть K будет max (K1, K2)} (Существуют K, C1, C2, (Все x> K, | f1 (x) | = K, | f2 (x) | = {Арифметика} (Существуют K, C1, C2, (Все x> K, | f1 (x) | = {Арифметика} (Существуют K, C1, C2, (Все x> K, | f1 (x) | * | f2 (x) | = {Арифметика} (Существуют K, C1, C2, (Все x> K, | f1 (x) * f2 (x) | = {Пусть C будет C1 * C2} (Существуют K, C, (Все x> K, | f1 (x) * f2 (x) | = {Определение «O»} (f1 (x) * f2 (x)) равно O (g1 (x) * g2 (x)) 8.2 + 5 * log (x)) / (2x + 1) для x> 1 = 1 =

Решение экспоненциальных уравнений с использованием логарифмов

На предыдущем уроке вы узнали, как решать экспоненциальные уравнения без логарифмов. На этот раз мы хотим решить экспоненциальное уравнение , требующее использования логарифмов . Почему? Причина в том, что мы не можем манипулировать экспоненциальным уравнением, чтобы иметь одинаковую или общую основу для обеих сторон уравнения. Если вы столкнулись с проблемой такого типа, выполните следующие действия:


Шаги для решения экспоненциальных уравнений с использованием логарифмов

1) Оставьте экспоненциальное выражение отдельно на одной стороне уравнения.

2) Найдите логарифмы обеих частей уравнения. Вы можете использовать любых баз для логов.

3) Найдите переменную. Ответьте точнее или используйте десятичные дроби. В дополнение к шагам, описанным выше, обязательно ознакомьтесь с основными правилами логарифмирования, потому что вы будете использовать их так или иначе.

Давайте рассмотрим несколько примеров!


Примеры решения экспоненциальных уравнений с использованием логарифмов

Пример 1: Решите экспоненциальное уравнение {5 ^ {2x}} = 21.

Преимущество этого уравнения в том, что экспоненциальное выражение уже выделено в левой части. Теперь мы можем логарифмировать обе части уравнения. Неважно, какое основание логарифма использовать. Окончательный ответ должен быть таким же. Наилучший выбор для базы логарифмической операции — 5, поскольку она является базой самого экспоненциального выражения. Тем не менее, мы также будем использовать в вычислениях общую основу 10 и естественную основу \ color {red} e (обозначенную \ color {blue} ln), чтобы показать, что в конечном итоге все они имеют одинаковые ответы. .{x — 5}}} \ right) = 12.

Как видите, экспоненциальное выражение слева не само по себе. Мы должны исключить число 2, умножающее экспоненциальное выражение. Для этого разделите обе части на 2. В результате мы получим только экспоненциальное выражение слева и 6 справа после упрощения.

Пора взять бревно с обеих сторон. Поскольку экспоненциальное выражение имеет основание 3, это удобное основание для работы с журналом. Кроме того, мы также решим эту проблему, используя естественное основание e, чтобы сравнить, согласуются ли наши окончательные результаты.{x — 2}}}}}}} \ right) — 7 = 13.

Сначала это похоже на беспорядок. Однако если вы знаете, с чего начать, решение этой проблемы становится простым. В первую очередь нам следует упростить выражение внутри скобок. Используйте правило деления экспоненты, скопировав общее основание числа е и вычтя верхнюю на нижнюю степень.

Теперь выделите экспоненциальное выражение, сложив обе части на 7, а затем разделив все уравнение на 2.

Возьмите логарифм обеих сторон.х} + 3 = 53.

Обратите внимание, что экспоненциальное выражение увеличивается до x. Упростите это, применив Силу к Правилу Силы. Сделайте это, скопировав основание 10 и умножив его показатель на внешний показатель. После этого он должен выглядеть так.

Теперь мы можем изолировать экспоненциальное выражение, вычтя обе части на 3, а затем умножив обе стороны на 2.

Возьмите логарифм обеих сторон с основанием 10. Если вы просто видите журнал \ color {red} без какой-либо конкретной базы , предполагается, что в его основе лежит 10.х снова.

Наконец, установите каждый коэффициент равным нулю и решите относительно x, как обычно, используя логарифмы.


Возможно, вас также заинтересует:

Решение экспоненциальных уравнений без логарифмов

страница не найдена — Williams College

’62 Центр театра и танца, ’62 Центр
Касса 597-2425
Магазин костюмов 597-3373
Менеджер мероприятий / Помощник менеджера 597-4808 597-4815 факс
Производство 597-4474 факс
Магазин сцен 597-2439
’68 Центр карьерного роста, Мирс 597-2311 597-4078 факс
Академические ресурсы, Парески 597-4672 597-4959 факс
Служба поддержки инвалидов, Парески 597-4672
Прием, Вестон Холл 597-2211 597-4052 факс
Affirmative Action, Hopkins Hall 597-4376
Africana Studies, Hollander 597-2242 597-4222 факс
Американские исследования, Шапиро 597-2074 597-4620 факс
Антропология и социология, Холландер 597-2076 597-4305 факс
Архивы и специальные коллекции, Sawyer 597-4200 597-2929 факс
Читальный зал 597-4200
Искусство (история, студия), Spencer Studio Art / Lawrence 597-3578 597-3693 факс
Архитектурная студия, Spencer Studio Art 597-3134
Фотография Студия, Spencer Studio Art 597-2030
Printmaking Studio, Spencer Studio Art 597-2496
Студия скульптуры, Спенсер Студия искусства 597-3101
Senior Studio, Spencer Studio Art 597-3224
Видео / фотостудия, Spencer Studio Art 597-3193
Азиатские исследования, Холландер 597-2391 597-3028 факс
Астрономия / Астрофизика, Thompson Physics 597-2482 597-3200 факс
Департамент легкой атлетики, физическое воспитание, отдых, Ласелл 597-2366 597-4272 факс
Спортивный директор 597-3511
Лодочный домик, Озеро Онота 443-9851
Автобусы 597-2366
Фитнес-центр 597-3182
Hockey Rink Ice Line, Lansing Chapman 597-2433
Intramurals, Атлетический центр Чандлера 597-3321
Физическое воспитание 597-2141
Pool Wet Line, Атлетический центр Чандлера 597-2419
Sports Information, Hopkins Hall 597-4982 597-4158 факс
Спортивная медицина 597-2493 597-3052 факс
Площадки для сквоша 597-2485
Поле для гольфа Taconic 458-3997
Биохимия и молекулярная биология, Thompson Biology 597-2126
Биоинформатика, геномика и протеомика, Bronfman 597-2124
Биология, Thompson Biology 597-2126 597-3495 факс
Охрана и безопасность кампуса, Хопкинс-холл 597-4444 597-3512 факс
Карты доступа / системы сигнализации 597-4970 / 4033
Служба сопровождения, Хопкинс Холл 597-4400
Офицеры и диспетчеры 597-4444
Секретарь, удостоверения личности 597-4343
Коммутатор 597-3131
Центр развития творческих сообществ, 66 Stetson Court 884-0093
Центр экономики развития, 1065 Main St 597-2148 597-4076 факс
Компьютерный зал 597-2522
Вестибюль 597-4383
Центр экологических исследований, класс 1966 г. Экологический центр 597-2346 597-3489 факс
Лаборатория экологических наук, Морли 597-2380
Экологические исследования 597-2346
Лаборатория ГИС 597-3183
Центр иностранных языков, литератур и культур, Холландер 597-2391 597-3028 факс
Арабские исследования, Холландер 597-2391 597-3028 факс
Сравнительная литература, Холландер 597-2391
Критические языки, Холландер 597-2391 597-3028 факс
лингафонный кабинет 597-3260
Россия, Холландер 597-2391
Центр обучения в действии, Brooks House 597-4588 597-3090 факс
Библиотека редких книг Чапина, Сойер 597-2462 597-2929 факс
Читальный зал 597-4200
Офис капелланов, Парески 597-2483 597-3955 факс
Еврейский религиозный центр, Стетсон-Корт 24, 597-2483
Мусульманская молитвенная комната, часовня Томпсона (нижний уровень) 597-2483
Католическая часовня Ньюмана, часовня Томпсона (нижний уровень) 597-2483
Химия, Thompson Chemistry 597-2323 597-4150 факс
Классика (греческий и латинский), Hollander 597-2242 597-4222 факс
Когнитивная наука, Бронфман 597-4594
College Marshal, Thompson Physics 597-2008
Отношения с колледжем 597-4057
Программа 25-го воссоединения, Фогт 597-4208 597-4039 факс
Программа 50-го воссоединения, Фогт 597-4284 597-4039 факс
Advancement Operations, Мирс-Уэст 597-4154 597-4333 факс
Мероприятия для выпускников, Vogt 597-4146 597-4548 факс
Фонд выпускников 597-4153 597-4036 факс
Связи с выпускниками, Мирс-Уэст 597-4151 597-4178 факс
Почтовые службы для выпускников / разработчиков, Мирс-Вест 597-4369
Развитие, Vogt 597-4256
Отношения с донорами, Vogt 597-3234 597-4039 факс
Офис по планированию подарков, Vogt 597-3538 597-4039 факс
Grants Office, Mears West 597-4025 597-4333 факс
Программа крупных подарков, Vogt 597-4256 597-4548 факс
Parents Fund, Vogt 597-4357 597-4036 факс
Prospect Management & Research, Мирс 597-4119 597-4178 факс
Начало занятий и академические мероприятия, Jesup 597-2347 597-4435 факс
Communications, Hopkins Hall 597-4277 597-4158 факс
Sports Information, Hopkins Hall 597-4982 597-4158 факс
Web Team, Southworth Schoolhouse
Williams Magazines (ранее Alumni Review), Hopkins Hall 597-4278
Компьютерные науки, Thompson Chemistry 597-3218 597-4250 факс
Conferences & Events, Paresky 597-2591 597-4748 факс
Запросы Elm Tree House, Mt. Ферма Надежды, 597-2591
Офис контролера, Хопкинс-холл 597-4412 597-4404 факс
Счета к оплате и ввод данных, Хопкинс-холл 597-4453
Bursar & Cash Receipts, Hopkins Hall 597-4396
Financial Information Systems, Hopkins Hall 597-4023
Purchasing Cards, Hopkins Hall 597-4413
Студенческие ссуды, Хопкинс-холл 597-4683
Dance, 62 Центр 597-2410
Центр Дэвиса (ранее Мультикультурный центр), Дженнесс 597-3340 597-3456 факс
Харди Хаус 597-2129
Jenness House 597-3344
Райс Хаус 597-2453
Декан колледжа, Хопкинс-холл 597-4171 597-3507 факс
Декан факультета Хопкинс Холл 597-4351 597-3553 факс
Столовая, капельницы 597-2121 597-4618 факс
’82 Гриль, Парески 597-4585
Кондитерская, Паресский 597-4511
Общественное питание, факультет 597-2452
Driscoll Dining Hall, Дрисколл 597-2238
Eco Café, Science Center 597-2383
Grab ‘n Go, Парески 597-4398
Lee Snack Bar, Парески 597-3487
Обеденный зал Mission Park, Mission Park 597-2281
Whitmans ‘, Paresky 597-2889
Экономика, Шапиро 597-2476 597-4045 факс
Английский, Холландер 597-2114 597-4032 факс
Сооружения, служебное здание 597-2301
College Car Request 597-2302
Скорая помощь вечером / в выходные дни 597-4444
Запросы на работу производственных помещений 597-4141 факс
Особые мероприятия 597-4020
Кладовая 597-2143 597-4013 факс
Клуб преподавателей, Дом факультетов / Центр выпускников 597-2451 597-4722 факс
Бронирование 597-3089
Fellowships Office, Hopkins Hall 597-3044 597-3507 факс
Financial Aid, Weston Hall 597-4181 597-2999 факс
Geosciences, Clark Hall 597-2221 597-4116 факс
Немецко-русский, Hollander 597-2391 597-3028 факс
Глобальные исследования, Холландер 597-2247
Программа магистратуры по истории искусств, Кларк 458-2317 факс
Службы здравоохранения и хорошего самочувствия, Thompson Ctr Health 597-2206 597-2982 факс
Медицинское просвещение 597-3013
Услуги интегративного благополучия (консультирование) 597-2353
Чрезвычайные ситуации с опасностью для жизни Позвоните 911
Медицинские услуги 597-2206
История, Холландер 597-2394 597-3673 факс
История науки, Бронфман 597-4116 факс
Лес Хопкинса 597-4353
Розенбург Центр 458-3080
Отдел кадров, B&L Building 597-2681 597-3516 факс
Услуги няни, корпус B&L 597-4587
Льготы 597-4355
Программа помощи сотрудникам 800-828-6025
Занятость 597-2681
Заработная плата 597-4162
Ресурсы для супруга / партнера 597-4587
Занятость студентов 597-4568
Погодная линия (ICEY) 597-4239
Humanities, Schapiro 597-2076
Информационные технологии, Jesup 597-2094 597-4103 факс
Пакеты для чтения курса, Drop Box для офисных услуг 597-4090
Центр ссуды на оборудование, приложение Додда 597-4091
Служба поддержки преподавателей / сотрудников, [адрес электронной почты защищен] 597-4090
Медиауслуги и справка в классе 597-2112
Служба поддержки студентов, [электронная почта] 597-3088
Телекоммуникации / Телефоны 597-4090
Междисциплинарные исследования, Hollander 597-2552
Международное образование и учеба, Хопкинс-холл 597-4262 597-3507 факс
Инвестиционный офис, Хопкинс Холл 597-4447
Бостонский офис 617-502-2400 617-426-5784 факс
Еврейские исследования, Мазер 597-3539
Правосудие и закон, Холландер 597-2102
Latina / o Studies, Hollander 597-2242 597-4222 факс
Исследования лидерства, Шапиро 597-2074 597-4620 факс
Морские исследования, Бронфман 597-2297
Математика и статистика, Bascom 597-2438 597-4061 факс
Музыка, Бернхард 597-2127 597-3100 факс
Concertline (записанная информация) 597-3146
Неврология, Thompson Biology 597-4107 597-2085 факс
Окли Центр, Окли 597-2177 597-4126 факс
Управление институционального разнообразия и справедливости, Hopkins Hall 597-4376 597-4015 факс
Управление счетов студентов, Хопкинс-холл 597-4396 597-4404 факс
Performance Studies, ’62 Center 597-4366
Философия, Шапиро 597-2074 597-4620 факс
Физика, Thompson Physics 597-2482 597-4116 факс
Планетарий / Обсерватория Хопкинса 597-3030
Старый театр обсерватории Хопкинса 597-4828
Бронирование 597-2188
Политическая экономия, Шапиро 597-2327
Политология, Шапиро 597-2168 597-4194 факс
Офис президента, Хопкинс Холл 597-4233 597-4015 факс
Дом Президента 597-2388 597-4848 факс
Услуги печати / почты для преподавателей / сотрудников, ’37 House 597-2022
Программа обучения, Бронфман 597-4522 597-2085 факс
Офис Провоста, Хопкинс Холл 597-4352 597-3553 факс
Психология, психологические кабинеты и лаборатории 597-2441 597-2085 факс
Недвижимость, B&L Building 597-2195 / 4238 597-5031 факс
Ипотека для преподавателей / сотрудников 597-4238
Преподаватели / сотрудники Арендное жилье 597-2195
Офис регистратора, Хопкинс Холл 597-4286 597-4010 факс
Религия, Холландер 597-2076 597-4222 факс
Romance Languages, Hollander 597-2391 597-3028 факс
Планировщик помещений 597-2555
Соответствие требованиям безопасности и охраны окружающей среды, класс ’37, дом 597-3003
Библиотека Сойера, Сойер 597-2501 597-4106 факс
Службы доступа 597-2501
Приобретения / Серийные номера 597-2506
Каталогизация / Службы метаданных 597-2507
Межбиблиотечный абонемент 597-2005 597-2478 факс
Исследовательские и справочные службы 597-2515
Стеллаж 597-4955 597-4948 факс
Системы 597-2084
Научная библиотека Шоу, Научный центр 597-4500 597-4600 факс
Исследования в области науки и технологий, Бронфман 597-2239
Научный центр, Бронфман 597-4116 факс
Магазин электроники 597-2205
Станочно-модельный цех 597-2230
Безопасность 597-4444
Специальные академические программы, Харди 597-3747 597-4530 факс
Sports Information, Hopkins Hall 597-4982 597-4158 факс
Студенческая жизнь, Парески 597-4747
Планировщик помещений 597-2555
Управление студенческими центрами 597-4191
Организация студенческих мероприятий 597-2546
Студенческий дом, Парески 597-2555
Участие студентов 597-4749
Программы проживания для старших классов 597-4625
Студенческая почта, Парески, 597-2150
Центр устойчивого развития / Зилха Центр, Харпер 597-4462
Коммутатор, Хопкинс Холл 597-3131
Книжный магазин Уильямса 458-8071 458-0249 факс
Театр, 62 Центр 597-2342 597-4170 факс
Trust & Estate Administration, Sears House 597-4259
Учебники 597-2580
Вице-президент по работе в кампусе, Хопкинс-холл, 597-2044 597-3996 факс
Вице-президент по связям с колледжем, Мирс 597-4057 597-4178 факс
Вице-президент по финансам и администрированию, Hopkins Hall 597-4421 597-4192 факс
Центр визуальных ресурсов, Лоуренс 597-2015 597-3498 факс
Детский центр Williams College, Детский центр Williams 597-4008 597-4889 факс
Музей искусств колледжа Уильямс (WCMA), Лоуренс 597-2429 597-5000 факс
Подготовка музея 597-2426
Служба безопасности музея 597-2376
Музейный магазин 597-3233
Уильямс Интернэшнл 597-2161
Williams Outing Club, Парески 597-2317
Оборудование / стол для студентов 597-4784
Проект Уильямса по экономике высшего образования, Мирс-Вест 597-2192
Williams Record, Парески 597-2400 597-2450 факс
Программа Уильямса-Эксетера в Оксфорде, Оксфордский университет 011-44-1865-512345
Программа Williams-Mystic, Mystic Seaport Museum 860-572-5359 860-572-5329 факс
Исследования женщин, гендера и сексуальности, Schapiro 597-3143 597-4620 факс
Написание программ, Hopkins Hall 597-4615
Центр экологических инициатив «Зилха», Харпер 597-4462

5.

Производная логарифмической функции

М. Борна

Во-первых, давайте посмотрим на график функции журнала с базой e , то есть:

f ( x ) = log e ( x ) (обычно пишется «ln x »).

Касательная при x = 2 включена в график.

Наклон тангенса угла y = ln x при x = 2 равен 1/2.(Мы можем наблюдать это на графике, посмотрев на соотношение подъем / ход).

Если y = ln x ,

x 1 2 3 4 5
наклон графика `1` `1/2` `1/3` `1/4` `1/5`
`1 / x` `1` `1/2` `1/3` `1/4` `1/5`

Мы видим, что наклон графика для каждого значения x равен «1 / x». Это работает для любого положительного значения x (конечно, у нас не может быть логарифма отрицательного числа).

Если бы мы сделали еще много примеров, мы могли бы сделать вывод, что производная логарифмической функции y = ln x равна

`dy / dx = 1 / x`

Примечание 1: Фактически, этот результат исходит из первых принципов.

Примечание 2: Мы используем логарифмы с основанием e . Если вам нужно напоминание о функциях журнала, ознакомьтесь с базой журнала и ранее.

Производная логарифма

y = ln x

Производная логарифмической функции y = ln x определяется по формуле:

`d / (dx) (ln \ x) = 1 / x`

Вы также увидите, что это написано несколькими другими способами. Следующие эквиваленты:

`d / (dx) log_ex = 1 / x`

Если y = ln x , то `(dy) / (dx) = 1 / x`

Теперь мы покажем, откуда взялась формула для производной от log_e x, используя первые принципы. {1 «/» t} `приближается к значению` e ~~ 2.71828`.)

Я напишу `log (x)` для обозначения `log_e (x) = ln (x)`, чтобы облегчить чтение.

У нас есть `f (x) = log (x)`, поэтому производная будет равна:

`(df) / (dx) = lim_ {h-> 0} (log (x + h) -log (x)) / h`

Теперь верхняя часть нашей дроби —

`log (x + h) -log (x)` `= log ((x + h) / x)` `= log (1 + h / x)`.

Чтобы упростить алгебру, мы теперь подставляем `t = h / x`, и это дает нам` h = xt`.{1 «/» t}) `

`= 1 / x журнал (е)`

`= 1 / x`

Наконечник

Для некоторых задач мы можем использовать законы логарифмирования, чтобы упростить логарифмическое выражение перед его дифференцированием.

Пример 1

Найдите производную от

y = ln 2 x

Ответ

Используем лог-закон:

журнал ab = журнал a + журнал b

Мы можем написать наш вопрос как:

y = ln 2 x = ln 2 + ln x

Теперь производная константы равна 0, поэтому

`d / (dx) ln \ 2 = 0`

Итак, у нас осталось (из нашей формулы выше)

`d / (dx) (ln \ x) = 1 / x`

Окончательный ответ:

`(dy) / (dx) = 1 / x`

Из следующего графика видно, что наклон y = ln 2 x (кривая зеленого цвета, касательная пурпурный) такой же, как наклон y = ln x (кривая серого цвета, касательная пунктирно серым) в точке x = 2.

Пример 2

Найдите производную от

y = ln x 2

Ответ

Используем лог-закон:

журнал a n = n журнал a

Итак, мы можем написать вопрос как

y = ln x 2 = 2 ln x

Производная будет просто в 2 раза больше производной ln x .2) «на самом деле имеет 2« руки », одно на отрицательной стороне, а другое на положительной. На приведенном выше графике для простоты показано только положительное плечо.

Производная от

y = ln u (где u является функцией x )

К сожалению, мы можем использовать только законы логарифма, чтобы помочь нам в ограниченном количестве типов вопросов логарифмической дифференциации.

Чаще всего нам нужно найти производную логарифма некоторой функции x . Например, нам может потребоваться найти производную от y = 2 ln (3 x 2 — 1).

Для решения таких задач нам понадобится следующая формула.

Если

y = ln u

и u — некоторая функция от x , тогда:

`(dy) / (dx) = (u ‘) / u`

, где u ‘ — производная от u

Другой способ записать это —

`(dy) / (dx) = 1 / u (du) / (dx)`

Вы также можете увидеть следующую форму.Это означает то же самое.

Если

y = ln f ( x ),

, то производная y определяется по формуле:

`(dy) / (dx) = (f ‘(x)) / (f (x)`

Пример 3

Найдите производную из

y = 2 ln (3 x 2 — 1). 2 + 1)`

Дифференцирование логарифмических функций с основанием, отличным от

e

Если

u = f ( x ) является функцией x ,

и

y = log b u — логарифм с основанием b ,

, то мы можем получить производную функции логарифма с основанием b , используя:

`(dy) / (dx) = (log_be) (u ‘) / u`

где

u является производной от u

log b e — константа.См. Изменение базового правила, чтобы узнать, как вычислить такие константы на вашем калькуляторе.)

Примечание 1: Эта формула основана на первых принципах.

Примечание 2: Если мы выберем e в качестве основы, тогда производная ln u , где u является функцией x , просто даст нам нашу формулу выше:

`(dy) / (dx) = (u ‘) / u`

[Напомним, что журнал e e = 1. ]

[См. Главу, посвященную экспоненциальным и логарифмическим функциям, основание и , если вам нужно освежить в памяти все это.]

Пример 6

Найдите производную из y = бревно 2 6 x .

Ответ

Начнем с использования следующего правила журнала, чтобы упростить наш вопрос:

журнал ab = журнал a + журнал b

Мы можем написать наш вопрос как:

y = бревно 2 6 x = бревно 2 6 + лог 2 x

Первый член, log 2 6, является константой, поэтому его производная равна 0.

Производная второго члена выглядит следующим образом по нашей формуле:

`(dy) / (dx) = (log_2e) (1 / x) = (log_2e) / x`

Член сверху, log 2 e , является константой. 3-x`

`x ≠ ± sqrt (0.5) `,

`x ≠ 0`

ПРИМЕЧАНИЕ: Мы должны быть осторожны с областью этого решения, так как это верно только для определенных значений размером x .

График y = ln (2 x 3 x ) 2 (который имеет степень 2 ) определен для всех x , кроме

`± sqrt (0,5), 0`

Его график выглядит следующим образом:

График y = 2 ln (2 x 3 x ), однако (у него 2 x спереди) определен только для более ограниченного домен (поскольку у нас не может быть логарифма отрицательного номер.)

Таким образом, мы можем иметь только x в диапазоне `-sqrt 0.5 sqrt0.5.`

Итак, когда мы находим дифференцирование логарифма с помощью ярлык, указанный выше, мы должны быть осторожны, чтобы домен указаны функция и область определения производной. 2`

3.x (x \ cot \ x + ln (sin x)) `

График функции в упражнении 5 довольно интересен:

График y = (sin x ) x .

Используйте однозначное свойство логарифмов для решения логарифмических уравнений

Как и в случае с экспоненциальными уравнениями, мы можем использовать однозначное свойство для решения логарифмических уравнений. Однозначное свойство логарифмических функций говорит нам, что для любых действительных чисел x > 0, S > 0, T > 0 и любого положительного действительного числа b , где [latex] b \ ne 1 [/ латекс],

[латекс] {\ mathrm {log}} _ {b} S = {\ mathrm {log}} _ {b} T \ text {тогда и только тогда, когда} S = T [/ latex].

Например,

[латекс] \ text {If} {\ mathrm {log}} _ {2} \ left (x — 1 \ right) = {\ mathrm {log}} _ {2} \ left (8 \ right), \ текст {then} x — 1 = 8 [/ latex].

Итак, если [latex] x — 1 = 8 [/ latex], то мы можем решить для x , и мы получим x = 9. Чтобы проверить, мы можем подставить x = 9 в исходное уравнение. : [латекс] {\ mathrm {log}} _ {2} \ left (9-1 \ right) = {\ mathrm {log}} _ {2} \ left (8 \ right) = 3 [/ latex]. Другими словами, когда логарифмическое уравнение имеет одинаковое основание с каждой стороны, аргументы должны быть равны.Это также применимо, когда аргументы являются алгебраическими выражениями. Следовательно, когда дано уравнение с журналами с одинаковым основанием на каждой стороне, мы можем использовать правила логарифмов, чтобы переписать каждую сторону как один логарифм. Затем мы используем тот факт, что логарифмические функции взаимно однозначны, чтобы установить аргументы, равные друг другу, и найти неизвестное.

Например, рассмотрим уравнение [латекс] \ mathrm {log} \ left (3x — 2 \ right) — \ mathrm {log} \ left (2 \ right) = \ mathrm {log} \ left (x + 4 \ справа) [/ латекс]. Чтобы решить это уравнение, мы можем использовать правила логарифмов, чтобы переписать левую часть как единичный логарифм, а затем применить свойство «один к одному», чтобы найти x :

[латекс] \ begin {case} \ mathrm {log} \ left (3x — 2 \ right) — \ mathrm {log} \ left (2 \ right) = \ mathrm {log} \ left (x + 4 \ right) ) \ hfill & \ hfill \\ \ text {} \ mathrm {log} \ left (\ frac {3x — 2} {2} \ right) = \ mathrm {log} \ left (x + 4 \ right) \ hfill & \ text {Применить правило частного логарифмов}. \ hfill \\ \ text {} \ frac {3x — 2} {2} = x + 4 \ hfill & \ text {Применить свойство логарифма один к одному}. \ hfill \\ \ text {} 3x — 2 = 2x + 8 \ hfill & \ text {Умножьте обе части уравнения на} 2. \ hfill \\ \ text {} x = 10 \ hfill & \ text {Вычтите 2} x \ text {и добавьте 2}. \ hfill \ end {case} [/ latex]

Чтобы проверить результат, подставьте x = 10 в [latex] \ mathrm {log} \ left (3x — 2 \ right) — \ mathrm {log} \ left (2 \ right) = \ mathrm {log} \ left (x + 4 \ right) [/ латекс].

[латекс] \ begin {case} \ mathrm {log} \ left (3 \ left (10 \ right) -2 \ right) — \ mathrm {log} \ left (2 \ right) = \ mathrm {log} \ left (\ left (10 \ right) +4 \ right) \ hfill & \ hfill \\ \ text {} \ mathrm {log} \ left (28 \ right) — \ mathrm {log} \ left (2 \ right) = \ mathrm {log} \ left (14 \ right) \ hfill & \ hfill \\ \ text {} \ mathrm {log} \ left (\ frac {28} {2} \ right) = \ mathrm {log} \ left (14 \ right) \ hfill & \ text {Решение проверяет}.\ hfill \ end {case} [/ latex]

Общее примечание: использование однозначного свойства логарифмов для решения логарифмических уравнений

Для любых алгебраических выражений S и T и любого положительного действительного числа b , где [latex] b \ ne 1 [/ latex],

[латекс] {\ mathrm {log}} _ {b} S = {\ mathrm {log}} _ {b} T \ text {тогда и только тогда, когда} S = T [/ latex]

Обратите внимание: при решении уравнения, включающего логарифмы, всегда проверяйте, верен ли ответ или нет ли это постороннее решение.