Характерные химические свойства водорода и галогенов.

Химические свойства водорода

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s1. С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

2.3.1. Химические свойства водорода и галогенов.

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами
с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

2Na + h3 = 2NaH Ca + h3 = Cah3

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами
с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.

Галоген
Физические свойства
F2Светло-желтый газ с резким раздражающим запахом
Cl2Желто-зеленый газ с резким удушливым запахом
Br2Красно-бурая жидкость с резким зловонным запахом
I2Твердое вещество с резким запахом, образующее черно-фиолетовые кристаллы

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns2np5, где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F2 > Cl2 > Br2 > I2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами
водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

2P + 5F2 = 2PF5

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

P + Cl2; P + Br2

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

2P + 3I2 = 2PI3

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

3F2 + S = SF6

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

взаимодействие серы с хлором и бромом

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Au + F2 = AuF2

Pt + 2F2 = PtF4

Остальные галогены реагируют со всеми металлами кроме платины и золота:

2Fe + 3Cl2 = 2FeCl3

2Fe + 3Br2 = 2FeBr3

Fe + I2 = FeI2

Cu + Cl2 = CuCl2

2Cu + I2 = 2CuI

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Br2 + 2KI = I2 + 2KBr

Cl2 + 2HBr = Br2 + 2HCl

I2 + KBr

Br2 + HCl

Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:

Na2S + Br2 = 2NaBr + S

 

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

 

 

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:

ЕГЭ. Взаимодействие веществ с водородом

1. Взаимодействие простых веществ с водородом

1) Из металлов только щелочные и щелочноземельные металлы реагируют с водородом с образованием гидридов (степень окисления атомов водорода –1):

2Na + H2 →  2NaH (гидрид натрия)

Ca + H2 →  CaH2 (гидрид кальция)

 

Fe + H2 →  реакция не идет

Cu + H2 →  реакция не идет

 

2) Все неметаллы реагируют с водородом (кроме P, B, Si и благородных газов), образуя летучие водородные соединения:

H2 + S <=> H2S (нагревание)

3H2 + N2 <=> 2NH3 (t, p, kt)

 

Примеры водородных соединений:

Валентность: IV III II I
Летучее водородное соединение:

CH4 (метан)

NH3 (аммиак) H2O (вода) HF (фтороводород)
SiH4 (силан) PH3 (фосфин) H2S (сероводород) HCl (хлороводород)

CH4 — бесцветный газ без запаха

SiH4 — бесцветный газ с неприятным запахом

NH3 — бесцветный газ с резким характерным запахом

PH3 — бесцветный, ядовитый газ с неприятным запахом (возникающим из-за примесей)

H2S — бесцветный газ с характерным неприятным запахом тухлых яиц 

HF — бесцветный, токсичный газ с резким запахом

HCl — бесцветный, ядовитый газ с резким запахом, дымящий во влажном воздухе.

Так как P, B и Si не взаимодействуют с водородом, их водородные соединения получают косвенным способом.

 

2. Взаимодействие сложных веществ с водородом

1) Необходимо помнить, что такие оксиды, как ZnO, CuO, PbO, FeO, Fe2O3 (и некоторые другие оксиды малоактивных металлов, т.е. стоящих в ряду активностей после Al) взаимодействуют с водородом с восстановлением соответствующего металла:

ZnO + H2 →  Zn + H

2O

CuO + H2 →  Cu + H2O

FeO + H2 →  Fe + H2O

Fe2O3 + 3H2 →  2Fe + 3H2O

PbO + H2 → Pb + H2O

 

2) Оксиды таких неметаллов, как азот и углерод также взаимодействуют с водородом:

2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O

NO2 + H2 → NO + H2O

 

CO + 2H2 <=> CH3OH (t, p, kt)

CO2 + 4H2 → CH

4 + 2H2O

 

SiO2 + H2 → реакция не идет.

Водород, подготовка к ЕГЭ по химии

Водород (лат. hydrogenium = греч. ὕδωρ — вода + γεννάω — рождаю) — самый легкий химический элемент, при обычных условиях — газ без цвета, запаха и вкуса. В соединении с кислородом образует воду.

Водород — самый распространенный элемент Вселенной, входит в состав всего живого и небесных тел (73% массы Солнца).

Водород
Степени окисления

Проявляет степени окисления: -1, 0, +1.

Электронная конфигурация водорода
Получение

В промышленности водород получают различными методами:

  • Конверсия с водяным паром при t = 1000 °C
  • CH4 + H2O → CO + H2

  • Методом газификации угля, торфа, сланца
  • C + H2O → CO + H2

  • Электролизом водных растворов щелочей
  • H2O → H2↑ + O2

  • Каталитическим окислением кислородом (неполное окисление)
  • CH4 + O2

    → CO + H2

Реактор парциального оксиления

Лабораторные методы традиционно отличаются от промышленных своей простотой. В лаборатории водород получают:

  • Вытеснением водорода из кислот
  • Fe + HCl → FeCl2 + H2

  • Гидролизом гидридов
  • CaH2 + H2O → Ca(OH)2 + H2

  • Взаимодействием активных металлов с водой
  • Ca + H2O → Ca(OH)2 + H2

  • Реакцией цинка или алюминия с раствором щелочи
  • Al + NaOH + H2O → Na[Al(OH)4] + H2

Химические свойства

    В реакциях водород проявляет себя как восстановитель и окислитель. Как восстановитель реагирует с элементами, электроотрицательность которых выше, чем у водорода:

  • Как восстановитель реагирует с кислородом, галогенами, азотом, серой, оксидами металлов. При комнатной температуре из перечисленных реакция идет только со фтором.
  • H2 + O2 → (t) H2O

    H2 + F2 → HF (со взрывом в темноте)

    H2 + Cl2 → (t) HCl (со взрывом только на свету)

    H2 + N2 → NH3

    H2 + S → H2S

    H2 + ZnO → Zn + H2O

    Горение водорода в хлоре
  • Как окислитель реагирует с металлами
  • Na + H2 → NaH (гидрид натрия)

    Mg + H2 → MgH2

Вода

Химические свойства:

  • Реакция с металлами
  • Металлы, стоящие в ряду активности до водорода, вытесняют водород из воды.

    K + H2O → KOH + H2

  • Реакции с основными и кислотными оксидами
  • Реагирует с основными оксидами — с образованием оснований (реакция идет, если основание растворимо), и с кислотными оксидами — с образованием соответствующих кислот. Не забывайте сохранять степени окисления!

    CaO + H2O → Ca(OH)2

    P2O5 + H2O → H3

    PO4

  • Гидролиз солей
  • Отмечу здесь реакцию двойного гидролиза, которая заключается в гидролизе одной соли по катиону (CrBr3), а другой — по аниону (Na2CO3).

    Na2CO3 + CrBr3 + H2O → Cr(OH)3↓ + CO2 + NaBr

  • Реакция с гидридами активных металлов
  • LiH + H2O → LiOH + H2

  • Реакции с C, CO, CH4
  • C + H2O → CO + H2

    H2O + CO → (кат.) CO2 + H2

    H2O + CH4 → (кат.) CO + H2

  • С галогенами
  • Cl2 + H2O → HCl + HClO (соляная и хлорноватистая кислоты — без нагревания)

    Cl2 + H2O → HCl + HClO3 (соляная и хлорноватая кислоты — при нагревании)

    Хлор
Кристаллогидраты

Кристаллогидраты — кристаллические соединения, содержащие молекулы воды как самостоятельные структурные единицы. Вода, входящая в состав кристаллогидратов, называется кристаллической. Примеры: CaSO

4*2H2O, Na2SO4*10H2O.

При нагревании кристаллогидраты теряют воду. Одним из наиболее известных кристаллогидратов является медный купорос: CuSO4*5H2O. Медный купорос имеет характерный голубой цвет, а безводный сульфат меди — белый.

Медный купорос

В задачах бывает дана масса медного купороса. Надо помнить о том, что часто в реакции не участвует кристаллическая вода. В таком случае следует вычесть кристаллизационную воду и найти массу безводного сульфата калия.

Расчет массы кристаллогидрата
Пероксид водорода

Представляет собой бесцветную жидкость с металлическим вкусом. Концентрированные растворы пероксида водорода взрывоопасны.

Получают пероксид водорода в реакции с пероксидами и супероксидами металлов.

K2O2 + H2O → KOH + H2O2

BaO2 + H2SO4 → BaSO4 + H2O2

В разбавленных растворах пероксид водорода легко разлагается:

H2O2 → H2O + H2

Также перекись проявляет окислительные свойства:

KCl + H2O2 + H2SO4 → Cl2 + K2SO4 + H2O

Пероксид водорода

Перекисью водорода обрабатывают раневую поверхность. Выделяющийся при разложении атомарный кислород разрушает бактериальные клетки, предотвращая осложнение в виде бактериальной инфекции.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Свойства водорода — урок. Химия, 8–9 класс.

Физические свойства

Водород имеет молекулярное строение. Его молекула h3 состоит из двух атомов, соединённых ковалентной неполярной связью.

 

При обычных условиях водород — газ без цвета, запаха и вкуса. Это самое лёгкое вещество на Земле. Его плотность равна примерно \(0,9\) г/дм³. Водород в \(14,5\) раз легче воздуха.

 

В воде водород растворяется плохо (примерно \(2\) объёма на \(100\) объёмов воды), но может поглощаться некоторыми металлами. Например, \(1\) объём палладия может растворить до \(900\) объёмов водорода.

 

Температура кипения водорода низкая. Она равна \(–253\) °С. Ниже температура кипения только у гелия.

 

Молекулы водорода благодаря своей малой массе и размерам могут проникать сквозь стенки сосуда, в котором он содержится. Заполненный водородом шарик через некоторое время сдувается. При температуре \(300\)–\(600\) °С водород способен диффундировать сквозь стенки стеклянного или металлического сосуда.

Химические свойства

При комнатной температуре химическая активность водорода низкая. Она значительно повышается при нагревании.

 

1. Взаимодействие с простыми веществами-неметаллами (кроме фосфора, кремния, инертных газов).

  • Водород реагирует с кислородом. При этом образуется вода:

2h3&plus;O2=t2h3O.

 

Смесь водорода с кислородом или с воздухом взрывоопасна.

  • При освещении или нагревании идёт реакция с хлором, и образуется хлороводород:

h3&plus;Cl2=hν2HCl.

 

Подобным образом водород реагирует и с другими галогенами: фтором, бромом, иодом.

  • Если водород пропускать над нагретой серой, то образуется сероводород:

h3&plus;S=th3S.

  • В присутствии катализатора при повышенном давлении водород реагирует с азотом с образованием аммиака:

N2&plus;3h3=t,p,k2Nh4.

 

Обрати внимание!

В реакциях с неметаллами водород является восстановителем.

 

2. Взаимодействие с простыми веществами-металлами.

При нагревании водород реагирует со щелочными и щелочноземельными металлами с образованием гидридов:

 

2Na&plus;h3=t2NaH,

Ca&plus;h3=tCah3.

 

Обрати внимание!

В реакциях с металлами водород является окислителем.

 

3. Взаимодействие со сложными веществами.

  • Водород способен реагировать с оксидами металлов (кроме оксидов щелочных и щелочноземельных металлов, бериллия, магния, алюминия):

WO3&plus;3h3=tW&plus;3h3O,

CuO&plus;h3=tCu+h3O.

  • Водород реагирует с угарным газом с образованием метилового спирта:

CO&plus;2h3→Ch4OH.

  • Водород вступает в реакции со многими органическими веществами.

Источники:

Габриелян О. С. Химия. 9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 137 с.

 

Водород. Физические и химические свойства, получение » HimEge.ru

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
В одних условиях водород проявляет металлические свойства (отдает электрон), в других — неметаллические (принимает электрон).
В природе встречаются изотопы водорода:  1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных  между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069;  незначительно растворяется в воде (в 100 объемах h3O растворяется 2 объема  h3).  Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории:

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl2 +H2

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H2O → Ca(OH)2 +H2

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H2O → NaOH +H2
СаH2 + 2Н2О = Са(ОН)2 + 2Н2

4.Действие щелочей на цинк  или алюминий или кремний:
2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2
Zn +2KOH +2H2O → K2[Zn(OH)4] +H2
Si + 2NaOH + H2O → Na2SiO3 + 2H2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н2SO4 или Na2SO4. На катоде образуется 2 объема водорода, на аноде — 1 объем кислорода.
2H2O → 2H22

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH4 + H2O → CO + 3 H2   
CO + H2O → CO2 + H2

В сумме:
CH4 + 2 H2O → 4 H2 + CO2

2. Пары воды через раскаленный кокс при 1000оС:
С + H2O → CO + H2
CO +H2O → CO2 + H2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH4 → С + 2Н2

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2О + 2NaCl→ Cl2↑ + H2↑ + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н2
  • Благодаря этому обобщению электронов молекула Н2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН4, RН3, RН2, RН.

1) С галогенами  образует галогеноводороды:
Н2 + Cl2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2 + О2 → 2Н2О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н2 и 1 объема О2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н2 + S → H2S (сероводород),

4) С азотом  с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН2 + N2 → 2NН3

5) С углеродом при высоких температурах:
2 + С → СН4 (метан)

6) С  щелочными и щелочноземельными металлами  образует гидриды (водород – окислитель):
Н2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na+H построен подобно хлориду Na+Cl

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H2 → Cu + H2O
Fe3O4 + 4H2 → 3Fe + 4Н2О

8) с оксидом углерода (II):
CO + 2H2 → CH3OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН3ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
СnН2n + Н2 → СnН2n+2.

Урок 22. Химические свойства водорода – HIMI4KA

В уроке 22 «Химические свойства водорода» из курса «Химия для чайников» узнаем с какими веществами реагирует водород; выясним, какими химическими свойствами обладает водород.

Водород вступает в химические реакции с простыми и сложными веществами. Однако при обычных условиях водород малоактивен. Для его взаимодействия с другими веществами необходимо создать условия: повысить температуру, применить катализатор и др.

Реакции водорода с простыми веществами

При нагревании водород вступает в реакции соединения с простыми веществами — кислородом, хлором, азотом, серой.

Если поджечь на воздухе чистый водород, выходящий из газоотводной трубки, он горит ровным, еле заметным пламенем. Теперь поместим трубку с горящим водородом в банку с кислородом (рис. 95).

реакции с водородомреакции с водородом

Горение водорода продолжается, при этом на стенках банки видны капли воды, образующейся в результате реакции:

реакции с водородомреакции с водородом

При горении водорода выделяется много теплоты. Температура кислородно-водородного пламени достигает больше 2000 °С.

Химическая реакция водорода с кислородом относится к реакциям соединения. В результате реакции образуется оксид водорода (вода). Это значит, что произошло окисление водорода кислородом, т. е. эту реакцию мы можем назвать и реакцией окисления.

Если же в пробирку, опрокинутую вверх дном, собрать немного водорода методом вытеснения воздуха, а затем поднести к ее отверстию горящую спичку, то раздастся громкий «лающий» звук небольшого взрыва смеси водорода с воздухом. Такую смесь называют «гремучей».

На заметку: Способность водорода в смеси с воздухом образовывать «гремучий газ» часто являлась причиной катастроф на воздушных шарах, заполненных водородом. Нарушение герметичности оболочки шара приводило к пожару и даже взрыву. В наше время воздушные шары заполняют гелием или постоянно нагнетаемым горячим воздухом.

В атмосфере хлора водород сгорает с образованием сложного вещества — хлороводорода. При этом протекает реакция:

реакции водородареакции водорода

Реакция водорода с азотом происходит при повышенной температуре и давлении в присутствии катализатора. В результате реакции образуется аммиак NH3:

реакции с водородомреакции с водородом

Если струю водорода направить на расплавленную в пробирке серу, то у ее отверстия ощутится запах тухлых яиц. Так пахнет газ сероводород H2S — продукт реакции водорода с серой:

реакции водородареакции водорода

На заметку: Водород способен не только растворяться в некоторых металлах, но и реагировать с ними. При этом образуются химические соединения, называемые гидридами (NaH — гидрид натрия). Гидриды некоторых металлов используют как горючее в ракетных двигателях на твердом топливе, а также при получении термоядерной энергии.

Реакции водорода со сложными веществами

Водород реагирует при повышенной температуре не только с простыми, но и со сложными веществами. Рассмотрим в качестве примера его реакцию с оксидом меди(II) CuO (рис. 96).

реакции водородареакции водорода

Пропустим водород над нагретым порошком оксида меди(II) CuO. По мере протекания реакции цвет порошка изменяется с черного на коричнево красный. Это цвет простого вещества меди Cu. В ходе реакции на холодных частях пробирки появляются капельки жидкости. Это еще один продукт реакции — вода H2O. Отметим, что в отличие от простого вещества меди вода — сложное вещество.

Уравнение реакции оксида меди(II) с водородом:

реакции с водородомреакции с водородом

Водород в реакции с оксидом меди(II) проявляет способность отнимать у оксида металла кислород, тем самым восстанавливать металл из этого оксида. В результате происходит восстановление меди из сложного вещества CuO до металлической меди (Cu).

Реакции восстановления — это реакции, в ходе которых сложные вещества отдают атомы кислорода другим веществам.

Вещество, отнимающее атомы кислорода, называют восстановителем. В реакции с оксидом меди(II) восстановитель — водород. Так же реагирует водород и с оксидами некоторых других металлов, например PbO, HgO, MoO3, WO3 и др. Окисление и восстановление всегда взаимосвязаны между собой. Если одно вещество (Н2) окисляется, то другое (CuO) — восстанавливается, и наоборот.

Краткие выводы урока:

  1. При нагревании водород реагирует с кислородом, хлором, азотом, серой.
  2. Восстановление — это отдача атомов кислорода сложными веществами другим веществам.
  3. Процессы окисления и восстановления взаимосвязаны между собой.

Надеюсь урок 22 «Химические свойства водорода» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Химические свойства водорода. Применение. Конспект по химии

Химические свойства водорода

Ключевые слова конспекта: химические свойства водорода, применение водорода, 



Водород при комнатной температуре малоактивен. При нагревании водород реагирует со многими простыми и сложными веществами.

Реакции соединения

В реакциях с неметаллами водород является восстановителем. При поджигании на воздухе водород сгорает или реагирует с кислородом с взрывом:

2 + О2 = 2Н2O.

При поджигании водород реагирует с газом хлором Сl2 (на ярком свету — с взрывом) с образованием газа хлороводорода НСl.

Н2 + Сl2 = 2НСl.

Реакции с бромом и йодом обратимы и протекают при 400-500 °С.

При температуре 150-200 °С водород реагирует с серой, при этом получается газообразный сероводород:

Н2 + S = H2S.

При более высокой температуре идет заметное разложение сероводорода.

Синтез метана в реакции с графитом проходит при повышенном давлении и 600 °С. При более высокой температуре преобладает обратное направление процесса:

2 + С = СН4.

Реакция водорода с азотом протекает достаточно быстро только при 500 °С в присутствии катализатора Fe3O4 при давлении 20-30 МПа:

2 + N2 = 2NH3.

Летучие водородные соединения, в формулах которых первым стоит Н, называют, прочитывая формулы справа налево: НСl — хлороводород, H2S — сероводород, НВг — бромоводород. Названия веществ СН4 — метан, NH3 — аммиак.

В реакциях с металлами водород оказывается окислителем. При нагревании он реагирует с щелочными и щелочноземельными металлами, образуя гидриды:

В гидридах щелочных и щелочноземельных металлов водород находится в степени окисления -1.

Реакции замещения

При нагревании водород реагирует с оксидами многих металлов. Продукты реакции — свободный металл и вода. Реакции замещения с участием водорода — реакции восстановления:

Хром и более активные металлы водородом из соединений не восстанавливаются.

Применение водорода

Раньше водород использовали для наполнения воздушных шаров и дирижаблей. Впоследствии от этого отказались из-за взрыво- и пожароопасности водорода. Сейчас водород — ракетное топливо. Водород необходим для синтеза аммиака NH3 и хлороводорода НСl. С помощью водорода получают особо чистые металлы для полупроводниковой техники. В органической химии с применением водорода получают метиловый спирт СН3ОН, твердые пищевые жиры из растительных масел, синтетическое жидкое топливо. Изотопы водорода — дейтерий 2D и тритий 3Т — термоядерное горючее.


Конспект урока по химии «Химические свойства водорода. Применение». Выберите дальнейшее действие:

фактов о водороде | Живая наука

Самый распространенный элемент во вселенной, водород также является многообещающим источником «чистого» топлива на Земле.

Названный в честь греческих слов hydro для «воды» и генов для «формирования», водород составляет более 90 процентов всех атомов, что составляет три четверти массы Вселенной, согласно Лос-Аламосская национальная лаборатория. По данным Королевского химического общества, водород необходим для жизни и присутствует практически во всех молекулах живых организмов.Элемент также встречается в звездах и питает вселенную посредством протон-протонной реакции и цикла углерод-азот. По словам Лос-Аламоса, процессы синтеза звездного водорода выделяют огромное количество энергии, поскольку они объединяют атомы водорода в гелий.

Чистого газообразного водорода в атмосфере Земли недостаточно, и, по данным Королевского общества, любой водород, который действительно попадает в атмосферу, быстро ускользает от гравитации Земли. Лос-Аламос сообщает, что на нашей планете водород встречается в основном в сочетании с кислородом и водой, а также с органическими веществами, такими как живые растения, нефть и уголь.

Только факты

  • Атомный номер (число протонов в ядре): 1
  • Атомный символ (в периодической таблице элементов): H
  • Атомный вес (средняя масса атома): 1,00794
  • Плотность : 0,00008988 грамм на кубический сантиметр
  • Фаза при комнатной температуре: газ
  • Точка плавления: минус 434,7 градуса по Фаренгейту (минус 259,34 градуса Цельсия)
  • Точка кипения: минус 423,2 F (минус 252,87 С)
  • Количество изотопов (атомов один и тот же элемент с разным количеством нейтронов): 3 распространенных изотопа, в том числе 2 стабильных
  • Наиболее распространенный изотоп: 1H, естественное содержание 99.9885 процентов

Обнаружение водорода

Роберт Бойль добывал газообразный водород в 1671 году, когда он экспериментировал с железом и кислотами, но только в 1766 году Генри Кавендиш признал его в качестве отдельного элемента, согласно Jefferson Lab. Элемент был назван водородом французским химиком Антуаном Лавуазье.

Водород имеет три общих изотопа: протий, который является просто обычным водородом; дейтерий, стабильный изотоп, открытый в 1932 году Гарольдом С. Юрием; и тритий, нестабильный изотоп, открытый в 1934 году, по данным Jefferson Lab.Разница между тремя изотопами заключается в количестве нейтронов в каждом из них. Водород вообще не имеет нейтронов; Дейтерий имеет один, а тритий имеет два нейтрона, согласно Национальной лаборатории Лоуренса Беркли. По словам Лос-Аламоса, дейтерий и тритий используются в качестве топлива в ядерных термоядерных реакторах.

Водород соединяется с другими элементами, образуя ряд соединений, в том числе таких, как вода (H 2 O), аммиак (NH 3 ), метан (CH 4 ), столовый сахар (C 12 H 22 O 11 ), перекись водорода (H 2 O 2 ) и соляная кислота (HCl), по данным Jefferson Lab.

Водород обычно получают нагреванием природного газа с паром с образованием смеси водорода и окиси углерода, называемой синтез-газом, которая затем отделяется для производства водорода, согласно данным Королевского общества.

Водород используется для производства аммиака для удобрения, в процессе, называемом процессом Хабера, в котором он реагирует с азотом. Элемент также добавляется в жиры и масла, такие как арахисовое масло, посредством процесса, называемого гидрогенизацией, согласно Jefferson Lab. Другие примеры использования водорода включают ракетное топливо, сварку, производство соляной кислоты, восстановление металлических руд и наполнение воздушных шаров, согласно Лос-Аламосу.Исследователи работают над разработкой технологии водородных топливных элементов, которая позволяет получать значительные объемы электроэнергии с использованием газообразного водорода в качестве экологически чистого источника энергии, который можно использовать в качестве топлива для автомобилей и других транспортных средств.

Водород также используется в стекольной промышленности в качестве защитной атмосферы для изготовления плоских стеклянных листов, в то время как в электронной промышленности он используется в качестве промывочного газа в процессе производства кремниевых чипов, согласно данным Королевского общества.

Этот имитированный вид в истинном цвете Юпитера состоит из 4 изображений, полученных космическим кораблем НАСА Кассини 7 декабря 2000 года. Разрешение составляет около 89 миль (144 километра) на пиксель. (Изображение предоставлено: NASA / JPL / Университет Аризоны).

Этот имитированный вид в истинном цвете Юпитера состоит из 4 изображений, снятых космическим аппаратом Кассини НАСА 7 декабря 2000 года. Разрешение составляет около 89 миль (144 километра) на пиксель. Предоставлено: NASA / JPL / Университет Аризоны

. Кто знал?

  • Водород является основным компонентом Юпитера и других газовых гигантов, согласно Лос-Аламосу.
  • Первый полет на воздушном шаре был начат в Париже в 1783 году, и газ, используемый в воздушном шаре, был водородом, согласно Национальному музею воздушных шаров. Его использование в заправке дирижаблей закончилось, когда Гинденбург загорелся, по данным Королевского общества.
  • НАСА использует водород в качестве ракетного топлива для доставки экипажа в космос.
  • Сжиженный водород очень холодный и может вызвать сильный обморожение при попадании на кожу.
  • Водород примерно в 14 раз легче воздуха, согласно «Принципам химии».«
  • Французский химик Лавуазье, который дал название водороду, до Французской революции служил финансистом и государственным администратором и был казнен во время революции, согласно Британской энциклопедии.
  • В мире производится около 3 миллиардов кубических футов водорода. По данным Лос-Аламоса, в Соединенных Штатах в год.
  • Водород имеет самую низкую плотность всех газов, согласно данным Королевского общества.
  • Водород является единственным элементом, три общих изотопа которого — протий, дейтерий и тритий — получили разные названия. Лос-Аламос сообщает.

Текущее исследование

Исследователи изучали водород с большим интересом в течение многих лет из-за его потенциала в качестве экологически чистого топлива. «Водород является энергоносителем без углерода, поэтому, когда вы сжигаете его, вы производите только воду», что делает его чистым топливом без каких-либо выбросов, сказал Ричард Чейн, директор Института исследования водорода в университете Квебек в Труа-Ривьер в Канаде. Однако существует серьезная проблема с водородным топливом: оно дороже, чем газ.Фактически, в прошлом году старший вице-президент Toyota Боб Картер объявил, что, согласно оценкам Министерства энергетики, полный бак сжатого водорода первоначально будет стоить около 50 долларов, сообщает Ecomento.com. В целом, затраты, связанные с технологией водородного топлива, являются «очень сложным барьером, потому что на данный момент люди предпочли бы иметь лучшие технологии по текущей цене», — сказал Чейн в интервью Live Science.

Еще одна проблема, связанная с водородным топливом, заключается в том, что сам процесс производства водорода на самом деле не настолько «чистый» и не загрязняет окружающую среду.«На сегодняшний день большая часть производимого водорода получается из природного газа», — говорит Чейн, — этот процесс генерирует углекислый газ (CO 2 ).

Поэтому исследователи искали альтернативные и более безвредные для окружающей среды способы производства водорода, которые в идеале могли бы устранить выбросы CO 2 из процесса. В прошлом году, например, ученые из Аргоннской национальной лаборатории Министерства энергетики США разработали небольшой «наноразмерный генератор водорода», устройство, которое производит чистый водород с использованием света и графена и без сжигания ископаемого топлива.Текущая версия генератора действительно мала, но, если окажется, что он может быть расширен, он может позволить ученым производить достаточно водорода, чтобы обеспечить топливо для автомобилей и генераторов.

Другой способ получения водорода, называемый «биологическим расщеплением воды», будет включать использование определенных фотосинтетических микробов, которые используют световую энергию для производства водорода из воды в рамках своих метаболических процессов, согласно Национальной лаборатории возобновляемой энергии, где исследователи В настоящее время расследуется этот процесс.NREL сообщает, что еще один потенциальный метод получения водорода включает ферментацию возобновляемых материалов биомассы. Исследователи из NREL также работают над преобразованием сельскохозяйственных отходов (таких как арахисовая скорлупа) и потребительских отходов (таких как пластмассы и отработанная смазка) в жидкий продукт, называемый биомаслом, компоненты которого затем могут быть разделены на топливо, включая водород. Однако самый чистый способ получения водорода — это расщепление воды на водород и кислород с помощью солнечного света, сообщает NREL.

Дополнительные ресурсы

Follow Live Science @livescience , Facebook & Google+ .

,
Почему кислоты реагируют с активными металлами с образованием водорода?
Химия
Наука
  • Анатомия и физиология
  • астрономия
  • астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
  • Органическая химия
  • физика
математический
  • Алгебра
  • Исчисление
.

Leave A Comment