Таблица квадратов

Таблица квадратов

Определение Калькулятор — квадрат числа Таблица квадратов

Скачать таблицу квадратов Определение. Квадрат числа — есть данное число, возведенное во вторую степень (число умноженное само на себя).

a2 = a · a

«Квадратом» оно называется, потому что такая операция аналогична вычислению площади квадрата.

Калькулятор для вычисления квадрата числа

2 = 49 ≈ 0.4444444444444444

Ниже приведены две удобные таблицы квадратов натуральных чисел от 1 до 100.


Таблица квадратов чисел от 1 до 100

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

102 = 100

112 = 121

122 = 144

132 = 169

142 = 196

15

2 = 225

162 = 256

172 = 289

182 = 324

192 = 361

202 = 400

212 = 441

222 = 484

232 = 529

242 = 576

252 = 625

262 = 676

272 = 729

282 = 784

292 = 841

302 = 900

312 = 961

322 = 1024

332 = 1089

342 = 1156

352 = 1225

362 = 1296

372 = 1369

382 = 1444

392 = 1521

402 = 1600

412

= 1681

422 = 1764

432 = 1849

442 = 1936

452 = 2025

462 = 2116

472 = 2209

482 = 2304

492 = 2401

502 = 2500

512 = 2601

522 = 2704

532 = 2809

542 = 2916

552 = 3025

562 = 3136

572 = 3249

582 = 3364

592 = 3481

602 = 3600

612 = 3721

622 = 3844

632 = 3969

642 = 4096

652 = 4225

662 = 4356

672 = 4489

682 = 4624

692 = 4761

702 = 4900

712 = 5041

722 = 5184

732 = 5329

742 = 5476

752 = 5625

762 = 5776

772 = 5929

782 = 6084

792 = 6241

802 = 6400

812 = 6561

822 = 6724

832 = 6889

842 = 7056

852 = 7225

862 = 7396

872 = 7569

882 = 7744

892 = 7921

90

2 = 8100

912 = 8281

922 = 8464

932 = 8649

942 = 8836

952 = 9025

962 = 9216

972 = 9409

982 = 9604

992 = 9801

1002 = 10000

 Распечатать таблицу квадратов

Таблица квадратов

0123456789
00149162536496481
1100
121
144169196225256289324361
2400441484529576625676729784841
390096110241089115612251296136914441521
41600168117641849193620252116220923042401
52500260127042809291630253136324933643481
63600372138443969409642254356448946244761
74900504151845329547656255776592960846241
86400656167246889705672257396756977447921
98100828184648649883690259216940996049801

 Распечатать таблицу квадратов

© 2011-2023 Довжик Михаил
Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool

.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне [email protected]

Степени и возведение в степень, вторая, третья, четвёртая степени

Когда число умножается само на себя, произведение называется степенью.

Так      2.2 = 4, квадрат или вторая степень 2-х
     2.2.2 = 8, куб или третья степень.
     2.2.2.2 = 16, четвёртая степень.

Также,      10.10 = 100, вторая степень 10.

     10.10.10 = 1000, третья степень.
    10.10.10.10 = 10000 четвёртая степень.

И      a.a = aa, вторая степень a
     a.a.a = aaa, третья степень a
     a. a.a.a = aaaa, четвёртая степень a

Первоначальное число называется корнем степени этого числа, потому что это число, из которого были созданы степени.

Однако не совсем удобно, особенно в случае высоких степеней, записывать все множители, из которых состоят степени. Поэтому используется сокращенный метод обозначения. Корень степени записывается только один раз, а справа и немного выше возле него, но чуть меньшим шрифтом записывается сколько раз

выступает корень как множитель. Это число или буква называется показателем степени или степенью числа. Так, а2 равно a.a или aa, потому что корень a дважды должен быть умножен сам на себя, чтобы получилось степень aa. Также, a3 означает aaa, то есть здесь a повторяется три раза как множитель.

Показатель первой степени есть 1, но он обычно не записывается. Так, a1 записывается как a.

Вы не должны путать степени с коэффициентами. Коэффициент показывает, как часто величина берётся как

часть целого. Степень показывает, как часто величина берётся как множитель в произведении.
Так, 4a = a + a + a + a.      Но a4 = a.a.a.a

Схема обозначения со степенями имеет своеобразное преимущество, позволяя нам выражать неизвестную степень. Для этой цели в показатель степени вместо числа записывается буква. В процессе решения задачи, мы можем получить величину, которая, как мы можем знать, есть некоторой степенью другой величины. Но пока что мы не знаем, это квадрат, куб или другая, более высокая степень. Так, в выражении ax, показатель степени означает, что это выражение имеет

некоторую степень, хотя не определено какую степень. Так, bm и dn возводятся в степени m и n. Когда показатель степени найден, число подставляется вместо буквы. Так, если m=3, тогда bm = b3; но если m = 5, тогда bm=b5.

Метод записи значений с помощью степеней является также большим преимуществом в случае использования выражений . Tак, (a + b + d)3 есть (a + b + d).(a + b + d).(a + b + d), то есть куб трёхчлена (a + b + d). Но если записать это выражение после возведения в куб, оно будет иметь вид

a3 + 3a2b + 3a2d + 3ab2 + 6abd + 3ad2 + b3 + d3.

Если мы возьмем ряд степеней, чьи показатели увеличиваются или уменьшаются на 1, мы обнаружим, что произведение увеличивается на общий множитель или уменьшается на общий делитель, и этот множитель или делитель есть первоначальным числом, которое возводится в степень.

Так, в ряде      aaaaa, aaaa, aaa, aa, a;
или        a5, a4, a3, a2, a1;
показатели , если считать справа налево, равны 1, 2, 3, 4, 5; и разница между их значениями равна 1. Если мы начнем справа

умножатьна a, мы успешно получим несколько значений.

Tак a.a = a2, второй член. И a3. a = a4
     a2.a = a3, третий член. a4.a = a5.

Если мы начнем слева делить на a,
мы получим a5:a = a4      и a3:a = a2.
a4:a = a3       a2:a = a1

Но такой процесс деления может быть продолжен и далее, и мы получаем новый набор значений.

Так, a:a = a/a = 1. (1/a):a = 1/aa
     1:a = 1/a      (1/aa):a = 1/aaa.

Полный ряд будет: aaaaa, aaaa, aaa, aa, a, 1, 1/a, 1/aa, 1/aaa.

Или a5, a4, a3, a2, a, 1, 1/a, 1/a2, 1/a3.

Здесь значения справа от единицы есть обратными значениям слева от единицы. Поэтому эти степени могут быть названы обратными степенями a. Можно также сказать, что степени слева есть обратными к степеням справа.

Так, 1:(1/a) = 1.(a/1) = a. И 1:(1/a3) = a3.

Тот же самый план записи может применяться к многочленам. Так, для a + b, мы получим множество,
(a + b)3, (a + b)2, (a + b), 1, 1/(a + b), 1/(a + b)2, 1/(a + b)3.

Для удобства используется еще одна форма записи обратных степеней.

Согласно этой форме, 1/a или 1/a1 = a-1. И 1/aaa или 1/a3 = a-3.
1/aa или 1/a2 = a-2. 1/aaaa или 1/a4 = a-4.

А чтобы сделать с показателями законченный ряд с 1 как общая разница, a/a или 1, рассматривается как такое, что не имеет степени и записывается как a0.

Тогда, учитывая прямые и обратные степени
вместо aaaa, aaa, aa, a, a/a, 1/a, 1/aa, 1/aaa, 1/aaaa
можно записать      a4, a3, a2, a1, a0, a-1, a-2, a-3, a-4.
Или      a+4, a+3, a+2, a+1, a0, a-1, a-2, a-3, a-4.

А ряд только отдельно взятых степеней будет иметь вид:
     +4,+3,+2,+1,0,-1,-2,-3,-4.

Корень степени может выражен более чем одной буквой.

Так, aa.aa или (aa)2 есть второй степенью aa.
И aa.aa.aa или (aa)3 есть третьей степенью aa.

Все степени цифры 1 одинаковы: 1.1 или 1.1.1. будет равно 1.

Возведение в степень есть нахождение значения любого числа путем умножения этого числа само на себя. Правило возведения в степень:

Умножайте величину саму на себя столько раз, сколько указано в степени числа.

Это правило является общим для всех примеров, которые могут возникнуть в процессе возведения в степень. Но будет правильно дать объяснение, каким образом оно применяется к частным случаям.

Если в степень возводится только один член, то он умножается сам на себя столько раз, сколько указывает показатель степени.

Четвертая степень a есть a4 или aaaa. (Art. 195.)
Шестая степень y есть y6 или yyyyyy.
N-ая степень x есть xn или xxx….. n раз повторенное.

Если необходимо возвести в степень выражение из нескольких членов, применяется принцип, согласно которому степень произведения нескольких множителей равна произведению этих множителей, возведенных в степень.

Tак (ay)2 =a2y2; (ay)2 = ay.ay.
Но ay.ay = ayay = aayy = a2y2.
Так, (bmx)3 = bmx.bmx.bmx = bbbmmmxxx = b3m3x3.

Поэтому, в нахождении степени произведения мы можем или оперировать со всем произведением сразу, или мы можем оперировать с каждым множителем отдельно, а потом умножить их значения со степенями.

Пример 1. Четвертая степень dhy есть (dhy)4, или d4h4y4.

Пример 2. Третья степень 4b, есть (4b)3, или 43b3, или 64b3.

Пример 3. N-ая степень 6ad есть (6ad)n или 6nandn.

Пример 4. Третья степень 3m.2y есть (3m.2y)3, или 27m3.8y3.

Степень двочлена, состоящего из членов, соединенных знаком + и -, вычисляется умножением его членов. Tак,

(a + b)1 = a + b, первая степень.
(a + b)1 = a2 + 2ab + b2, вторая степень (a + b).
(a + b)3 = a3 + 3a2b + 3ab2 + b3, третья степень.
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4, четвертая степень.

Квадрат a — b, есть a2 — 2ab + b2.

3 + 3a2 + 3a + 1.

Квадрат a + b + h есть a2 + 2ab + 2ah + b2 + 2bh + h2

Упражнение 1. Найдите куб a + 2d + 3

Упражнение 2. Найдите четвертую степень b + 2.

Упражнение 3. Найдите пятую степень x + 1.

Упражнение 4. Найдите шестую степень 1 — b.

Квадраты суммы суммы и разницы двочленов встречаются так часто в алгебре, что необходимо их знать очень хорошо.

Если мы умножаем a + h само на себя или a — h само на себя,
мы получаем: (a + h)(a + h) = a2 + 2ah + h2      также, (a — h)(a — h) = a2 — 2ah + h2.

Отсюда видно, что в каждом случае, первый и последний члены есть квадраты a и h, а средний член есть удвоеннное произведение a на h. Отсюда, квадрат суммы и разницы двочленов может быть найден, используя следующее правило.

Квадрат двочлена, оба члена которых положительны, равен квадрату первого члена + удвоенное произведение обоих членов, + квадрат последнего члена.

Квадрат разницы двочленов равен квадрату первого члена минус удвоенное произведение обоих членов плюс квадрат второго члена.

Пример 1. Квадрат 2a + b, есть 4a2 + 4ab + b2.

Пример 2. Квадрат ab + cd, есть a2b2 + 2abcd + c2d2.

Пример 3. Квадрат 3d — h, есть 9d2 + 6dh + h2.

Пример 4. Квадрат a — 1 есть a2 — 2a + 1.

Чтобы узнать метод нахождения более высоких степеней двочленов, смотрите следующие разделы.

Во многих случаях является эффективным записывать степени без умножения.

Так, квадрат a + b, есть (a + b)2.
N-ая степень bc + 8 + x есть (bc + 8 + x)n

В таких случаях, скобки охватывают все члены под степенью.

Но если корень степени состоит из нескольких множителей, скобки могут охватывать всё выражение, или могут применяться отдельно к множителям в зависимости от удобства.

Так, квадрат (a + b)(c + d) есть или [(a + b).(c + d)]2 или (a + b)2.(c + d)2.

Для первого из этих выражений результатом есть квадрат произведения двух множителей, а для второго — произведением их квадратов. Но они равны друг другу.

Куб a.(b + d), есть [a.(b + d)]3, или a3.(b + d)3.

Необходимо также учитывать и знак перед вовлеченными членами. Очень важно помнить, что когда корень степени положительный, все его положительные степени также положительны. Но когда корень отрицательный, значения с нечетными степенями отрицательны, в то время как значения чётных степеней есть положительными.


Вторая степень (- a) есть +a2
Третья степень (-a) есть -a3
Четвёртая степень (-a) есть +a4
Пятая степень (-a) есть -a5

Отсюда любая нечётная степень имеет тот же самый знак, что и число. Но чётная степень есть положительна вне зависимости от того, имеет число отрицательный или положительный знак.
Так, +a.+a = +a2
И -a.-a = +a2

Величина, уже возвёденная в степень, еще раз возводится в степень путем умножения показателей степеней.

Третья степень a2 есть a2.3 = a6.

Для a2 = aa; куб aa есть aa.aa.aa = aaaaaa = a6; что есть шестой степенью a, но третьей степенью a2.

Четвертая степень a3b2 есть a3.4b2.4 = a12b8

Третья степень 4a2x есть 64a6x3.

Пятая степень (a + b)2 есть (a + b)10.

N-ая степень a3 есть a3n

N-ая степень (x — y)m есть (x — y)mn

(a3.b3)2 = a6.b6

(a3b2h4)3 = a9b6h12

Правило одинаково применяется к отрицательным степеням.

Пример 1. Третья степень a-2 есть a-3.3=a-6.

Для a-2 = 1/aa, и третья степень этого
(1/aa).(1/aa).(1/aa) = 1/aaaaaa = 1/a6 = a-6

Четвертая степень a2b-3 есть a8b-12 или a8/b12.

Квадрат b3x-1, есть b6x-2.

N-ая cтепень ax-m есть x-mn или 1/x.

Однако, здесь надо помнить, что если знак, предшествующий степени есть «-«, то он должен быть изменен на «+» всегда, когда степень есть четным числом.

Пример 1. Квадрат -a3 есть +a6. Квадрат -a3 есть -a3.-a3, которое, согласно правилам знаков при умножении, есть +a6.

2. Но куб -a3 есть -a9. Для -a3.-a3.-a3 = -a9.

3. N-ая степень -a3 есть a3n.

Здесь результат может быть положительным или отрицательным в зависимости от того, какое есть n — чётное или нечётное.

Если дробь возводится в степень, то возводятся в степень числитель и знаменатель.

Квадрат a/b есть a2/b2. Согласно правилу умножению дробей,
     (a/b)(a/b) = aa/bb = a2b2

Вторая, третья и n-ая степени 1/a есть 1/a2, 1/a3 и 1/an.

Примеры двочленов, в которых один из членов является дробью.

1. Найдите квадрат x + 1/2 и x — 1/2.
(x + 1/2)2 = x2 + 2.x.(1/2) + 1/22 = x2 + x + 1/4
(x — 1/2)2 = x2 — 2.x.(1/2) + 1/22 = x2 — x + 1/4

2. Квадрат a + 2/3 есть a2 + 4a/3 + 4/9.

3. Квадрат x + b/2 = x2 + bx + b2/4.

4 Квадрат x — b/m есть x2 — 2bx/m + b2/m2.

Ранее было показано, что дробный коэффициент может быть перемещен из числителя в знаменатель или из знаментеля в числитель. Используя схему записи обратных степеней, видно, что любой множитель также может быть перемещен, если будет изменен знак степени.

Так, в дроби ax-2/y, мы можем переместить x из числителя в знаменатель.
Тогда ax-2/y = (a/y).x-2 = (a/y).(1/x2 = a/yx2.

В дроби a/by3 мы можем переместить у из знаменателя в числитель.
Тогда a/by2 = (a/b).(1/y3) = (a/b).y-3 = ay-3/b.

Таким же образом мы можем переместить множитель, который имеет положительный показатель степени в числитель или множитель с отрицательной степенью в знаменатель.

Так, ax3/b = a/bx-3. Для x3 обратным есть x-3, что есть x3 = 1/x-3.

Следовательно, знаменатель любой дроби может быть полностью удален, или числитель может быть сокращен до единицы, что не изменит значение выражения.

Так, a/b = 1/ba-1, or ab-1.

2 = 3 \ умножить на 3 = 9 \]

Поделитесь этой ссылкой для ответа: help
Вставьте эту ссылку в электронное письмо, текст или социальные сети.


Получить виджет для этого калькулятора

© Calculator Soup

Поделитесь этим калькулятором и страницей

Калькулятор Использование

Найдите квадрат числа n. Введите положительные или отрицательные целые числа или десятичные числа или научную нотацию E.

Возведение в квадрат отрицательных чисел

Если вы хотите возвести в квадрат отрицательные числа в этом калькуляторе, используйте круглые скобки при вводе.

  • -5² означает -(5 × 5) = -25
  • -(5)² означает -(5 × 5) = -25
  • (-5)² означает (-5 × -5) = 25

Например, чтобы возвести -4 в квадрат, введите его в калькулятор как (-4) со скобками. Чтобы взять отрицательное число 4 в квадрате, введите его как -(4) или -4.

Когда выражение степени записывается с положительным значением, таким как 4², большинству легко понять, что это означает 4 × 4 = 16

Однако, когда оно записывается как отрицательное значение без круглых скобок, значение неоднозначно. Для разных людей это имеет разное значение.

Различные возможные интерпретации -4²:

1. минус (4 в квадрате) равен -4² = -(4)² = -(4 × 4) = -16

2. (минус 4) в квадрате равен (- 4)² = (-4 × -4) = 16

Используйте круглые скобки, чтобы четко указать, какое вычисление вы действительно хотите выполнить.

В квадрате

Число n в квадрате записывается как n² и n² = n × n. Если n — целое число, то n² — полный квадрат.

Например, 3 в квадрате записывается как 3², а 3² = 3 × 3 = 9. Девять — это полный квадрат.

Числа от 0 до 10 в квадрате

  • 0 в квадрате равно 0² = 0 × 0 = 0
  • 1 в квадрате равно 1² = 1 × 1 = 1
  • 2 в квадрате равно 2² = 2 × 2 = 4
  • 3 в квадрате равно 3² = 3 × 3 = 9
  • 4 в квадрате равно 4² = 4 × 4 = 16
  • 5 в квадрате равно 5² = 5 × 5 = 25
  • 6 в квадрате равно 6² = 6 × 6 = 36
  • 7 в ​​квадрате равно 7² = 7 × 7 = 49
  • 8 в квадрате равно 8² = 8 × 8 = 64
  • 9 в квадрате равно 9² = 9 × 9 = 81
  • 10 в квадрате равно 10² = 10 × 10 = 100

Ссылки/ Дополнительная литература

Гудман, Лен и Вайсштейн, Эрик В. «Квадратное число». От MathWorld — Веб-ресурс Wolfram. Квадратный номер

Википедия «Квадратный номер» на https://en.wikipedia.org/wiki/Квадратное_число

 

Подписаться на калькуляторSoup:

Калькулятор дробей


Этот калькулятор дробей выполняет базовые и расширенные операции с дробями, выражения с дробями в сочетании с целыми, десятичными и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Калькулятор помогает найти значение из операций с несколькими дробями. Решайте задачи с двумя, тремя и более дробями и числами в одном выражении.

Правила выражений с дробями:
Дроби — для деления числителя на знаменатель используйте косую черту, т.е. для пятисотых введите 5/100 . Если вы используете смешанные числа, оставьте пробел между целой и дробной частями.

Смешанные числа (смешанные числа или дроби) сохраняют один пробел между целым числом и дробью
и используют косую черту для ввода дробей, например, 1 2/3 . Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта является одновременно знаком дробной части и деления, используйте двоеточие (:) в качестве оператора деления дробей, т. е. 1/2 : 1/3 .
Decimals (десятичные числа) вводятся с десятичной точкой . и они автоматически преобразуются в дроби — т.е. 1,45 .

Математические символы


Символ Название символа Символ Значение Пример
+ плюс сложение 1/2 + 1/3
минус вычитание 90 112 1 1/2 — 2/3
* звездочка умножение 2/3 * 3/4 ​​
× знак умножения умножение 2/3 × 5/6
: знак деления деление 91/2
• сложение дробей и смешанных чисел: 8/5 + 6 2/7
• деление целых чисел и дробей: 5 ÷ 1/2
• сложные дроби: 5/8 : 2 2/3
• десятичная дробь: 0,625
• Преобразование дроби в десятичную: 1/4
• Преобразование дроби в процент: 1/8 %
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt(1/16)
• сокращение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
• выражение со скобками: 1/3 * (1/2 — 3 3/8)
• составная дробь: 3/4 от 5/7
• кратные дроби: 2/3 от 3/5
• разделить, чтобы найти частное: 3/5 ÷ 2/3

Калькулятор следует известным правилам для порядка операций . Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS — Скобки, Экспоненты, Умножение, Деление, Сложение, Вычитание.
BEDMAS — скобки, возведение в степень, деление, умножение, сложение, вычитание
BODMAS — Скобки, Порядок, Деление, Умножение, Сложение, Вычитание.
GEMDAS — символы группировки — скобки (){}, показатели степени, умножение, деление, сложение, вычитание.
MDAS — Умножение и деление имеют тот же приоритет, что и сложение и вычитание. Правило MDAS является частью порядка операций правила PEMDAS.
Будь осторожен; всегда выполняйте умножение и деление перед сложением и вычитанием . Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны оцениваться слева направо.