К надмембранным комплексам клеток растений, грибов и некоторых бактерий относится такая структура, как их стенка. В данной статье будет изучено строение клеточной оболочки у различных групп организмов, а также выяснены функции, которые она выполняет. Как известно, этот компонент впервые был обнаружен английским ученым Робертом Гуком в 17-м столетии. Отметим также, что клеточная оболочка отсутствует у одноклеточных животных и многоклеточных организмов, начиная от кишечнополостных и заканчивая позвоночными: рыбами, амфибиями, пресмыкающимися, птицами и млекопитающими.
Зачем она нужна
Несмотря на то что структура и химический состав стенки грибов, растений и дробянок неодинаков, функции клеточной оболочки у них очень похожи. Прежде всего, это защита цитоплазмы и её органелл от повреждающего влияния факторов внешней среды.
Далее: надмембранный комплекс служит надёжной опорой и обеспечивает прочность контактов в тканях растений и грибов. Ниже мы более подробно рассмотрим, как строение оболочки взаимосвязано с функциями, которые она выполняет.
Особенности клеточной оболочки растений
Данная структура у растительных организмов состоит в основном из полимера, относящегося к классу полисахаридов – целлюлозы. Её молекулярная формула такая же, как и у растительного крахмала (C6H10O5)n. Макромолекулы этого полисахарида содержат остатки бета-глюкозы и имеют только линейное строение, поэтому они могут образовывать волокна, собранные в пучки. Они формируют прочный каркас клеточной стенки, углублённый в коллоидный матрикс, который также состоит в основном из углеводов – пектина и гемицеллюлозы. Также целлюлоза часто встречается и в других частях растений, например, волокна хлопка на 99% состоят из чистой целлюлозы, лён и конопля содержат её в количестве 75-80%, в древесине — до 55%. Как было уже сказано ранее, функции клеточной оболочки обусловлены тем, в ткани каких организмов она входит.
Кроме целлюлозы стенка содержит белки, липиды и неорганические вещества. Например, в состав клеточных оболочек высших споровых растений – хвощей – входит диоксид кремния, поэтому само растение очень жёсткое и прочное и является несъедобным для животных. Один из слоёв, образующих стебель многолетних растений и называемый пробкой, накапливает в оболочках жироподобное вещество – суберин. Вследствие этого цитоплазма и её органоиды разрушаются, а сами клетки могут выполнять только опорную функцию (опробковевание стебля).
Если между волокнами целлюлозы накапливается лигнин, он вместе с гемицеллюлозой усиливает механическую прочность стеблей и стволов древесных пород растений, а пигменты, содержащиеся в лигнине, обуславливают окраску древесины. Стенка также содержит поры, выстланные мембраной, которые обеспечивают транспорт веществ.
Строение и функции клеточной оболочки грибов
У представителей различных групп грибов основу стенки составляет хитин – полисахарид, встречающийся также во внешнем скелете членистоногих и у некоторых бактерий. Надмембранные комплексы грибов содержат также целлюлозу и животный крахмал – гликоген. Например, химическое строение клеточной оболочки дрожжей представлено в основном углеводами – глюканом и маннаном. Сама стенка у них достаточно прочная и плохо переваривается в желудочно-кишечном тракте животных, поэтому питательные вещества дрожжей малодоступны и не всасываются эпителием тонкого кишечника.
Особенности бактерий
Если клеточная оболочка отсутствует у протист, то у прокариотов она имеет очень сложное строение, включая в себя муреин, липопротеиды и липополисахариды, а также тейхоевые кислоты. Липополисахариды стенки способствуют прилипанию бактерий к различным субстратам: например, к эмали зубов или к мембранам эукариот. Поэтому клеточная оболочка бактерий обладает ещё и антигенными свойствами.
Часто стенка бактерий сверху покрыта слизистой капсулой (капсидой), над которой может располагаться ещё один защитный слой – пеплос. В зависимости от её строения, в микробиологии все бактерии делятся на грамположительные и грамотрицательные.
Дифференцировка бактерий по биохимическому составу
Метод, позволивший различать прокариотов по особенностям химического строения их оболочки, был предложен датским учёным Г. Грамом ещё в конце XIX века. Он установил, что одни виды бактерий хорошо окрашиваются анилиновыми красителями и образуют стойкие соединения фиолетового цвета, входящие в состав клеточной оболочки.
Такие прокариоты были названы грамположительными: например, стафилококки и стрептококки. Все они являются чувствительными к антибиотикам ряда пенициллина и актиномицина. Другие бактерии, названные грамотрицательными, не окрашиваются метиловым фиолетовым. Они резистентны к пенициллину, так как имеют прочную капсулу и малопроницаемую клеточную стенку. К ним относятся сальмонелла, шигелла, хеликобактер. Клеточная оболочка бактерий, имеющая различный химический состав, служит важной микробиологической характеристикой, которую учитывают в фармакологии и медицине.
Особенности микоплазм
Остановимся на группе очень мелких бактерий – микоплазм. Микроскопическими исследованиями было доказано, что клеточная оболочка отсутствует у них, поэтому микоплазмы чувствительны к некоторым антибиотикам, например, к тетрациклину. Микоплазмы широко распространены в природе, являются возбудителями многих заболеваний, в том числе мочеполовой системы человека.
Большинство микоплазм в своём обмене веществ обязательно используют кислород и являются строгими аэробами. Являясь паразитами человека и млекопитающих, они быстро размножаются, так как в составе клеточных мембран присутствует холестерин, являющийся благоприятным субстратом для роста и размножения микоплазм.
Адаптации у простейших
Ранее мы отмечали тот факт, что клеточная оболочка отсутствует у инфузории и других одноклеточных животных, например, у корненожек. Зоологи установили, что протисты представляют собой полноценный животный организм, которому присущи все функции: роста, размножения, питания, дыхания, выделения. Более того, обитая в водной среде или увлажнённой почве, протисты через тонкую мембрану осуществляют транспорт воды и минеральных солей, находящихся во внешней среде, а выделяют через плазматические мембранные поры продукты собственного метаболизма. Поэтому у одноклеточных животных нет сложных надмембранных комплексов, что является идиоадаптацией к особенностям условий внешней среды.
Для защиты и сохранения целостности оболочки простейшие имеют пеликулу – наружный более плотный слой эктоплазмы. Благодаря пеликуле, обладающей эластичностью и прочностью, сохраняется постоянная форма тела животного.
В данной статье было изучено строение и химический состав клеточной оболочки, характерной для клеток растительных организмов, а также бактерий и грибов.
К надмембранным комплексам клеток растений, грибов и некоторых бактерий относится такая структура, как их стенка. В данной статье будет изучено строение клеточной оболочки у различных групп организмов, а также выяснены функции, которые она выполняет. Как известно, этот компонент впервые был обнаружен английским ученым Робертом Гуком в 17-м столетии. Отметим также, что клеточная оболочка отсутствует у одноклеточных животных и многоклеточных организмов, начиная от кишечнополостных и заканчивая позвоночными: рыбами, амфибиями, пресмыкающимися, птицами и млекопитающими.
Несмотря на то что структура и химический состав стенки грибов, растений и дробянок неодинаков, функции клеточной оболочки у них очень похожи. Прежде всего, это защита цитоплазмы и её органелл от повреждающего влияния факторов внешней среды.
Далее: надмембранный комплекс служит надёжной опорой и обеспечивает прочность контактов в тканях растений и грибов. Ниже мы более подробно рассмотрим, как строение оболочки взаимосвязано с функциями, которые она выполняет.
Особенности клеточной оболочки растений
Данная структура у растительных организмов состоит в основном из полимера, относящегося к классу полисахаридов – целлюлозы. Её молекулярная формула такая же, как и у растительного крахмала (C6H10O5)n. Макромолекулы этого полисахарида содержат остатки бета-глюкозы и имеют только линейное строение, поэтому они могут образовывать волокна, собранные в пучки. Они формируют прочный каркас клеточной стенки, углублённый в коллоидный матрикс, который также состоит в основном из углеводов – пектина и гемицеллюлозы. Также целлюлоза часто встречается и в других частях растений, например, волокна хлопка на 99% состоят из чистой целлюлозы, лён и конопля содержат её в количестве 75-80%, в древесине — до 55%. Как было уже сказано ранее, функции клеточной оболочки обусловлены тем, в ткани каких организмов она входит.
Кроме целлюлозы стенка содержит белки, липиды и неорганические вещества. Например, в состав клеточных оболочек высших споровых растений – хвощей – входит диоксид кремния, поэтому само растение очень жёсткое и прочное и является несъедобным для животных. Один из слоёв, образующих стебель многолетних растений и называемый пробкой, накапливает в оболочках жироподобное вещество – суберин. Вследствие этого цитоплазма и её органоиды разрушаются, а сами клетки могут выполнять только опорную функцию (опробковевание стебля).
Если между волокнами целлюлозы накапливается лигнин, он вместе с гемицеллюлозой усиливает механическую прочность стеблей и стволов древесных пород растений, а пигменты, содержащиеся в лигнине, обуславливают окраску древесины. Стенка также содержит поры, выстланные мембраной, которые обеспечивают транспорт веществ.
Строение и функции клеточной оболочки грибов
У представителей различных групп грибов основу стенки составляет хитин – полисахарид, встречающийся также во внешнем скелете членистоногих и у некоторых бактерий. Надмембранные комплексы грибов содержат также целлюлозу и животный крахмал – гликоген. Например, химическое строение клеточной оболочки дрожжей представлено в основном углеводами – глюканом и маннаном. Сама стенка у них достаточно прочная и плохо переваривается в желудочно-кишечном тракте животных, поэтому питательные вещества дрожжей малодоступны и не всасываются эпителием тонкого кишечника.
Особенности бактерий
Если клеточная оболочка отсутствует у протист, то у прокариотов она имеет очень сложное строение, включая в себя муреин, липопротеиды и липополисахариды, а также тейхоевые кислоты. Липополисахариды стенки способствуют прилипанию бактерий к различным субстратам: например, к эмали зубов или к мембранам эукариот. Поэтому клеточная оболочка бактерий обладает ещё и антигенными свойствами.
Часто стенка бактерий сверху покрыта слизистой капсулой (капсидой), над которой может располагаться ещё один защитный слой – пеплос. В зависимости от её строения, в микробиологии все бактерии делятся на грамположительные и грамотрицательные.
Дифференцировка бактерий по биохимическому составу
Метод, позволивший различать прокариотов по особенностям химического строения их оболочки, был предложен датским учёным Г. Грамом ещё в конце XIX века. Он установил, что одни виды бактерий хорошо окрашиваются анилиновыми красителями и образуют стойкие соединения фиолетового цвета, входящие в состав клеточной оболочки.
Такие прокариоты были названы грамположительными: например, стафилококки и стрептококки. Все они являются чувствительными к антибиотикам ряда пенициллина и актиномицина. Другие бактерии, названные грамотрицательными, не окрашиваются метиловым фиолетовым. Они резистентны к пенициллину, так как имеют прочную капсулу и малопроницаемую клеточную стенку. К ним относятся сальмонелла, шигелла, хеликобактер. Клеточная оболочка бактерий, имеющая различный химический состав, служит важной микробиологической характеристикой, которую учитывают в фармакологии и медицине.
Особенности микоплазм
Остановимся на группе очень мелких бактерий – микоплазм. Микроскопическими исследованиями было доказано, что клеточная оболочка отсутствует у них, поэтому микоплазмы чувствительны к некоторым антибиотикам, например, к тетрациклину. Микоплазмы широко распространены в природе, являются возбудителями многих заболеваний, в том числе мочеполовой системы человека.
Большинство микоплазм в своём обмене веществ обязательно используют кислород и являются строгими аэробами. Являясь паразитами человека и млекопитающих, они быстро размножаются, так как в составе клеточных мембран присутствует холестерин, являющийся благоприятным субстратом для роста и размножения микоплазм.
Адаптации у простейших
Ранее мы отмечали тот факт, что клеточная оболочка отсутствует у инфузории и других одноклеточных животных, например, у корненожек. Зоологи установили, что протисты представляют собой полноценный животный организм, которому присущи все функции: роста, размножения, питания, дыхания, выделения. Более того, обитая в водной среде или увлажнённой почве, протисты через тонкую мембрану осуществляют транспорт воды и минеральных солей, находящихся во внешней среде, а выделяют через плазматические мембранные поры продукты собственного метаболизма. Поэтому у одноклеточных животных нет сложных надмембранных комплексов, что является идиоадаптацией к особенностям условий внешней среды.
Для защиты и сохранения целостности оболочки простейшие имеют пеликулу – наружный более плотный слой эктоплазмы. Благодаря пеликуле, обладающей эластичностью и прочностью, сохраняется постоянная форма тела животного.
В данной статье было изучено строение и химический состав клеточной оболочки, характерной для клеток растительных организмов, а также бактерий и грибов.
К надмембранным комплексам клеток растений, грибов и некоторых бактерий относится такая структура, как их стенка. В данной статье будет изучено строение клеточной оболочки у различных групп организмов, а также выяснены функции, которые она выполняет. Как известно, этот компонент впервые был обнаружен английским ученым Робертом Гуком в 17-м столетии. Отметим также, что клеточная оболочка отсутствует у одноклеточных животных и многоклеточных организмов, начиная от кишечнополостных и заканчивая позвоночными: рыбами, амфибиями, пресмыкающимися, птицами и млекопитающими.
Зачем она нужна
Несмотря на то что структура и химический состав стенки грибов, растений и дробянок неодинаков, функции клеточной оболочки у них очень похожи. Прежде всего, это защита цитоплазмы и её органелл от повреждающего влияния факторов внешней среды.
Далее: надмембранный комплекс служит надёжной опорой и обеспечивает прочность контактов в тканях растений и грибов. Ниже мы более подробно рассмотрим, как строение оболочки взаимосвязано с функциями, которые она выполняет.
Особенности клеточной оболочки растений
Данная структура у растительных организмов состоит в основном из полимера, относящегося к классу полисахаридов – целлюлозы. Её молекулярная формула такая же, как и у растительного крахмала (C6H10O5)n. Макромолекулы этого полисахарида содержат остатки бета-глюкозы и имеют только линейное строение, поэтому они могут образовывать волокна, собранные в пучки. Они формируют прочный каркас клеточной стенки, углублённый в коллоидный матрикс, который также состоит в основном из углеводов – пектина и гемицеллюлозы. Также целлюлоза часто встречается и в других частях растений, например, волокна хлопка на 99% состоят из чистой целлюлозы, лён и конопля содержат её в количестве 75-80%, в древесине — до 55%. Как было уже сказано ранее, функции клеточной оболочки обусловлены тем, в ткани каких организмов она входит.
Кроме целлюлозы стенка содержит белки, липиды и неорганические вещества. Например, в состав клеточных оболочек высших споровых растений – хвощей – входит диоксид кремния, поэтому само растение очень жёсткое и прочное и является несъедобным для животных. Один из слоёв, образующих стебель многолетних растений и называемый пробкой, накапливает в оболочках жироподобное вещество – суберин. Вследствие этого цитоплазма и её органоиды разрушаются, а сами клетки могут выполнять только опорную функцию (опробковевание стебля).
Если между волокнами целлюлозы накапливается лигнин, он вместе с гемицеллюлозой усиливает механическую прочность стеблей и стволов древесных пород растений, а пигменты, содержащиеся в лигнине, обуславливают окраску древесины. Стенка также содержит поры, выстланные мембраной, которые обеспечивают транспорт веществ.
Строение и функции клеточной оболочки грибов
У представителей различных групп грибов основу стенки составляет хитин – полисахарид, встречающийся также во внешнем скелете членистоногих и у некоторых бактерий. Надмембранные комплексы грибов содержат также целлюлозу и животный крахмал – гликоген. Например, химическое строение клеточной оболочки дрожжей представлено в основном углеводами – глюканом и маннаном. Сама стенка у них достаточно прочная и плохо переваривается в желудочно-кишечном тракте животных, поэтому питательные вещества дрожжей малодоступны и не всасываются эпителием тонкого кишечника.
Особенности бактерий
Если клеточная оболочка отсутствует у протист, то у прокариотов она имеет очень сложное строение, включая в себя муреин, липопротеиды и липополисахариды, а также тейхоевые кислоты. Липополисахариды стенки способствуют прилипанию бактерий к различным субстратам: например, к эмали зубов или к мембранам эукариот. Поэтому клеточная оболочка бактерий обладает ещё и антигенными свойствами.
Часто стенка бактерий сверху покрыта слизистой капсулой (капсидой), над которой может располагаться ещё один защитный слой – пеплос. В зависимости от её строения, в микробиологии все бактерии делятся на грамположительные и грамотрицательные.
Дифференцировка бактерий по биохимическому составу
Метод, позволивший различать прокариотов по особенностям химического строения их оболочки, был предложен датским учёным Г. Грамом ещё в конце XIX века. Он установил, что одни виды бактерий хорошо окрашиваются анилиновыми красителями и образуют стойкие соединения фиолетового цвета, входящие в состав клеточной оболочки.
Такие прокариоты были названы грамположительными: например, стафилококки и стрептококки. Все они являются чувствительными к антибиотикам ряда пенициллина и актиномицина. Другие бактерии, названные грамотрицательными, не окрашиваются метиловым фиолетовым. Они резистентны к пенициллину, так как имеют прочную капсулу и малопроницаемую клеточную стенку. К ним относятся сальмонелла, шигелла, хеликобактер. Клеточная оболочка бактерий, имеющая различный химический состав, служит важной микробиологической характеристикой, которую учитывают в фармакологии и медицине.
Особенности микоплазм
Остановимся на группе очень мелких бактерий – микоплазм. Микроскопическими исследованиями было доказано, что клеточная оболочка отсутствует у них, поэтому микоплазмы чувствительны к некоторым антибиотикам, например, к тетрациклину. Микоплазмы широко распространены в природе, являются возбудителями многих заболеваний, в том числе мочеполовой системы человека.
Большинство микоплазм в своём обмене веществ обязательно используют кислород и являются строгими аэробами. Являясь паразитами человека и млекопитающих, они быстро размножаются, так как в составе клеточных мембран присутствует холестерин, являющийся благоприятным субстратом для роста и размножения микоплазм.
Адаптации у простейших
Ранее мы отмечали тот факт, что клеточная оболочка отсутствует у инфузории и других одноклеточных животных, например, у корненожек. Зоологи установили, что протисты представляют собой полноценный животный организм, которому присущи все функции: роста, размножения, питания, дыхания, выделения. Более того, обитая в водной среде или увлажнённой почве, протисты через тонкую мембрану осуществляют транспорт воды и минеральных солей, находящихся во внешней среде, а выделяют через плазматические мембранные поры продукты собственного метаболизма. Поэтому у одноклеточных животных нет сложных надмембранных комплексов, что является идиоадаптацией к особенностям условий внешней среды.
Для защиты и сохранения целостности оболочки простейшие имеют пеликулу – наружный более плотный слой эктоплазмы. Благодаря пеликуле, обладающей эластичностью и прочностью, сохраняется постоянная форма тела животного.
В данной статье было изучено строение и химический состав клеточной оболочки, характерной для клеток растительных организмов, а также бактерий и грибов.
Источник: fb.ru
Основные составляющие растительной клетки – это оболочка клетки и её содержимое, которое называется протопластом. Оболочка отвечает за форму клетки, а также обеспечивает надёжную защиту от влияния внешних факторов. Взрослая клетка растения отличается наличием полости с клеточным соком , которая имеет название вакуоль. Протопласт клетки содержит ядро, цитоплазму, а также органеллы: пластиды, митохондрии. Ядро клетки растения покрыто двумембранной оболочкой, которая содержит поры. Через эти поры поступают к ядру вещества.
Следует сказать, что цитоплазма растительной клетки имеет достаточно сложное строение мембран. Сюда входят и лизосомы, и комплекс Гольджи, и ретикулум эндоплазмы. Цитоплазма растительной клетки является основным компонентом, который участвует в важных процессах жизнедеятельности клетки. Существуют также и немембранные структуры в цитоплазме: рибосомы, микротрубочки и прочие. Основная плазма, в которой располагаются все органеллы клетки, называется гиалоплазмой. Растительная клетка содержит хромосомы, которые отвечают за передачу наследственной информации.
Особые признаки растительной клетки
Можно выделить основные отличительные особенности клеток растения:
- Оболочка клетки состоит из целлюлозной оболочки.
- В клетках растений содержатся хлоропласты, которые отвечают за фотоавтотрофное питание за счёт наличия хлорофиллов с зелёным пигментом.
- Клетка растения предполагает наличие трёх разновидностей пластид.
- Растение имеет особую клетку вакуоль, причем молодые клетки имеют небольшие вакуоли, а взрослая клетка отличается наличием одной большой.
- Растение способно откладывать углевод про запас в качестве крахмальных зёрен.
Строение животной клетки
Животная клетка в обязательном порядке содержит ядро и хромосомы, наружную мембрану, а также органоиды, расположенные в цитоплазме. Мембрана животной клетки защищает её содержимое от внешнего воздействия. В состав мембраны входят молекулы белков и липидов. Взаимодействие ядра и органоидов клетки животного обеспечивает цитоплазма клетки.
К органоидам животной клетки относят рибосомы, которые расположены в эндоплазматической сети. Здесь происходит процесс синтеза белков, углеводов и липидов. Рибосомы же отвечают за синтез и транспортировку белка.
Митохондрии животной клетки ограничены посредством двух мембран. Лизосомы клетки животного способствуют детальному расщеплению белков до аминокислот, липидов до уровня глицерина, а жирных кислот до моносахаридов. Также клетка содержится комплекс Гольджи, который состоит из группы определённых полостей, которые отделены мембраной.
Сходства растительных и животных клеток
К признакам, которыми похожи растительные и животные клетки, можно отнести следующие:
- Схожее строение системы структуры, т.е. наличие ядра и цитоплазмы.
- Обменный процесс веществ и энергии близки по принципу осуществления.
- И в животной, и в растительной клетке имеется мембранное строение.
- Химический состав клеток очень похож.
- В клетках растения и животного присутствует похожий процесс клеточного деления.
- Растительная клетка и животная имеет единый принцип передачи кода наследственности.
Существенные различия между растительной и животной клеткой
Помимо общих признаков строения и жизнедеятельности растительной и животной клетки, существуют и особые отличительные черты каждой из них. Отличия клеток заключаются в следующем:
Таким образом, можно сказать, что растительные и животные клетки похожи между собой содержанием некоторых важных элементов и некоторыми процессами жизнедеятельности, а также имеют существенные отличия в структуре и обменных процессах.
Даже в одном органе могут быть клетки, непохожие друг на друга. Но как бы сильно ни различались клетки человека, они всегда состоят из протоплазмы, ядра и оболочки. Оболочка растительных клеток состоит из веществ, отличающихся от веществ их протоплазмы. Открытие клетки позволило установить единство в строении всех живых существ – растений, животных, человека. Примером их может служить белок куриного яйца. Белки состоят из углерода, водорода, кислорода, азота, серы и некоторых других элементов. Углеводы клетки – это группа соединений, к которой относятся крахмал и сахар. В человеческом организме они представлены животным крахмалом, или гликогеном, который находится в мышцах и печени. Однако состоят они из тех же элементов, что и тела неживой природы.
Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне.
Животные против растений
Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную клеточную функцию в процессе дыхания. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами.
Животные отличаются от растений прежде всего по строению своих клеток. Животные, в отличие от растений, питаются готовыми органическими веществами, т. е. являются гетеротрофами. 2. Что общего у животных и растений? Общее: это способность с росту, размножению, питания и т. д. Различия: в типе питания (растения – автотрофы, животные – гетеротрофы), в способности к активному движению.
По своему строению клетки всех живых организмов можно разделить на два больших отдела: безъядерные и ядерные организмы.
Органоиды клетки, подготовка к ЕГЭ по биологии
Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и многие другие.
Органоиды клетки подразделяются на:
- Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные — ядро, пластиды, митохондрии
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки, имеются также поверхностно лежащие белки — периферические.
Белки принимают участие в:
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.
Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:
- Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
- Транспортная
- Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии или облегченной (с участием белка-переносчика) диффузии.
- Активный
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина — удаляются из клетки во внешнюю среду.
Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку. Выделяется два вида транспорта:
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:
- Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида. К прокариотам относятся бактерии (в их числе цианобактерии), археи.
Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное ядро. Растения, животные, грибы — относятся к эукариотам.
Немембранные органоиды
- Рибосома
- Микротрубочки и микрофиламенты
- Клеточный центр (центросома, от греч. soma — тело)
- Реснички и жгутики
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.
Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют в процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков и ресничек.
Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме, служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления, располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
- Комплекс (аппарат) Гольджи
- Лизосома (греч. lisis — растворение + soma — тело)
- Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
- Вакуоли
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы. Лизосому можно ассоциировать с «клеточным желудком».
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.
Двумембранные органоиды
- Ядро («ядро» по лат. — nucleus, по греч. — karyon)
- Митохондрия
- Пластиды (др.-греч. πλαστός — вылепленный)
- Хлоропласт (греч. chlōros — зелёный)
- Хромопласты (греч. chromos – краска)
- Лейкопласты (др.-греч. λευκός — белый )
Важнейший компонент эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько ядрышек.
Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы) получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида, и рибосом. То есть митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и нуждаются в большом количестве энергии.
Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:
Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая (светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК — нуклеоид, рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Клеточная мембрана , также называемая Плазматическая мембрана , тонкая мембрана, которая окружает каждую живую клетку, отделяя клетку от окружающей ее среды. Этой клеточной мембраной (также известной как плазматическая мембрана) заключены составляющие клетки, часто крупные, водорастворимые, сильно заряженные молекулы, такие как белки, нуклеиновые кислоты, углеводы и вещества, участвующие в клеточном метаболизме. Вне клетки, в окружающей водной среде находятся ионы, кислоты и щелочи, которые являются токсичными для клетки, а также питательные вещества, которые клетка должна поглощать, чтобы жить и расти.Таким образом, клеточная мембрана выполняет две функции: во-первых, быть барьером, удерживающим компоненты клетки и нежелательные вещества, и, во-вторых, быть воротами, позволяющими транспортировать в клетку необходимые питательные вещества и перемещаться из клетки отходов. товары.
молекулярный вид клеточной мембраны Собственные белки проникают и плотно связываются с липидным бислоем, который в основном состоит из фосфолипидов и холестерина и который обычно составляет от 4 до 10 нанометров (нм; 1 нм = 10 −9 м ) в толщину.Внешние белки слабо связаны с гидрофильными (полярными) поверхностями, которые обращены к водной среде как внутри, так и снаружи клетки. Некоторые внутренние белки присутствуют в боковых цепях сахара на внешней поверхности клетки. Encyclopædia Britannica, Inc.Британика Викторина
Тело человека
Где образуются эритроциты?
Клеточные мембранысостоят в основном из липидов и белков на основе жирных кислот.Мембранные липиды в основном бывают двух типов: фосфолипиды и стерины (обычно холестерин). Оба типа имеют общие характеристики липидов — они легко растворяются в органических растворителях — но, кроме того, они оба имеют область, которая притягивается и растворяется в воде. Это «амфифильное» свойство (обладающее двойным притяжением; т.е. содержащее как растворимый в липидах, так и водорастворимый участок) является основополагающим для роли липидов в качестве строительных блоков клеточных мембран. Мембранные белки также бывают двух основных типов.Один тип, называемый внешними белками, слабо связан ионными связями или кальциевыми мостиками с электрически заряженной фосфорильной поверхностью бислоя. Они также могут прикрепляться ко второму типу белка, называемому собственными белками. Собственные белки, как следует из их названия, прочно встроены в фосфолипидный бислой. В целом, мембраны, активно участвующие в метаболизме, содержат более высокую долю белка.
Химическая структура клеточной мембраны делает ее чрезвычайно гибкой, идеальной границей для быстро растущих и делящихся клеток.Тем не менее, мембрана также является грозным барьером, позволяющим некоторым растворенным веществам или растворенным веществам проходить, блокируя другие. Растворимые в липидах молекулы и некоторые небольшие молекулы могут проникать через мембрану, но липидный бислой эффективно отталкивает многие большие растворимые в воде молекулы и электрически заряженные ионы, которые клетка должна импортировать или экспортировать, чтобы жить. Транспорт этих жизненно важных веществ осуществляется определенными классами собственных белков, которые образуют различные транспортные системы: некоторые являются открытыми каналами, которые позволяют ионам диффундировать непосредственно в клетку; другие являются «фасилитаторами», которые помогают растворенным веществам проходить через липидный экран; третьи — это «насосы», которые заставляют растворяться через мембрану, когда они недостаточно сконцентрированы для самопроизвольной диффузии.Частицы, слишком большие для диффузии или перекачивания, часто проглатываются или выдавливаются целиком путем открытия и закрытия мембраны.
При осуществлении трансмембранных движений больших молекул клеточная мембрана сама подвергается согласованным движениям, во время которых часть жидкой среды вне клетки интернализуется (эндоцитоз) или часть внутренней среды клетки выводится наружу (экзоцитоз). Эти движения включают слияние между мембранными поверхностями с последующим повторным образованием неповрежденных мембран.
рецептор-опосредованный эндоцитоз рецепторы играют ключевую роль во многих клеточных процессах. Например, рецептор-опосредованный эндоцитоз позволяет клеткам поглощать молекулы, такие как белки, которые необходимы для нормального функционирования клеток. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня ,Как работает клеточная мембрана?
Все живые существа состоят из клеток, и все клетки имеют разные части, которые выполняют определенные функции. Одна из частей, присутствующих в каждой клетке, называется клеточной мембраной.
В этой статье мы обсудим структуру и функцию клеточной мембраны, ответим на вопросы «что делает клеточная мембрана?» и «почему клеточная мембрана важна?»
Что делает клеточная мембрана?
Основная функция клеточной мембраны — защита внутренней части клетки. Клеточная мембрана окружает цитоплазму клетки (клетки растений и животных). Будучи тонким полупроницаемым веществом, клеточная мембрана пропускает некоторые вещи внутрь клетки, не давая другим проникнуть внутрь. Клеточная мембрана чрезвычайно важна для поддержания безопасности клетки.
Поскольку клеточная мембрана имеет полупроницаемую структуру, она также придает клетке немного формы. Несмотря на то, что клеточная стенка не такая толстая или прочная, как клеточная стенка, присутствующая в растительных клетках, она помогает поддерживать и придавать структуру клетке.
Клеточная мембрана также ответственна за то, что помогает клеткам расти посредством двух процессов, известных как эндоцитоз и экзоцитоз.
Что такое эндоцитоз?
Во время эндоцитоза материалы извне клетки вводятся в клетку и затем абсорбируются. Эндоцитоз помогает клеткам получать нужные им материалы.
Существует три типа эндоцитоза. При пиноцитозе клеток потребляют небольшое количество внеклеточной жидкости, чтобы помочь им увлажниться.В рецептор-опосредованный эндоцитоз , большая внеклеточная молекула, как белок, связана с рецептором на клеточной мембране. В фагоцитоз клетки поглощают большие объекты, такие как куски мертвого органического вещества, и запечатывают их в большие вакуоли и переваривают материал.
Что такое экзоцитоз?
При экзоцитозе клетка выделяет вещества в окружающую среду. Во время экзоцитоза везикулы, содержащие вещества, перемещаются к клеточной мембране и сливаются с ней.
Эта функция клеточной мембраны дает три результата: общая поверхность мембраны увеличивается, токсины или отходы удаляются, а белки становятся частью плазматической мембраны.
клеточная мембранная структура
Клеточные мембраны состоят в основном из липидов и белков.
Липид — это тип органической молекулы, найденной в живых организмах. Липиды жирные или восковые. Жиры состоят из липидных молекул.
Белки большие, соответствуют
.сот | Определение, типы и функции
Рассмотрим, как одноклеточный организм содержит необходимые структуры для питания, роста и размножения. Клетки являются основными единицами жизни. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьиЯчейка , в биологии, основная мембраносвязанная единица, которая содержит основные молекулы жизни и из которых состоят все живые существа. Отдельная клетка часто представляет собой целостный организм, такой как бактерия или дрожжи.Другие клетки приобретают специализированные функции по мере взросления. Эти клетки взаимодействуют с другими специализированными клетками и становятся строительными блоками крупных многоклеточных организмов, таких как люди и другие животные. Хотя клетки намного крупнее атомов, они все еще очень малы. Самые маленькие известные клетки — это группа крошечных бактерий, называемых микоплазмами; некоторые из этих одноклеточных организмов представляют собой сферы диаметром всего 0,2 мкм (1 мкм = около 0,000039 дюйма) с общей массой 10 –14 грамм, равной массе 8 000 000 000 атомов водорода.Клетки человека обычно имеют массу в 400 000 раз больше, чем масса отдельной микоплазменной бактерии, но даже человеческие клетки имеют ширину всего около 20 мкм. Для покрытия головки булавки потребуется лист из примерно 10000 клеток человека, и каждый организм человека состоит из более чем 30 000 000 000 000 клеток.
животная клетка Основные структуры животной клеткиЦитоплазма окружает специализированные структуры клетки или органеллы. Рибосомы, сайты синтеза белка, обнаружены свободными в цитоплазме или прикреплены к эндоплазматической сети, через которую материалы транспортируются по всей клетке.Энергия, необходимая клетке, выделяется митохондриями. Комплекс Гольджи, стопки сплющенных мешочков, перерабатывает и упаковывает материалы, которые должны быть выпущены из клетки в секреторные пузырьки. Пищеварительные ферменты содержатся в лизосомах. Пероксисомы содержат ферменты, которые детоксифицируют опасные вещества. Центросома содержит центриоли, которые играют роль в делении клеток. Микроворсинки — это пальцеобразные расширения, обнаруживаемые в определенных клетках. Реснички, похожие на волосы структуры, которые простираются от поверхности многих клеток, могут создавать движение окружающей жидкости.Ядерная оболочка, двойная мембрана, окружающая ядро, содержит поры, которые контролируют движение веществ в и из нуклеоплазмы. Хроматин, комбинация ДНК и белков, которые скручиваются в хромосомы, составляет большую часть нуклеоплазмы. Плотное ядрышко является местом образования рибосом. © Merriam-Webster Inc.Основные вопросы
Что такое клетка?
Клетка — это масса цитоплазмы, которая внешне связана клеточной мембраной. Обычно микроскопические по размеру клетки представляют собой наименьшие структурные единицы живой материи и составляют все живые существа.У большинства клеток есть одно или несколько ядер и других органелл, которые выполняют множество задач. Некоторые отдельные клетки являются полноценными организмами, такими как бактерия или дрожжи. Другие являются специализированными строительными блоками многоклеточных организмов, таких как растения и животные.
Что такое клеточная теория?
Теория клетки утверждает, что клетка является фундаментальной структурной и функциональной единицей живой материи. В 1839 году немецкий физиолог Теодор Шванн и немецкий ботаник Матиас Шлейден объявили, что клетки являются «элементарными частицами организмов» как у растений, так и у животных, и признали, что некоторые организмы являются одноклеточными, а другие — многоклеточными.Эта теория ознаменовала большой концептуальный прогресс в биологии и привела к возобновлению внимания к живым процессам, происходящим в клетках.
Что делают клеточные мембраны?
Клеточная мембрана окружает каждую живую клетку и отделяет клетку от окружающей среды. Он служит барьером для предотвращения попадания содержимого клетки и нежелательных веществ. Он также функционирует в качестве шлюза для активного и пассивного перемещения важных питательных веществ в клетку и отходов из нее.Определенные белки в клеточной мембране участвуют в межклеточной коммуникации и помогают клетке реагировать на изменения в окружающей среде.
В этой статье рассматривается клетка как отдельная единица и как часть более крупного организма. Как отдельная единица, клетка способна метаболизировать свои собственные питательные вещества, синтезировать многие типы молекул, снабжать своей собственной энергией и размножаться, чтобы произвести следующие поколения. Его можно рассматривать как закрытый сосуд, в котором одновременно происходят бесчисленные химические реакции.Эти реакции находятся под очень точным контролем, так что они способствуют жизни и размножению клетки. В многоклеточном организме клетки становятся специализированными для выполнения различных функций в процессе дифференцировки. Для этого каждая ячейка поддерживает постоянную связь со своими соседями. Поскольку он получает питательные вещества и выбрасывает отходы в окружающую среду, он прилипает к другим клеткам и взаимодействует с ними. Кооперативные собрания подобных клеток образуют ткани, а взаимодействие тканей в свою очередь образует органы, которые выполняют функции, необходимые для поддержания жизни организма.
Особое внимание в этой статье уделяется клеткам животных с некоторым обсуждением процессов синтеза энергии и внеклеточных компонентов, свойственных растениям. (Для подробного обсуждения биохимии растительных клеток см. Фотосинтез . Для полной обработки генетических событий в ядре клетки см. Наследственность .)
Брюс М. АльбертсПрирода и функции клеток
A клетка окружена плазматической мембраной, которая образует селективный барьер, который позволяет питательным веществам поступать и отходы уходят.Внутренняя часть клетки организована во множество специализированных отделений или органелл, каждый из которых окружен отдельной мембраной. Одна из основных органелл, ядро, содержит генетическую информацию, необходимую для роста и размножения клеток. Каждая клетка содержит только одно ядро, тогда как другие типы органелл присутствуют в нескольких копиях в клеточном содержимом или цитоплазме. Органеллы включают митохондрии, которые отвечают за энергетические транзакции, необходимые для выживания клеток; лизосомы, которые переваривают нежелательные вещества внутри клетки; и эндоплазматический ретикулум и аппарат Гольджи, которые играют важную роль во внутренней организации клетки, синтезируя выбранные молекулы, а затем обрабатывая, сортируя и направляя их в соответствующие места.Кроме того, растительные клетки содержат хлоропласты, которые отвечают за фотосинтез, посредством чего энергия солнечного света используется для преобразования молекул углекислого газа (CO 2 ) и воды (H 2 O) в углеводы. Между всеми этими органеллами находится пространство в цитоплазме, называемое цитозолем. Цитозоль содержит организованный каркас из волокнистых молекул, которые составляют цитоскелет, который придает клетке свою форму, позволяет органеллам двигаться внутри клетки и обеспечивает механизм, посредством которого сама клетка может двигаться.Цитозоль также содержит более 10000 различных видов молекул, которые участвуют в клеточном биосинтезе, процессе создания больших биологических молекул из маленьких.
клетки Животные клетки и клетки растений содержат мембраносвязанные органеллы, в том числе отличное ядро. Напротив, бактериальные клетки не содержат органелл. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодняСпециализированные органеллы характерны для клеток организмов, известных как эукариоты.Напротив, клетки организмов, известные как прокариоты, не содержат органелл и, как правило, меньше, чем эукариотические клетки. Тем не менее, все клетки имеют сильное сходство в биохимической функции.
эукариотическая клетка Вырез эукариотической клетки. Encyclopædia Britannica, Inc.Молекулы клеток
Понять, как клеточные мембраны регулируют потребление пищи и отходов и как клеточные стенки обеспечивают защиту Клетки поглощают молекулы через свои плазматические мембраны. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьиКлетки содержат специальную коллекцию молекул, которые заключены в мембрану. Эти молекулы дают клеткам возможность расти и размножаться. Общий процесс клеточного размножения происходит в два этапа: рост клеток и деление клеток. Во время роста клетки, клетки поглощают определенные молекулы из окружающей среды, избирательно пронося их через клеточную мембрану. Оказавшись внутри клетки, эти молекулы подвергаются действию узкоспециализированных, крупных, сложным образом сложенных молекул, называемых ферментами.Ферменты действуют как катализаторы, связываясь с поглощенными молекулами и регулируя скорость, с которой они химически изменяются. Эти химические изменения делают молекулы более полезными для клетки. В отличие от поглощенных молекул, катализаторы не подвергаются химическому изменению во время реакции, что позволяет одному катализатору регулировать определенную химическую реакцию во многих молекулах.
Биологические катализаторы создают цепочки реакций. Другими словами, молекула, химически трансформированная одним катализатором, служит в качестве исходного материала или субстрата второго катализатора и так далее.Таким образом, катализаторы используют небольшие молекулы, введенные в клетку из внешней среды, для создания все более сложных продуктов реакции. Эти продукты используются для роста клеток и репликации генетического материала. Как только генетический материал скопирован и имеется достаточное количество молекул для поддержки клеточного деления, клетка делится, создавая две дочерние клетки. Через множество таких циклов роста и деления клеток каждая родительская клетка может породить миллионы дочерних клеток, превращая большое количество неодушевленного вещества в биологически активные молекулы.
CBSE Class 9 Science Notes, глава 5 (Part-I)
В этой статье представлены CBSE Class 9 Science Notes по главе 5 «Является фундаментальной единицей жизни» (Part-I). Эти примечания к главе подготовлены экспертами по предмету и охватывают все важные темы главы. В конце заметок вы можете попробовать задать вопросы из обсуждаемого набора тем. Эти вопросы помогут вам отслеживать уровень подготовки и овладеть предметом.
CBSE Класс 9 Наука, фундаментальная единица жизни: примечания к главе (часть-II)
Основные темы, рассматриваемые в этой части CBSE Class 9 Science, Фундаментальная единица жизни: Примечания к главе:
- Определение ячейки
- Форма и Размер Ячейки
- Типы Ячеек
- Структура ячейки
- Клеточные Органеллы
- Разница между клетками животных и растений
Также читайте: CBSE Class 9 Полный учебный материал для 2020-2021
Ключевые примечания к главе «Фундаментальная единица жизни»:
Cell
Это структурная и функциональная единица жизни.
- Ячейка называется структурной единицей жизни, поскольку она обеспечивает структуру нашего тела.
- Клетка считается функциональной единицей жизни , поскольку все функции организма выполняются на клеточном уровне.
Обнаружение ячейки:
- Открыт Робертом Гуком в 1665 году.
- Роберт Браун в 1831 году открыл ядро в клетке.
Клеточная теория:
Клеточная теория утверждает, что:
- Все живые организмы состоят из клеток.
- Клетка — это фундаментальная единица жизни.
- Все новые клетки происходят из уже существующих клеток.
CBSE Class 9 Science Syllabus 2020-2021
Типы организмов на основе количества клеток
Существует два вида организмов на основе клеток:
(i) Одноклеточные организмы: Организмы, которые состоят из одной клетки и могут составлять целый организм , названы одноклеточными организмами.
Например: амеба, парамеция, бактерии и т. Д.
(ii) Многоклеточные организмы: Организмы, состоящие из набора клеток, которые координированно выполняют функции, а различные клетки специализируются для выполнения определенных задач в организме, называются многоклеточными организмами.
Например: растения, люди, животные и т. Д.
Форма и размер ячеек
- Клетки различаются по форме и размеру.Они могут быть овальными, сферическими, прямоугольными, веретенообразными или совершенно нерегулярными, как нервная клетка.
- Размер клетки также варьируется у разных организмов. Большинство клеток имеют микроскопический размер, как эритроциты (RBC), в то время как некоторые клетки довольно большие, как нервные клетки.
Типы клеток
Клетки можно разделить на два типа:
1. Прокариотическая клетка 2. Эукариотическая клетка
1. Прокариотические клетки
Прокариотические клетки — это клетки, в которых истинное ядро отсутствует.Это примитивные и неполные клетки. Прокариоты всегда одноклеточные организмы. Например, архебактерии, бактерии, сине-зеленые водоросли — все это прокариоты.
2. Эукариотические клетки
Эукариобные клетки — это клетки, в которых присутствует истинное ядро. Они продвинутые и полные клетки. Эукариоты включают все живые организмы (как одноклеточные, так и многоклеточные), за исключением бактерий и сине-зеленых водорослей.
Разница между прокариотическими и эукариотическими клетками:
S.№ | Прокариотическая клетка | Эукариотическая клетка |
1. | Размер ячейки, как правило, небольшой (1-10 мм). | Размер ячейки обычно большой (5-100 мм). |
2. | Ядро отсутствует. | Ядро присутствует. |
3. | Содержит одну хромосому. | Содержит более одной хромосомы. |
4. | Нуклеолус отсутствует. | Нуклеолус присутствует. |
5. | Органеллы, связанные с мембранными клетками, отсутствуют. | Присутствуют органеллы связанных с мембранами клеток, такие как митохондрии, пластиды, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и т. Д. |
6. | Деление клеток происходит путем деления или зачатка. | Деление клеток происходит путем деления митотических или мейотических клеток. |
Структура ячейки
Ячейка обычно состоит из трех основных компонентов:
(i) Клеточная стенка и клеточная мембрана
(ii) Ядро
(iii) Цитоплазма
(i) Клеточная или плазматическая мембрана:
Плазменная мембрана — это оболочка клетки, которая отделяет содержимое клетки от ее внешней среды. |
Это живая часть клетки и присутствует в клетках растений, животных и микроорганизмов. |
Это очень тонкая, нежная, эластичная и избирательно проницаемая мембрана. |
Он состоит из липидов и белков. |
Функция:
Поскольку это избирательно проницаемая мембрана, она позволяет потоку ограниченного количества веществ в и из клетки.
(ii) Сотовая стенка:
Клеточная стенка представляет собой неживое, толстое и свободно проницаемое покрытие из целлюлозы. |
Он присутствует в клетках эукариотических растений и в прокариотических клетках. |
Функции:
- Определяет форму и жесткость растительной клетки.
- Защищает плазматическую мембрану.
- Предотвращает высыхание или сухость в клетке.
- Это помогает в транспортировке различных веществ в и из клетки.
(iii) Ядро:
Ядро — плотная сферическая органелла. |
Ядро ограничено двумя мембранами, каждая из которых образует ядерную оболочку. Ядерная оболочка содержит много пор, известных как ядерные поры. |
Жидкость, которая присутствует внутри ядра, называется нуклеоплазмой. |
Ядро содержит хромосомы, а хромосомы содержат гены, которые являются центрами генетической информации. |
Функции:
- Ядро контролирует все метаболические активности клетки.
- Регулирует клеточный цикл.
- Ядро — хранилище генов. Оно связано с передачей наследственных признаков от родителя к потомству.
(iv) Цитоплазма:
Это желеобразное, вязкое, бесцветное полужидкое вещество, которое находится между плазматической мембраной и ядерной мембраной. |
Водное измельченное вещество цитоплазмы называется цитозолем, которое содержит различные клеточные органеллы и другие нерастворимые отходы и продукты хранения, такие как крахмал, гликоген, липиды и т. Д. |
Функции:
• Протоплазма действует как хранилище жизненно важных химических веществ, таких как аминокислоты, белки, сахара, витамины и т. Д.
• Это место определенных метаболических реакций, таких как гликолиз, синтез жирных кислот, нуклеотидов и т. Д.
Клеточные органеллы:
Внутри ячейки есть разные части, выполняющие различные действия для поддержания работоспособности ячейки. Эти части называются клеточными органеллами. Они объясняются ниже:
1. Аппарат Гольджи:
Аппарат Гольджи состоит из набора мембраносвязанных, заполненных жидкостью везикул, вакуолей и сплющенных цистерн (закрытых мешков). |
Цистерны обычно располагаются параллельно друг другу. |
Функции:
- Его основная функция — хранить, модифицировать, упаковывать и отправлять вещества.
- Он также участвует в синтезе клеточной стенки, плазматической мембраны и лизосом.
2. Эндоплазматическая сеть:
Это мембранная сеть трубчатых структур, простирающаяся от ядерной мембраны до плазматической мембраны. |
Отсутствует в прокариотических клетках и в зрелых эритроцитах млекопитающих. |
Существует два типа эндоплазматического ретикулума: |
Функции:
- Это дает внутреннюю поддержку ячейке.
- Это помогает в транспортировке различных веществ от ядерной мембраны к плазматической мембране или наоборот.
- RER помогает в синтезе и транспортировке белков.
- SER помогает в синтезе и транспортировке липидов.
3. Рибосомы:
Это чрезвычайно маленькие, плотные и сферические тела, которые свободно встречаются в матрице (цитозоле) или остаются прикрепленными к эндоплазматической сети. |
Они состоят из рибонуклеиновой кислоты (РНК) и белков. |
Функция:
Они играют главную роль в синтезе белков.
4. Митохондрии:
Это маленькие стержневидные органеллы. |
Это двойная мембранная структура с наружной мембраной, которая является гладкой и пористой, тогда как внутренняя мембрана выбрасывается в несколько складок, называемых кристами. |
Они содержат свою собственную ДНК и рибосомы. |
Они отсутствуют в бактериях и эритроцитах млекопитающих. |
Функции:
- Они являются местом клеточного дыхания, следовательно, обеспечивают энергию для жизнедеятельности живых клеток.
- Они хранят энергетические выбросы во время реакций в форме АТФ (Энергетическая валюта клетки).Поэтому их также называют «силовым домом» клетки.
5. Центросома и центриоли:
Центросома обнаружена только в клетках животных эукариот. Он не ограничен какой-либо мембраной, а состоит из центриолей. |
Центроли — это полые цилиндрические структуры, расположенные под прямым углом друг к другу и состоящие из микротрубочек. |
Функция:
Центриоли помогают в делении клеток, а также помогают в формировании ресничек и жгутиков.
6. Пластиды:
Пластиды присутствуют в большинстве растительных клеток и отсутствуют в клетках животных. |
Они обычно имеют сферическую или дискоидальную форму и имеют двойную мембранно-связанную органеллу. |
У них также есть своя собственная ДНК и рибосомы. |
Пластиды бывают трех типов: (a) Хлоропласты: Это пластиды зеленого цвета, содержащие хлорофилл.Хлоропласты помогают в производстве продуктов питания в процессе фотосинтеза. |
Функция:
- Хлоропласты улавливают солнечную эбергию и используют ее для производства продуктов питания для растений.
- Хромопласты придают цветам различные цвета для привлечения насекомых для опыления.
- Lecuoplasts помогают в хранении пищи в виде крахмала, белков и жиров.
7. Лизосомы:
Лизосомы представляют собой небольшие сферические, подобные мешочкам структуры, которые содержат несколько пищеварительных ферментов, заключенных в мембрану. |
Они обнаружены в эукариотических клетках в основном у животных. |
Функции:
- Лизосомы помогают в переваривании чужеродных веществ и изношенных клеточных органелл.
- Они обеспечивают защиту от бактерий и вирусов.
- Они помогают содержать камеру в чистоте.
- Во время нарушения клеточного метаболизма, например, когда клетка повреждена, лизосомы могут взорваться, и ферменты переваривают свою собственную клетку. Следовательно, лизосомы также известны как суицидальных мешков клетки .
8. Вакуоли:
Вакуоли представляют собой заполненные жидкостью / твердым веществом и мембраносвязанные органеллы. |
В растительных клетках вакуоли большие и постоянные. В клетках животных вакуоли небольшие по размеру и временные. |
В клетке зрелого растения занимает 90% пространства клетки. |
Из-за своего размера другие органеллы, включая ядро, сдвигаются в сторону плазматической мембраны. |
Функция:
- Они помогают поддерживать осмотическое давление в клетке.
- Они обеспечивают жесткость и жесткость для растительной клетки.
9. Пероксиомы:
Это небольшие сферические органеллы, содержащие мощные окислительные ферменты. |
Они ограничены одной мембраной. |
Они находятся в клетках почек и печени. |
Функция:
- Они специализируются на проведении некоторых окислительных реакций, таких как детоксикация или удаление токсических веществ из клетки.
Разница между клетками животных и растений:
S. No. | Животная клетка | Растительная клетка |
1. | Животные клетки, как правило, имеют небольшие размеры. | Растительные клетки крупнее животных. |
2. | Клеточная стенка отсутствует. | Плазматическая мембрана растительной клетки окружена жесткой клеточной стенкой из целлюлозы. |
3 | Пластиды отсутствуют, за исключением простейших Euglena. | Пластиды присутствуют. |
4. | Здесь вакуолей много, маленьких и временных. | Они имеют постоянную и большую центральную вакуоль сока. |
5. | У них есть центросома и центриоли. | Им не хватает центросом и центриолей. |
Структура клеток растений и животных клеток:
Попробуйте следующие вопросы:
Q1. Какова характеристика ядерной оболочки?
Q2. Где происходит синтез АТФ в митохондриях?
Q3. Что произойдет, если плазматическая мембрана разорвется или сломается?
Q4. Почему лизосомы известны как суицидальные пакеты?
Q5. Какая клеточная органелла также известна как «энергетический дом клетки» и почему?
Читайте также: CBSE Class 9 Примечания к научной главе — все главы
.
Leave A Comment