2

1.2. Ко­рень n-й сте­пе­ни

1.2. Ко­рень n-й сте­пе­ни

В 8-м клас­се изу­ча­лись квад­рат­ные кор­ни из дей­стви­тель­ных чи­сел (их на­зы­ва­ют так­же кор­ня­ми 2-й сте­пе­ни).

Пе­рей­дем к изу­че­нию кор­ней сте­пе­ни n для про­из­воль­но­го на­ту­раль­но­го чис­ла n≥2.

Опре­де­ле­ние. Пусть n≥2 и n∈N. Кор­нем n-й сте­пе­ни из чис­ла a на­зы­ва­ет­ся та­кое чис­ло t, n-я сте­пень ко­то­ро­го рав­на a .

Та­ким об­ра­зом, утвер­жде­ние «t — ко­рень n-й сте­пе­ни из a» озна­ча­ет, что tn=a.

Ко­рень 3-й сте­пе­ни на­зы­ва­ет­ся так­же ку­би­че­ским.

На­при­мер, ку­би­че­ский ко­рень из чис­ла 125 — это чис­ло 5, так как 53=125. Ку­би­че­ский ко­рень из чис­ла −125 — это чис­ло −5, так как (−5)3=−125.

Ко­рень 7-й сте­пе­ни из чис­ла 128 — это чис­ло 2, так как 27=128. Ко­рень 7-й сте­пе­ни из чис­ла −128 — это чис­ло −2, так как (−2)7=−128. Ко­рень 7-й сте­пе­ни из чис­ла 0 — это 0, так как 07=0.

Во мно­же­стве дей­стви­тель­ных чи­сел су­ще­ству­ет един­ствен­ный ко­рень не­чет­ной сте­пе­ни n из лю­бо­го чис­ла a. Этот ко­рень обо­зна­ча­ет­ся

На­при­мер, 1253=5,−1287=−2,07=0.

Стр. 11

Утвер­жде­ние о су­ще­ство­ва­нии кор­ня не­чет­ной сте­пе­ни из лю­бо­го чис­ла мы при­ни­ма­ем без до­ка­за­тель­ства.

Со­глас­но опре­де­ле­нию, ко­гда n не­чет­ное, то при лю­бом зна­че­нии а вер­но ра­вен­ство

(an)n=a.

На­при­мер, ⎛⎝927⎞⎠7=92,⎛⎝1237⎞⎠7=123,⎛⎝−1237⎞⎠7=−123.

За­ме­тим, что 0 — это един­ствен­ное чис­ло, n-я сте­пень ко­то­ро­го рав­на 0. По­это­му

при лю­бом на­ту­раль­ном n≥2 су­ще­ству­ет един­ствен­ный ко­рень n-й сте­пе­ни из 0 — это чис­ло 0, т. е. 0n=0.

При­ме­ра­ми кор­ней чет­ной сте­пе­ни мо­гут слу­жить квад­рат­ные кор­ни: −7 и 7 — квад­рат­ные кор­ни из 49, а −15 и 15 — из 225. Рас­смот­рим еще не­сколь­ко при­ме­ров. Кор­ни 4-й сте­пе­ни из чис­ла 81 — это чис­ла 3 и −3, так как 34=81 и (−3)4=81. Кор­ни 6-й сте­пе­ни из чис­ла 64 — это чис­ла 2 и −2, так как 26=64 и (−2)6=64.

Во мно­же­стве дей­стви­тель­ных чи­сел су­ще­ству­ет ров­но два кор­ня чет­ной сте­пе­ни n из лю­бо­го по­ло­жи­тель­но­го чис­ла а, их мо­ду­ли рав­ны, а зна­ки про­ти­во­по­лож­ны. По­ло­жи­тель­ный ко­рень обо­зна­ча­ет­ся

На­при­мер, 814=3,646=2.

Утвер­жде­ние о су­ще­ство­ва­нии кор­ня чет­ной сте­пе­ни из лю­бо­го по­ло­жи­тель­но­го чис­ла мы при­ни­ма­ем без до­ка­за­тель­ства.

Со­глас­но опре­де­ле­нию, ко­гда n чет­ное, то при лю­бом по­ло­жи­тель­ном зна­че­нии а вер­но ра­вен­ство

(an)n=a.

На­при­мер, ⎛⎝514⎞⎠4=51,⎛⎝874⎞⎠4=87.

Не су­ще­ству­ет та­ко­го чис­ла, 4-я сте­пень ко­то­ро­го рав­на −81. По­это­му кор­ня 4-й сте­пе­ни из чис­ла −81 не су­ще­ству­ет. И во­об­ще, по­сколь­ку не су­ще­ству­ет та­ко­го чис­ла, чет­ная сте­пень ко­то­ро­го бы­ла бы от­ри­ца­тель­ной, то

Стр. 12

не су­ще­ству­ет кор­ня чет­ной сте­пе­ни из от­ри­ца­тель­но­го чис­ла.

Опре­де­ле­ние. Не­отри­ца­тель­ный ко­рень n-й сте­пе­ни из чис­ла a на­зы­ва­ет­ся ариф­ме­ти­че­ским кор­нем n-й сте­пе­ни из a .

При чет­ном n сим­во­лом an обо­зна­ча­ет­ся толь­ко ариф­ме­ти­че­ский ко­рень n-й сте­пе­ни из чис­ла a (при чте­нии за­пи­си an сло­во «ариф­ме­ти­че­ский» обыч­но про­пус­ка­ют).

Вы­ра­же­ние, сто­я­щее под зна­ком кор­ня, на­зы­ва­ет­ся под­ко­рен­ным вы­ра­же­ни­ем.

Из­влечь ко­рень n-й сте­пе­ни из чис­ла a — это зна­чит най­ти зна­че­ние вы­ра­же­ния an.

Так как кор­ня чет­ной сте­пе­ни из от­ри­ца­тель­но­го чис­ла не су­ще­ству­ет, то вы­ра­же­ние an при чет­ном n и от­ри­ца­тель­ном а не име­ет смыс­ла.

На­при­мер, не име­ют смыс­ла вы­ра­же­ния −814 и −646.

Как мы уста­но­ви­ли, при лю­бом зна­че­нии а, при ко­то­ром вы­ра­же­ние an име­ет смысл, вер­но ра­вен­ство

1

1 (an)n=a.

1

По­это­му ра­вен­ство (1) яв­ля­ет­ся тож­де­ством.

В кон­це XV в. ба­ка­лавр Па­риж­ско­го уни­вер­си­те­та Н. Шю­ке внес усо­вер­шен­ство­ва­ния в ал­ге­бра­и­че­скую сим­во­ли­ку. В част­но­сти, зна­ком кор­ня слу­жил сим­вол Rx (от ла­тин­ско­го сло­ва radix — ко­рень). Так, вы­ра­же­ние 24+374 в сим­во­ли­ке Шю­ке име­ло вид R¯x424p¯R¯x237.

Знак кор­ня     в со­вре­мен­ном ви­де был пред­ло­жен в 1525 г. чеш­ским ма­те­ма­ти­ком К. Ру­доль­фом. Его учеб­ник ал­ге­бры пе­ре­из­да­вал­ся до 1615 г., и по не­му учил­ся зна­ме­ни­тый ма­те­ма­тик Л. Эй­лер.

Знак     еще на­зы­ва­ют ра­ди­ка­лом.

Стр. 13

При­мер 1. Вер­но ли, что:

а) (−2)44=−2;

б) (−2)77=−2?

Ре­ше­ние. а) По опре­де­ле­нию ариф­ме­ти­че­ский ко­рень n-й сте­пе­ни из не­отри­ца­тель­но­го чис­ла a (n — чет­ное чис­ло) яв­ля­ет­ся не­отри­ца­тель­ным чис­лом, n-я сте­пень ко­то­ро­го рав­на под­ко­рен­но­му вы­ра­же­нию a.

По­сколь­ку −2<0, то ра­вен­ство (−2)44=−2 не­вер­ное. Вер­но ра­вен­ство (−2)44=2.

б) По опре­де­ле­нию ко­рень n-й сте­пе­ни из чис­ла а (n — не­чет­ное чис­ло) яв­ля­ет­ся чис­лом, n-я сте­пень ко­то­ро­го рав­на под­ко­рен­но­му вы­ра­же­нию а.

По­сколь­ку (−2)7=−27 — вер­ное ра­вен­ство, то ра­вен­ство (−2)77=−2 − вер­ное.

При­мер 2. Ре­шить урав­не­ние:

а) x3=7;

б) x4=5.

Ре­ше­ние. а) Ре­ше­ни­ем это­го урав­не­ния яв­ля­ет­ся та­кое зна­че­ние х, 3-я сте­пень ко­то­ро­го рав­на 7, т. е. по опре­де­ле­нию ку­би­че­ско­го кор­ня име­ем:

б) Ре­ше­ни­ем это­го урав­не­ния яв­ля­ет­ся та­кое зна­че­ние х, 4-я сте­пень ко­то­ро­го рав­на 5, т. е. (по опре­де­ле­нию) х — это ко­рень 4-й сте­пе­ни из чис­ла 5. Но из по­ло­жи­тель­но­го чис­ла 5 су­ще­ству­ют два кор­ня чет­вер­той сте­пе­ни, ко­то­рые рав­ны по мо­ду­лю и име­ют про­ти­во­по­лож­ные зна­ки. По­сколь­ку по­ло­жи­тель­ный ко­рень обо­зна­ча­ют 54, то вто­рой ко­рень ра­вен −54, т. е. x=±54.

От­вет: а) 73; б) ±54.

В тет­ра­ди ре­ше­ние урав­не­ния б) (ана­ло­гич­но и а)) мож­но за­пи­сать так:

Ре­ше­ние: x4=5 ⇔ x=±54.

От­вет: ±54.

При­мер 3. Ре­шить урав­не­ние:

а) (x8)8=x;

б) (x13)13=x.

Стр. 14

Ре­ше­ние. а) Чис­ло 8 — чет­ное, зна­чит, дан­ное ра­вен­ство яв­ля­ет­ся тож­де­ством при x≥0, по­это­му каж­дое не­отри­ца­тель­ное зна­че­ние х яв­ля­ет­ся ре­ше­ни­ем (кор­нем) урав­не­ния (x8)8=x.

б) Чис­ло 13 — не­чет­ное, зна­чит, дан­ное ра­вен­ство яв­ля­ет­ся тож­де­ством при лю­бом зна­че­нии х, по­это­му ре­ше­ни­ем урав­не­ния (x13)13=x яв­ля­ет­ся лю­бое дей­стви­тель­ное чис­ло, а R — мно­же­ство всех его кор­ней.

От­вет: а) [0;+∞); б) R.

При­мер 4. Ре­шить урав­не­ние

x12−63×6−64=0.

Ре­ше­ние. Обо­зна­чим x6=t, то­гда по­лу­чим урав­не­ние

t2−63t−64=0.

Кор­ни это­го урав­не­ния

t1=64,t2=−1.

Та­ким об­ра­зом, име­ем

x6=64 или x6=−1,

от­ку­да x=±2 (по­яс­ни­те, по­че­му урав­не­ние x6=−1 не име­ет кор­ней).

От­вет: ±2.

1

1Ка­кое чис­ло на­зы­ва­ет­ся кор­нем n-й сте­пе­ни из чис­ла а?

1

2

2Сколь­ко су­ще­ству­ет кор­ней чет­ной сте­пе­ни n из по­ло­жи­тель­но­го чис­ла а?

2

3

3Ко­рень ка­кой сте­пе­ни су­ще­ству­ет из лю­бо­го чис­ла а?

3

4

4Ка­кой ко­рень n-й сте­пе­ни из чис­ла а на­зы­ва­ет­ся ариф­ме­ти­че­ским?

4

5

5При ка­ких зна­че­ни­ях а вер­но ра­вен­ство (an)n=a, если:

а) n — не­чет­ное чис­ло;

б) n — чет­ное чис­ло?

5

Упраж­не­ния

1.24°

1.24°Ис­поль­зуя опре­де­ле­ние ариф­ме­ти­че­ско­го кор­ня n-й сте­пе­ни, до­ка­жи­те, что:

1) 2564=4;

2) 102410=2;

3) 7296=3;

4) 65618=3;

5) 409612=2;

6) 14 6414=11.

1.24°

Стр. 15

1.25°

1.25°Вер­но ли, что:

1) чис­ло −4 яв­ля­ет­ся кор­нем чет­вер­той сте­пе­ни из чис­ла 256;

2) чис­ло −0,3 яв­ля­ет­ся кор­нем чет­вер­той сте­пе­ни из чис­ла −0,0081?

1.25°

1.26°

1.26°Вер­но ли, что:

1) −17283=−12;

2) −33753=15;

3) −16 8075=7;

4) −77765=−6?

1.26°

1.27°

1.27°Най­ди­те ариф­ме­ти­че­ский квад­рат­ный ко­рень из чис­ла:

1) 16;

2) 49;

3) 0;

4) 1;

5) 0,81;

6) 0,25;

7) 2,25;

8) 1,21;

9) 36169;

10) 144289;

11) 169100;

12) 81256.

1.27°

1.28°

1.28°Най­ди­те ку­би­че­ский ко­рень из чис­ла:

1) 1;

2) 0;

3) 343;

4) 8;

5) 127;

6) 0,027;

7) 0,001;

8) 64125.

1.28°

1.29°

1.29°Най­ди­те ариф­ме­ти­че­ский ко­рень чет­вер­той сте­пе­ни из чис­ла:

1) 0;

2) 1;

3) 16;

4) 0,0016;

5) 1681;

6) 256625;

7) 0,0001;

8) 0,1296.

1.29°

Вы­чис­ли­те (1.30—1.42).

1.30°

1.30°1) 9,16,25,49,81,100;

2) 0,16,0,09,0,01,0,04,0,0025,0,0001;

3) 273,643,−1253,0,0083,0,0002163,−1 000 0003;

4) 164,6254,10 0004,0,00814,0,000000164,24014;

5) 325,10245,2435,0,031255,100 0005,0,000015;

6) 646,7296,15 6256,40966,0,0466566,1 000 0006.

1.30°

1.31°

1.31°1) −10003;

2) −115;

3) −643;

4) −10245;

5) −1273;

6) −3433;

7) −272163;

8) −31255;

9) −0,000325.

1.31°

Стр. 16

1.32

1.321) ⎛⎝−33⎞⎠3;

2) ⎛⎝−145⎞⎠5;

3) ⎛⎝−307⎞⎠7;

4) ⎛⎝−1511⎞⎠11;

5) ⎛⎝−69⎞⎠9;

6) ⎛⎝−9915⎞⎠15.

1.32

1.33

1.331) ⎛⎝−22113⎞⎠3·⎛⎝−6195⎞⎠5·⎛⎝−9513⎞⎠13·⎛⎝−1134017⎞⎠17;

2) ⎛⎝−34159⎞⎠9·⎛⎝−1587⎞⎠7·⎛⎝−11145⎞⎠5·⎛⎝−125393⎞⎠3.

1.33

1.34

1.341) ⎛⎝53⎞⎠6;

2) ⎛⎝0,14⎞⎠12;

3) ⎛⎝1125⎞⎠10;

4) ⎛⎝2136⎞⎠18;

5) ⎛⎝567⎞⎠21;

6) ⎛⎝239⎞⎠36.

1.34

1.35

1.351) ⎛⎝35⎞⎠10;

2) ⎛⎝534⎞⎠48;

3) ⎛⎝7610⎞⎠120;

4) ⎛⎝643⎞⎠12;

5) ⎛⎝108⎞⎠16;

6) ⎛⎝1294⎞⎠36.

1.35

1.36°

1.36°1) ⎛⎝10⎞⎠2;

2) ⎛⎝53⎞⎠3;

3) ⎛⎝−124⎞⎠4;

4) −1244;

5) ⎛⎝−35⎞⎠5;

6) ⎛⎝323⎞⎠3;

7) ⎛⎝−444⎞⎠4;

8) ⎛⎝−157⎞⎠7;

9) −5555;

10) ⎛⎝−36⎞⎠6;

11) ⎛⎝−229⎞⎠9;

12) −488.

1.36°

1.37°

1.37°1) 325+−83;

2) 6254−−1253;

3) 12−60,1253;

4) 1+100,00814;

5) 3164−4273;

6) −3383+2,25;

7) 83−643;

8) 164−643.

1.37°

1.38°

1.38°1) 9+4;

2) 36−164;

3) 0,81+0,0013;

4) 0,0273−0,04;

5) 5−2564;

6) 7+83;

7) −325+164;

8) −273+814.

1.38°

1.39°

1.39°1) (1−2)⎛⎝1+2⎞⎠;

2) ⎛⎝3−2⎞⎠⎛⎝3+2⎞⎠;

3) ⎛⎝23+4⎞⎠⎛⎝23−4⎞⎠;

4) ⎛⎝35−2⎞⎠⎛⎝35+2⎞⎠;

5) ⎛⎝10−6⎞⎠⎛⎝6+10⎞⎠;

6) ⎛⎝7+3⎞⎠⎛⎝3−7⎞⎠.

1. 39°

Стр. 17

1.40

1.401) 1225244⋅15−1382−2323;

2) 58+442−26235;

3) 90+31⎛⎝572−262⎞⎠83;

4) 2364+⎛⎝482−3225⎞⎠−13.

1.40

1.41

1.411) ⎛⎝⎜⎛⎝⎛⎝23⎞⎠33⎞⎠−3−⎛⎝⎛⎝43⎞⎠−55⎞⎠5⎞⎠⎟−1·⎛⎝−277⎞⎠7;

2) ⎛⎝⎜⎛⎝175⎞⎠−10+⎛⎝−409⎞⎠9·⎛⎝537⎞⎠0⎞⎠⎟−1:⎛⎝95⎞⎠−10;

3) ⎛⎝⎜⎛⎝⎜⎛⎝34⎞⎠23⎞⎠⎟6+⎛⎝−4−27⎞⎠7⎞⎠⎟:⎛⎝⎜⎛⎝⎜⎛⎝56⎞⎠05⎞⎠⎟10−⎛⎝−⎛⎝32⎞⎠−19⎞⎠9⎞⎠⎟;

4) ((((−45)3)3)0−(−0,111)−22):(((38)−15)5·((32)37)7+(−129)−9).

1.41

1.42

1.421) ⎛⎝a77⎞⎠7⎛⎝a55⎞⎠5;

2) ⎛⎝a33⎞⎠3⎛⎝a99⎞⎠9;

3) ⎛⎝⎜213⎛⎝a33⎞⎠3·⎛⎝b77⎞⎠7⎞⎠⎟2·⎛⎝⎜−127⎛⎝a55⎞⎠5·⎛⎝b1111⎞⎠11⎞⎠⎟;

4) 337⎛⎝a55⎞⎠5·⎛⎝b99⎞⎠9·⎛⎝⎜−213⎛⎝a77⎞⎠7·⎛⎝b1313⎞⎠13⎞⎠⎟2.

1.42

Най­ди­те есте­ствен­ную об­ласть опре­де­ле­ния вы­ра­же­ния (1.43—1.44).

1.43

1.431) x+4;

2) −9+2×4;

3) 5×2−6×10;

4) 8x−4×212;

5) x+33;

6) x−75;

7) x2−47;

8) 2×2−329.

1.43

1.44

1.441) 34x−112;

2) −48x−314;

3) 2−59−5×8;

4) 3−1016−7×6;

5) 2+x4−2(8−6x)3;

6) 12−6×2−7x+(3x−1)·25;

7) −x22(x−2)−5⎛⎝1−3x)−24;

8) 3(x+4)−6(2−x)+9×428.

1.44

Стр. 18

1.45

1.45Най­ди­те дли­ну ре­бра ку­ба, если его объ­ем ра­вен:

1) 27 см3;

2) 64 мм3;

3) 0,125 дм3;

4) 0,216 м3.

1.45

Ре­ши­те урав­не­ние (1.46—1.54).

1.46°

1.46°1) x2=0,49;

2) x2=121;

3) x3=0,008;

4) x3=1000;

5) x3=−64 000;

6) x3=216;

7) x4=0,0625;

8) x4=−16.

1.46°

1.47

1.471) x3=−27;

2) x5=−132;

3) x7=−1;

4) x9=−512;

5) x3=−0,027;

6) x11=0.

1.47

1.48°

1.48°1) x2=11;

2) x4=19;

3) x8=27;

4) x3=25;

5) x7=38;

6) x9=−2;

7) x15=−6;

8) x17=4;

9) x13=−13.

1.48°

1.49

1.491) x2=25 600;

2) x2=0,0196;

3) x2+1=1,0016;

4) 5×2−20=0;

5) x2+25=0;

6) x2+179=0;

7) x2·4=0;

8) −6×2=0;

9) 113×2−12=0;

10) 13×2−1=0.

1.49

1.50

1.501) 4×3+4125=0;

2) 8×3+27=0;

3) −0,1×4=−0,00001;

4) 16×4−81=0;

5) 12×5+16=0;

6) 132×6−2=0.

1.50

1.51

1.511) x4+2=7;

2) x5−3=30;

3) x6−7=19;

4) x3+5=5.

1.51

1.52

1.521) (x+1)4=16;

2) (x−2)6=64;

3) (2x+1)3=27;

4) (3x−1)5=32.

1.52

1.53

1.531) x10−31×5−32=0;

2) x8−15×4−16=0;

3) x4−12×2+27=0;

4) x6−7×3−8=0;

5) x8−82×4+81=0;

6) x4+2×2−15=0.

1.53

Стр. 19

1.54

1.541)° (x6)6=x;

2)° (x10)10=x;

3)° (x3)3=x;

4)° (x5)5=x;

5) ⎛⎝x−14⎞⎠4=x−1;

6) ⎛⎝x+212⎞⎠12=x+2;

7) ⎛⎝1×7⎞⎠7=1x;

8) ⎛⎝1x−211⎞⎠11=1x−2.

1.54

3-8 9 Оценить квадратный корень из 12 10 Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92

Найдите квадратный корень из 9 -4sqrt5

ПРЕМЬЕРЫ ИЗДАТЕЛИ-БАЗОВАЯ АЛГЕБРА-ПРАКТИЧЕСКИЕ ЗАДАЧИ I(. Ответьте на следующие вопросы видео бина киси ад ки рукаават ке!0907


Похожие видео

Найдите квадратный корень 9+40t

28848

04:37

Найдите квадратный корень из 9+40i.

2632327

01:58

Если a=9-4sqrt5 , то найти значение a-1/a

41776605

00:51

Найти квадратный корень из 9(0901)

108639517

01:04

Разность корней равна 9, а сумма их квадратов равна 13. Найдите квадратное уравнение ?

116054194

Text Solution

9+40i का वर्गमूल निकालिए।

127319784

03:44

. 1×3]

318515666

07:50

Найти квадратный корень 9+ 40t

642531592

04:29

व vrotryings

04:29

व vrotress 10907

04:29

व vrots

04:29

.0907

03:51

Давайте найдем квадратный корень из следующего.
964

643105373

02:07

925

643346740

02:16

Find the square root of:
(i) 279
(ii) 4.