ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅. Найти ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° с Π½Π°Ρ‡Π°Π»ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ А(3,1,0) ΠΈ ΠΊΠΎΠ½Ρ†ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Π’(2,2,2) — вопрос β„–2173237 — Π£Ρ‡Π΅Π±Π° ΠΈ Π½Π°ΡƒΠΊΠ°

Π›ΡƒΡ‡ΡˆΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΏΠΎ мнСнию Π°Π²Ρ‚ΠΎΡ€Π°

Оксана

Π’Π΅ΠΊΡ‚ΠΎΡ€ АВ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (2-3,2-1,2_0)=(-1,1,2)
ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚: 1+1+4=6

21. 10.16
Π›ΡƒΡ‡ΡˆΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΏΠΎ мнСнию Π°Π²Ρ‚ΠΎΡ€Π°

ΠžΡ‚Π²Π΅Ρ‚ понравился Π°Π²Ρ‚ΠΎΡ€Ρƒ вопроса

Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° АВ(2-3; 2-1; 2-0)=(-1; 1; 2)
|АВ|^2=(-1)^2 +1^2 +2^2=1+1+4=6

21. 2 = 1 + 1 + 4 = 6

23.10.16

ΠœΠΈΡ…Π°ΠΈΠ» АлСксандров

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹

АндрСй АндрССвич

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹

Eleonora Gabrielyan

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ всСх экспСртов ΠΈΠ· Ρ€Π°Π·Π΄Π΅Π»Π° Π£Ρ‡Π΅Π±Π° ΠΈ Π½Π°ΡƒΠΊΠ° > ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ΠŸΠΎΡ…ΠΎΠΆΠΈΠ΅ вопросы

РСшСно

Π½Π° Ρ‚Ρ€Ρ‘Ρ… ΠΏΠΎΠ»ΠΊΠ°Ρ… стояли ΠΊΠ½ΠΈΠ³ΠΈ . 2 — 2x — 3. НайдитС: Π°)наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ; Π±) значСния x, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 5; Π²) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅…

ΠŸΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ нашим ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ

Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π°

Π’Ρ‹ искали Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π°? На нашСм сайтС Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° любой матСматичСский вопрос здСсь. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ с описаниСм ΠΈ пояснСниями ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°ΠΌ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π΄Π°ΠΆΠ΅ с самой слоТной Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ΠΈ вычислСниС Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½Π΅ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΡ‹ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ Π²Π°ΠΌ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΈΡ‚ΡŒΡΡ ΠΊ домашним Ρ€Π°Π±ΠΎΡ‚Π°ΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ, ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Π°ΠΌ, Π° Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊ ΠΏΠΎΡΡ‚ΡƒΠΏΠ»Π΅Π½ΠΈΡŽ Π² Π²ΡƒΠ·. И ΠΊΠ°ΠΊΠΎΠΉ Π±Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠ°ΠΊΠΎΠΉ Π±Ρ‹ запрос ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²Ρ‹ Π½Π΅ Π²Π²Π΅Π»ΠΈ — Ρƒ нас ΡƒΠΆΠ΅ Π΅ΡΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. НапримСр, Β«Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π°Β».

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… матСматичСских Π·Π°Π΄Π°Ρ‡, ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠ², ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСно Π² нашСй ΠΆΠΈΠ·Π½ΠΈ. Они ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… расчСтах, ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ сооруТСний ΠΈ Π΄Π°ΠΆΠ΅ спортС. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ использовал Π΅Ρ‰Π΅ Π² дрСвности ΠΈ с Ρ‚Π΅Ρ… ΠΏΠΎΡ€ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ возрастаСт.

Однако сСйчас Π½Π°ΡƒΠΊΠ° Π½Π΅ стоит Π½Π° мСстС ΠΈ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΡΠ»Π°ΠΆΠ΄Π°Ρ‚ΡŒΡΡ ΠΏΠ»ΠΎΠ΄Π°ΠΌΠΈ Π΅Π΅ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ρ‚Π°ΠΊΠΈΠΌΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠ°ΠΊ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ, Ρ‚Π°ΠΊΠΈΠ΅, ΠΊΠ°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π°,вычислСниС Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,вычислСниС Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,вычислСниС Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ,Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° c,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² пространствС,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΊΠ°ΠΊ обозначаСтся,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΄Π²ΡƒΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡Π΅ΠΊ,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΊΠΎΡ€Π½ΡŽ ΠΈΠ· суммы Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° это,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Π΄Π»ΠΈΠ½Π° Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ,ΠΊΠ°ΠΊ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,ΠΊΠ°ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΊΠ°ΠΊ зная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π°ΠΉΡ‚ΠΈ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ,ΠΊΠ°ΠΊ зная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π°Π²,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ссли извСстны Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ссли извСстны ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΄Π²ΡƒΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ссли извСстна Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная Π΄Π»ΠΈΠ½Ρƒ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° зная Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»Π°,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π΄Π»ΠΈΠ½Ρƒ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· Π΄Π»ΠΈΠ½Ρƒ,ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ обозначаСтся Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΊΠ°ΠΊ ΡƒΠ·Π½Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΊΠ°ΠΊ ΡƒΠ·Π½Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°,ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅,Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΄Π»ΠΈΠ½Ρƒ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡Π΅ΠΊ,Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²,Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π΄Π»ΠΈΠ½Ρƒ,Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Ρ‹,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для нахоТдСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° модуля Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния Π΄Π»ΠΈΠ½Ρ‹,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ,Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°,Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.
На этой страницС Π²Ρ‹ Π½Π°ΠΉΠ΄Ρ‘Ρ‚Π΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ любой вопрос, Π² Ρ‚ΠΎΠΌ числС ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π°. ΠŸΡ€ΠΎΡΡ‚ΠΎ Π²Π²Π΅Π΄ΠΈΡ‚Π΅ Π·Π°Π΄Π°Ρ‡Ρƒ Π² окошко ΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ Β«Ρ€Π΅ΡˆΠΈΡ‚ΡŒΒ» здСсь (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, вычислСниС Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ).

Π Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π° Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π° нашСм сайтС https://pocketteacher.ru. БСсплатный ΠΎΠ½Π»Π°ΠΉΠ½ Ρ€Π΅ΡˆΠ°Ρ‚Π΅Π»ΡŒ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Π·Π°Π΄Π°Ρ‡Ρƒ любой слоТности Π·Π° считанныС сСкунды. ВсС, Ρ‡Ρ‚ΠΎ Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ — это просто ввСсти свои Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ€Π΅ΡˆΠ°Ρ‚Π΅Π»Π΅. Π’Π°ΠΊ ΠΆΠ΅ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡŽ ΠΈ ΡƒΠ·Π½Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ввСсти Π²Π°ΡˆΡƒ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° нашСм сайтС. А Ссли Ρƒ вас ΠΎΡΡ‚Π°Π»ΠΈΡΡŒ вопросы, Ρ‚ΠΎ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΈΡ… Π² Ρ‡Π°Ρ‚Π΅ снизу слСва Π½Π° страницС ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π°.

MathScene — Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ — Π£Ρ€ΠΎΠΊ 3

MathScene — Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ — Π£Ρ€ΠΎΠΊ 3

2008 Расмус Π­Ρ„ ΠΈ Π”ΠΆΠ°Π½Π½ Π‘Π°ΠΊ

Π£Ρ€ΠΎΠΊ 3

Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Β 


ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Ρ‚ΠΎΡ‡ΠΊΠ° А ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (2, 2), Π° Ρ‚ΠΎΡ‡ΠΊΠ° Π’ β€” ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (6, 5) (см. схСму). ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

ΠœΡ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ A ΠΈ B, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°
(см. ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π² ΡƒΡ€ΠΎΠΊΠ΅ 2). Π€ΠΎΡ€ΠΌΡƒΠ»Π° выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ числа ΠΏΠΎΠ΄ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΊΠΎΡ€Π½Π΅ΠΌ β€” это просто ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π­Ρ‚ΠΎ, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” это просто Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ с Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ сторонами 3 ΠΈ 4.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅
A = (x 1 , y 1 ) ΠΈ заканчиваСтся Π½Π° B = (x 2 , Ρƒ 2 ) Ρ€Π°Π²Π½ΠΎ:

Если ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ:



ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

НайдитС Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ‡Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π»ΠΈΠ½Ρƒ 2 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ (Π²ΠΈΠ΄Π΅Ρ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ).

Π”Π²Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, поэтому ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ стороны находятся Π² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ.
|| = Ρ‚βˆ™||. Число t Π΅ΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ сторонами. ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΎΠ΅.
ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Β ΠΊΠ°ΠΊ слСдуСт:

Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ сущСствуСт число t Ρ‚Π°ΠΊΠΎΠ΅, Ρ‡Ρ‚ΠΎ:

= Ρ‚βˆ™


ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

КакиС ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΈ .

Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ сущСствуСт число t Ρ‚Π°ΠΊΠΎΠ΅, Ρ‡Ρ‚ΠΎ Β Β Β = Ρ‚βˆ™. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ сущСствуСт число r Ρ‚Π°ΠΊΠΎΠ΅, Ρ‡Ρ‚ΠΎ «=» Ρ€βˆ™.

ΠœΡ‹ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ числа t ΠΈ r, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ Π»ΠΈ Ρ‚Π΅ ΠΆΠ΅ значСния, ΠΊΠΎΠ³Π΄Π° ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ y.

= Ρ‚βˆ™

3 = tβˆ™13 Π΄Π°Π΅Ρ‚ t = 3/13 = 2/9

4 = tβˆ™18 Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Π΅Ρ‚ t = 4/18 = 2/9

Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Β ΠΈ Β Π΅ΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒ .

= Ρ€βˆ™

3 = rβˆ™6 Π΄Π°Π΅Ρ‚ r =

4 = rβˆ™9 Π΄Π°Π΅Ρ‚ r = 4/9

Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Β ΠΈ Β Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ (Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠΆΠ΅ Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ).

Β 

Π’Π΅ΠΊΡ‚ΠΎΡ€ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ . Π²Π΅ΠΊΡ‚ΠΎΡ€ начинаСтся Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0, 0) ΠΈ заканчиваСтся Π² (3, 2), поэтому ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ конСчная Ρ‚ΠΎΡ‡ΠΊΠ° совпадаСт с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ самого Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π­Ρ‚ΠΎ относится ΠΊ всС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ΡΡ Π² Π½Π°Ρ‡Π°Π»Π΅ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π² Ρ‚ΠΎΡ‡ΠΊΠ° (0, 0).

Π’Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ начинаСтся Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0, 0), ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π΅ ΠΆΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ‡Ρ‚ΠΎ ΠΈ Π΅Π³ΠΎ конСчная Ρ‚ΠΎΡ‡ΠΊΠ°. Π­Ρ‚ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ полоТСния для A.

КаТдая Ρ‚ΠΎΡ‡ΠΊΠ° Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ​​своим Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ полоТСния. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΅Π΅ полоТСния ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡ€ΠΈ просмотрС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΎΠ² Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.


ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΉ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅, Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π²Π΅Π΄Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ .

ΠœΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ полоТСния Π²Π΅Ρ€ΡˆΠΈΠ½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ (βˆ’3, 0),
(2, βˆ’2) ΠΈ (3, 1) ΠΈ добавляСм Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΠΈΠ· Π½ΠΈΡ….

Π­Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ Π½ΠΎΠ²Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ полоТСния ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄.


ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ полоТСния, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ сСрСдину ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° AB, Ссли А = (1, 2) ΠΈ Π’ = (4, 3).

Как ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ, Ρ‚ΠΎΡ‡ΠΊΠ° O являСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Если M сСрСдина AB Ρ‚ΠΎΠ³Π΄Π°:

«=» + βˆ™

Π’Π΅ΠΊΡ‚ΠΎΡ€ являСтся Π²Π΅ΠΊΡ‚ΠΎΡ€ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π΅ ΠΆΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ М, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ. ВСктор – это Π²Π΅ΠΊΡ‚ΠΎΡ€ полоТСния A. Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ сСрСдины M, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ . НарисуйтС схСму, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ это.

Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ .

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ .

«=» + βˆ™

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ M Ρ‚Π°ΠΊΠΈΠ΅ ΠΆΠ΅, ΠΊΠ°ΠΊ Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° полоТСния ΠΈΠ»ΠΈ (2, 2) .


Π›Π΅Π³ΠΊΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ. сСрСдина ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ.

Из Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² сСрСдину М ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΏΠ°ΡΡ‚ΡŒ ΠΈΠ· Π΄Π²ΡƒΡ… направлСниях, ΠΎΡ‚ O Ρ‡Π΅Ρ€Π΅Π· A Π΄ΠΎ M ΠΈ ΠΎΡ‚ O Ρ‡Π΅Ρ€Π΅Π· B Π΄ΠΎ M.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… уравнСния для .

«=» + βˆ™

«=» — βˆ™

Бкладывая эти Π΄Π²Π° уравнСния вмСстС, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

2 = + βˆ™ + — βˆ™

ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ полоТСния сСрСдины ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° прСдставляСт собой своСго Ρ€ΠΎΠ΄Π° срСднСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² полоТСния ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ срСднСй Ρ‚ΠΎΡ‡ΠΊΠΈ, найдя срСднСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ x ΠΈ y ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ соотвСтствСнно.
Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ нас ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ срСднСй Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π‘Π΅Ρ€Π΅Π΄ΠΈΠ½Π° M ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° AB задаСтся ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ:

ΠŸΡ€ΠΈ использовании ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ:


ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6

Π’Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΡΠ²Π»ΡΡŽΡ‚ΡΡ A = (1, 2), B = (4, 3) ΠΈ C = (3, 0).

НайдитС Π΄Π»ΠΈΠ½Ρƒ прямой, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΎΡ‚ А Π΄ΠΎ сСрСдины стороны Π’Π‘ (ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ стороны Π’Π‘). Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ АВБ).

ΠœΡ‹ Π½Π°Ρ‡Π½Π΅ΠΌ с нахоТдСния сСрСдины BC, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ Π²Ρ‹ΡˆΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ.

НазовСм сСрСдину M ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΅Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ полоТСния (Π²ΠΈΠ΄Π΅Ρ‚ΡŒ схСму).

= βˆ™ + βˆ™

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, M, сСрСдина Π’Π‘, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
М = (3, 1).

Π”Π°Π»Π΅Π΅ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° .

НаконСц, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΊΠ°ΠΊ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΉ.

Β Β Β Β Β Β Β Β Β Β  β‰ˆ 2,55

Π’Ρ€ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ Π’ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅). Если ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ T ΠΏΠΎ простой Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅. Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° находится Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ срСднСй Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ T Ρ‡Π΅Ρ€Π΅Π· всС Ρ‚Ρ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎΠ³Π΄Π° ΠΌΡ‹ добавляСм Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… выраТСния вмСстС.

Π’ ΡƒΡ€ΠΎΠΊΠ΅ 2 ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ… ΠΌΡ‹ Π²ΠΈΠ΄Π΅Π»ΠΈ, Ρ‡Ρ‚ΠΎ всС ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. Ρ‚ΠΎΡ‡ΠΊΠΈ, дСлящиС Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π° Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 2:1 ΠΈΠ»ΠΈ 2/1. ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² Π΄Π²Π° Ρ€Π°Π·Π° большС, Ρ‡Π΅ΠΌ ΠΈ поэтому

«=» βˆ™ ΠΈ «=» βˆ’βˆ™. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ это, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Ρ€ΠΈ уравнСния:

= + βˆ™Β 

= + βˆ™ — βˆ™

= — βˆ™ — βˆ™

Когда ΠΌΡ‹ слоТим ΠΈΡ… вмСстС, Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ ΠΈ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

3= + +

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ T, ΠΌΡ‹ Π±Π΅Ρ€Π΅ΠΌ срСднСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x ΠΈ y ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½ соотвСтствСнно.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния T ΠΌΠ΅Π΄ΠΈΠ°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡƒΡ‚Π΅ΠΌ нахоТдСния своСго Ρ€ΠΎΠ΄Π° срСднСго Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² полоТСния Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, это ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ являСтся Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»Π° срСднСй Ρ‚ΠΎΡ‡ΠΊΠΈ.


ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 7

НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π’ ΠΌΠ΅Π΄ΠΈΠ°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ ( Ρ†Π΅Π½Ρ‚Ρ€ ) ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ A = (1, 2), B = (4, 3) ΠΈ C = (3, 0) (см. схСму).

Π¦Π΅Π½Ρ‚Ρ€ Π’ = (2, 1) .


ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π’ΠΈΠΊΡ‚ΠΎΡ€ΠΈΠ½Π° 3 Π½Π° Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹.
НС Π·Π°Π±Ρ‹Π²Π°ΠΉΡ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ список, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°Ρ‚ΡŒ свою Ρ€Π°Π±ΠΎΡ‚Ρƒ.

Β 

Β 

Β 

Β 

Β 

Β 

Β 

Β 

Β 

Π’ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (Π΄Π»ΠΈΠ½Π°) ΠΈ направлСния :

Π’ΠΎΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°:

Они ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Ρ‹ Π½Π° с использованиСм » Бкалярного произвСдСния » (см. Ρ‚Π°ΠΊΠΆΠ΅ ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅).

РасчСт

Бкалярный ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ записываСтся с использованиСм Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ:

a Β· b
Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ a ΠΈ Π±

ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π° Β· Π± = | ΠΈ | Γ— | Π± | Γ— cos(ΞΈ)

Π“Π΄Π΅:
| ΠΈ | Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° (Π΄Π»ΠΈΠ½Π°) Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a
| Π± | ΠΌΠΎΠ΄ΡƒΠ»ΡŒ (Π΄Π»ΠΈΠ½Π°) Π²Π΅ΠΊΡ‚ΠΎΡ€Π° b
ΞΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ a ΠΈ b

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π΄Π»ΠΈΠ½Ρƒ Π½Π° a ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° Π΄Π»ΠΈΠ½Ρƒ b , Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ a ΠΈ b

Β 

Π˜Π›Π˜ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ это Ρ‚Π°ΠΊ:

a Β· b = a x x b x + a y x b y

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ x, ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ y, Π° Π·Π°Ρ‚Π΅ΠΌ складываСм.

Оба ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚!

И Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π½ΠΎΠΌΠ΅Ρ€ (Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ «скаляром», Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ это Π½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

a ΠΈ b :

a Β· b = | ΠΈ | Γ— | Π± | Γ— cos(ΞΈ)

a Β· b = 10 Γ— 13 Γ— cos(59,5Β°)

a Β· b = 10 Γ— 13 Γ— 0,5075…

a Β· b 9035 3 = 65,98… = 66 (ΠΎΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΎ)

Π˜Π›Π˜ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ это Ρ‚Π°ΠΊ:

a Β· b = a x Γ— b x + a y Γ— b y

a Β· b = -6 Γ— 5 + 8 Γ— 12

90 352 Π° Β· Π± = -30 + 96

a Β· b = 66

Оба ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄Π°Π»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ (послС округлСния)

Π’Π°ΠΊΠΆΠ΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ использовали минус 6 для x (ΠΎΠ½ΠΎ двиТСтся Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ x)

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠΌΠΎΡ‡ΡŒ Π²Π°ΠΌ.

ΠŸΠΎΡ‡Π΅ΠΌΡƒ cos(ΞΈ) ?

Π₯ΠΎΡ€ΠΎΡˆΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈΠΌΠ΅Π΅Ρ‚ смысл ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ ΠΈΡ… Π΄Π»ΠΈΠ½Ρ‹ вмСстС , Π½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π² ΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ .

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ Π΄Π΅Π»Π°Π΅ΠΌ ΠΎΠ΄Π½Ρƒ Β«Ρ‚ΠΎΡ‡ΠΊΡƒ Π² Ρ‚ΠΎΠΌ ΠΆΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈΒ», Ρ‡Ρ‚ΠΎ ΠΈ другая, умноТая Π½Π° cos(ΞΈ):

Β  Β 
Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ a
, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ рядом с b
Β  Как ΠΏΡ€ΠΎΠ»ΠΈΡ‚ΡŒ свСт, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ
Π³Π΄Π΅ Π»Π΅ΠΆΠΈΡ‚ Ρ‚Π΅Π½ΡŒ

Π’ΠžΠ“Π”Π ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ!

Π­Ρ‚ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, Ссли ΠΌΡ‹ Β«ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΒ» b рядом с a , Π° Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ:

ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ значСния, Π² ΠΊΠ°ΠΊΠΎΠΌ порядкС ΠΌΡ‹ Π΄Π΅Π»Π°Π΅ΠΌ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅:

| ΠΈ | Γ— | Π± | Γ— ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ (ΞΈ) = | ΠΈ | Γ— соз (ΞΈ) Γ— | Π± |

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅

Когда Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° располоТСны ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ, скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ скалярный ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ для:

a Β· b = | ΠΈ | Γ— | Π± | Γ— cos(ΞΈ)

Π° Β· Π± = | ΠΈ | Γ— | Π± | Γ— cos(90Β°)

Π° Β· Π± = | ΠΈ | Γ— | Π± | Γ— 0

a Β· b = 0

ΠΈΠ»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ:

a Β· b = a x x b x + a y x b y

a Β· b = -12 x 1 2 + 16 Γ— 9

Π° Β· Π± = -144 + 144

Π° Β· Π± = 0

Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ способом ΡƒΠ·Π½Π°Ρ‚ΡŒ, находятся Π»ΠΈ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ.

Π’Ρ€ΠΈ ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ²

ВсС это прСкрасно Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΈ Π² 3-Ρ… (ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅) измСрСниях.

И Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: Бэм ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠ» ΠΊΠΎΠ½Ρ†Ρ‹ Π΄Π²ΡƒΡ… полюсов ΠΈ Ρ…ΠΎΡ‡Π΅Ρ‚ ΡƒΠ·Π½Π°Ρ‚ΡŒ

ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ :

Π£ нас Π΅ΡΡ‚ΡŒ 3 измСрСния, поэтому Π½Π΅ Π·Π°Π±ΡƒΠ΄ΡŒΡ‚Π΅ z-ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹:

a Β· b = a x x b x + a 90 042 Π³ Γ— Π± y + a z Γ— b z

a Β· b = 9 Γ— 4 + 2 Γ— 8 + 7 Γ— 10

a Β· b = 3 6 + 16 + 70

Π° Β· b = 122

Β 

Π’Π΅ΠΏΠ΅Ρ€ΡŒ другая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

a Β· b = | ΠΈ | Γ— | Π± | Γ— cos(ΞΈ)

Но Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ | ΠΈ | ? Π­Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΈΠ»ΠΈ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a . ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Pythagoras:

  • | ΠΈ | = √(4 2 + 8 2 + 10 2 )
  • | ΠΈ | = √(16 + 64 + 100)
  • | ΠΈ | = √180

Аналогично для | Π± |:

  • | Π± | = √(9 2 + 2 2 + 7 2 )
  • | Π± | = √(81 + 4 + 49)
  • | Π± | = √134

И ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ ΠΈΠ· вычислСний Π²Ρ‹ΡˆΠ΅, Ρ‡Ρ‚ΠΎ a Β· b = 122, поэтому:

a Β· b = | ΠΈ | Γ— | Π± | Γ— cos(ΞΈ)

122 = √180 Γ— √134 Γ— cos(ΞΈ)

cos(ΞΈ) = 122 / (√180 Γ— √134)

cos(ΞΈ) = 0,7855.