Графики функции, производной, первообразной — Умскул Учебник
На этой странице вы узнаете- Где проходит граница между теплом и холодом?
- Почему успех фильма не всегда зависит от наличия экшн-сцен?
- Чем кофе похож на функцию, ее первообразную и производную?
Многие из нас чем-то похожи на родителей. Не являясь их точной копией, мы перенимаем определенные черты. То же самое происходит и с графиками. О том, какие особенности “наследуют” друг у друга графики функции, производной и первообразной, поговорим в статье.
Связь графика функции и производнойПодготовим карандаши и линейки, мы начинаем погружение в мир графиков. Почему графики — это круто? Они дают нам наглядное представление о функции. Мы можем проанализировать ее, не прибегая к сложным формулам и трудоемким вычислениям.
Воспринимать визуальную информацию всегда легче. А графики — это как раз визуальное описание функции.
Возьмем график произвольной функции.
Прежде чем приступать к дальнейшему изучению материала, рекомендуем ознакомиться с «Определением и графиком функции», а также «Производной».
Мы точно видим, на каких промежутках график будет возрастать, а на каких убывать. Если представить, что мы пойдем по направлению оси х, то график будет возрастать на подъемах в горку и убывать на спусках с нее. Отметим промежутки возрастания зеленым фоном, а промежутки убывания красным.
В зеленых промежутках производная будет положительна, а в красных отрицательна. Пока что просто запомним этот факт.
Обратим внимание на границы между зелеными и красными зонами. В этих точках функция будет менять свой знак с положительного на отрицательный или обратно. Такие точки называются точками экстремума.
Экстремум — это точка, в которой достигается максимальное или минимальное значение функции на заданном отрезке.
Точки экстремума — точки, в которых достигается экстремум.
В точках экстремума производная равна 0.
Теперь попробуем построить примерный график производной. Для начала опустим точки экстремума. Где они будут лежать на графике производной? На оси х.
Вспомним, что в точках экстремума производная функции будет равна 0. Пусть график будет задан
y = f'(x), тогда в точках экстремума получаем y = 0. Это и есть ось х.
Так мы получили целых 9 точек, через которые пройдет производная. Осталось провести через них примерный график.
Вспомним, что:
- производная положительна на промежутках возрастания функции;
- производная отрицательна на промежутках убывания функции.
Как понять, что все точки на графике производной будут положительны или отрицательны? Достаточно посмотреть на то, с какой стороны от оси х они располагаются.
Положительные значения всегда будут лежать выше оси х. Это связано со значением y: значения функции будут положительны при положительных значениях у, и отрицательны при отрицательных значениях у.
Где проходит граница между теплом и холодом? Можно представить, что ось х — это полюс, который разделяет тропики и льды. Над осью х всегда будет светить солнце, а температура будет положительной. А вот под осью х всегда будут льды и снега, и температура — отрицательной. Следовательно, знак производной на ее графике будет совпадать со знаком температуры в тропиках или льдах. |
Итак, как нам нарисовать график производной? На зеленых участках ее график будет лежать над осью х, а на красных участках — под ней.
Подведем итоги:
- В точках экстремума функции график производной будет проходить через ось х.
- На промежутках возрастания функции график производной будет лежать выше оси х.
- На промежутках убывания функции график производной будет лежать ниже оси х.
Эти зависимости можно отследить на любых графиках функции и ее производной.
Если провести обратные рассуждения, то по графику производной можно восстановить примерный график функции. В этом случае:
- В точках, где график производной пересекает ось х, будут лежать точки экстремума. При этом если в точке производная меняет значение с положительного на отрицательное, то это точка максимума, а если с отрицательного на положительное, то это точка минимума.
- На промежутках, где график производной будет лежать выше оси х, функция будет возрастать.
- На промежутках, где график производной будет лежать ниже оси х, функция будет убывать.
Разберем несколько примеров, где можно применить эти знания.
Пример 1. На рисунке изображен график функции f(x) и отмечены пять точек на оси абсцисс: x1, x2, x3, x4, x5. В скольких из этих точек производная функции отрицательна?
Решение. Производная отрицательна на промежутках убывания функции. Отметим такие промежутки.
В точках, которые попали в эти промежутки, производная отрицательная. Всего таких точек 2.
Ответ: 2
Пример 2. На рисунке изображен график функции y = f'(x) — производной функции f(x), определенной на интервале (-5; 3). Найдите точку максимума функции f(x).
Решение. Точки экстремума на графике производной лежат на оси х. На данном графике таких точки две: x = -2, x = 2.
Точка максимума — это точка, в которой производная меняет знак с положительного на отрицательный. По графику определяем, что это точка x = -2.
Ответ: -2
Почему успех фильма не всегда зависит от наличия экшн-сцен? Представим, что мы составили графики “Заинтересованность зрителей фильмом” и “Наличие в фильме экшн-сцен”. Совпадут ли эти графики? Скорее всего, нет. Экшн-сцены могут вызывать интерес у зрителей, равно как и романтические сцены или смешные повороты сюжета. Получается, что наличие экшн-сцен и заинтересованность фильмом — это разные величины в кинематографе, хотя и связаны между собой. Также и графики производной и функции: они зависят друг от друга, но иллюстрируют совсем разные свойства функции, поэтому сильно отличаются. |
Мы разобрались, как связаны графики функции и ее производной. Есть ли связь между графиком функции и «Первообразной»?
Вспомним один важный факт: если взять производную от первообразной, то получим функцию.
F'(x) = f(x)
Похоже на функцию и ее производную, верно? На самом деле, ситуации ничем не отличаются.
В этом случае изначальной функцией будет первообразная, а ее производной — функция. Для наглядности составим таблицу.
Было | Взяли производную | Стало | |
Функция и производная | f(x) | f'(x) | f'(x) |
Функция и первообразная | F(x) | F'(x) | f(x) |
Получается, для функции и первообразной будут действовать почти те же правила, что и для функции и ее производной.
При решении заданий с графиками первообразной достаточно проанализировать уравнение F'(x) = f(x). Рассмотрим несколько примеров.
Пример 3. На рисунке изображен график функции y = F(x) — одной из первообразных функции f(x) и отмечены шесть точек на оси абсцисс x1, x2, x3, x4, x5, x6. В скольких из этих точек функция f(x) отрицательна?
Решение. Поскольку F'(x) = f(x), то функция f(x) будет отрицательна в тех же точках, в которых будет отрицательна F'(x).
Поскольку на графике изображена функция y = F(x), то ее производная будет отрицательна на промежутках убывания функции. Отметим их красным.
В эти промежутки попадают 3 из 6 точек.
Ответ: 3.
Пример 4. На рисунке изображен график функции y = F(x) — одной из первообразных функции f(x), определенной на интервале (-6; 7). Пользуясь рисунком, определите количество решений уравнения f(x) = 0 на отрезке [-5; 4].
Решение. Вспомним, что F'(x) = f(x). Тогда если f(x) = 0, то и F'(x) = 0. Следовательно, на заданном промежутке нужно найти точки экстремума.
Отметим заданный промежуток красными линиями. На промежутке всего 9 точек экстремума, значит, в 9 точках f(x) будет равна 0.
Ответ: 9
Чем кофе похож на функцию, ее первообразную и производную? Представим, что в качестве функции у нас выступают кофейные зерна. Тогда производная — то, что мы получаем в результате их переработки — это вкусный напиток. Из чего получаются сами кофейные зерна? Их собирают с кофейного дерева. То есть зерна будут производной от кофейного дерева, а кофейное дерево — это первообразная. Так мы можем отследить следующую цепочку: кофейное дерево → кофейные зерна → кофе. И эта цепочка наглядно иллюстрирует связь первообразной, функции и ее производной. |
- Графики функции, производной и первообразной связаны между собой.
- В точках экстремума функции график производной будет проходить через ось х.
- На промежутках возрастания функции график производной будет лежать выше оси х.
- На промежутках убывания функции график производной будет лежать ниже оси х.
- Для решения задач с первообразной необходимо вспомнить, что F'(x) = f(x). Любой график можно проанализировать с помощью этого уравнения также, как анализируются графики функции и ее производной.
Задание 1.
На каких промежутках будет производная функции будет положительна?
- На промежутках убывания функции.
- На промежутках возрастания функции.
- В точках экстремума.
- Невозможно определить по графику.
Задание 2.
На каких промежутках производная функции будет отрицательна?
- На промежутках возрастания функции.
- На промежутках убывания функции.
- В точках экстремума.
- Невозможно определить по графику.
Задание 3.
На рисунке изображен график производной функции f(x), на котором отмечена точка. Чем будет являться эта точка для функции f(x)?
- Точка максимума функции.
- Точка минимума функции.
- Любая произвольная точка на функции.
- Невозможно определить по графику.
Задание 4.
Выберите верный вариант:
- F(x) = f'(x)
- F(x) = f(x)
- F'(x) = f'(x)
- F'(x) = f(x)
Ответы: 1. — 2 2. — 2 3. — 1 4. — 4
Построение графика функции с помощью производной, сопутствующие задачи 10 класс онлайн-подготовка на Ростелеком Лицей |
Введение
Методика исследования функции, построение ее графика, включает в себя 2 этапа:
1. исследование без производной;
2. исследование с помощью производной.
Построение графика и исследование функции без производной
При исследовании функции без производной нахождение интервалов знакопостоянства и определение знаков функции на них выполнить очень затруднительно. Однако некоторые свойства данной функции можно узнать:
1. Область определения функции – это множество всех действительных чисел.
2. Если x стремится к , то и данная функция стремится к . Следовательно, множество значений функции – это вся числовая ось.
3. График этой функции симметричен относительно точки .
Пояснение
Рассмотрим функцию
Эта функция позволяет найти интервалы знакопостоянства и построить эскиз графика (см. Рис. 1).
Эта функция нечетная:
График нечетной функции симметричен относительно точки с координатами .
Рис. 1. График функции
При прибавлении 4 к функции график сдвинется на 4 единицы вверх по оси (см. Рис. 2): корни и пропадают, а корень сдвигается влево. Следовательно, график функции будет симметричен относительно точки .
Рис. 2. Схематичное изображение графиков функции и
Нам удалось установить, что функция имеет как минимум один корень, который меньше чем .
Построение графика и исследование функции с помощью производной
Приравниваем производную к 0 и находим критические точки:
– критические точки
Выделим интервалы знакопостоянства производной, которые определяют интервалы монотонности самой функции (см. Рис. 3).
До точки функция возрастала (производная была положительна), после этой точки функция убывает (производная отрицательная), следовательно, – это точка максимума.
До точки функция убывала, после этой точки функция возрастает, следовательно, – это точка минимума.
Рис. 3. График производной функции
Найдем значения функции в точках минимума и максимума:
Можно сделать вывод, что функция возрастает от до 6 и от 2 до ; функция убывает от 6 до 2.
На рисунке 4 показан график функции . Этот график читается следующим образом:
Если аргумент возрастает от до , то функция возрастает от до 6; если аргумент от до 1, то функция убывает от 6 до 2; если аргумент возрастает от 1 до , то функция возрастает от 2 до .
Рис. 4. График функции
Результаты исследования функции
1. при и при
2. при
3. – т. max
– т. min
3. . Наибольшего и наименьшего значения функции не существует.
Задача
Найти число корней уравнения в зависимости от параметра .
Решение
1. Перенесем в правую часть уравнения:
2. Построим график функции (см. Рис. 5) (как построить график этой функции см. выше).
Рис. 5. Иллюстрация к задаче
3. Рассечем этот график семейством прямых , при разных . Найдем точки пересечения этих прямых с графиком функции (см. Рис. 6).
Рис. 6. Иллюстрация к задаче
Уравнение имеет один корень при каждом из множества , а также из множества .
Уравнение имеет два корня при и при .
Уравнение имеет три корня при всех из множества .
Ответ: 1 корень:
2 корня: ; ;
3 корня: .
Частные случаи для задачи
1. Найти все значения параметра , при каждом из которых данное уравнение имеет ровно два различных корня.
Ответ: уравнение имеет два корня при и при .
2. Найти наибольшее натуральное значение параметра a, при котором уравнение имеет три различных корня.
Решение
Уравнение имеет три корня при всех из множества . В это множество входят такие натуральные числа: 3, 4, 5. Наибольшее из них – это 5.
Ответ: .
Общий план построения графика и исследования функции
Общий план состоит из двух этапов:
1. Этап А: исследование без производной.
2. Этап Б: исследование с производной.
Этап А
1. Найти область определения функции .
2. Выделить интервалы знакопостоянства функции и определить знаки функции на них (для этого нужно приблизительно оценить расположение корней или точно найти их).
3. Найти точку пересечения графика с осью , для этого приравнять и вычислить .
4. Выяснить специфику функции:
— четность, нечетность, периодичность;
— наличие центра или оси симметрии.
5. Построить эскиз графика в окрестностях каждого корня (в окрестностях корня функция может возрастать, убывать, иметь точку максимума или минимума (см. Рис. 7)).
Рис. 7. Эскиз графиков в окрестностях корня
6. Построить эскиз графика функции в окрестностях точек разрыва области определения . Точки разрыва – это, как правило, корни знаменателя. Они могут определять вертикальные асимптоты.
7. Построить график функции в окрестностях бесконечно удаленных точек: .
Этап Б
1. Найти производную функции .
2. Найти интервалы знакопостоянства производной и определить знаки производной на них. Эти интервалы определяют интервалы монотонности самой функции.
3. Найти критические точки, исследовать их на экстремум.
4. Построить и описать график функции .
Предложенная схема работает особенно хорошо для функций вида: , где и – многочлены.
Список литературы
1. Мордкович А.Г., Семенов П. В. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2009.
2. Мордкович А.Г. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2009.
3. Виленкин Н. Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики). – М.: Просвещение, 1996.
4. Колягин Ю.М., Сидоров Ю.В., Ткачева М.В., Федорова М.В., Шабунин М.И. Алгебра и начала математического анализа, 10 класс. Учебник для учащихся общеобразовательных учреждений (профильный уровень). – М.: Мнемозина, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Интернет-сайт «ЯКласс» (Источник)
2. Интернет-сайт «Вся элементарная математика» (Источник)
3. Интернет-сайт YouTube (Источник)
Домашнее задание
1. Задание 45.13, 45.15(а), 45.3 (б) (стр. 265) – Мордкович А.Г. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 2. Задачник (Источник)
2. Исследуйте функцию и постройте ее график .
Как построить график производной функции – mathsathome.com
Видеоурок: Рисование графика производной функции
Что такое график производной функции?
Производная — это значение градиента исходной функции. Координаты y в каждой точке производной функции показывают значение градиента в соответствующей точке исходной функции.
Например, синяя стрелка показывает, где градиент исходной функции отрицательный. Здесь график идет сверху вниз слева направо.
Следовательно, здесь функция производной отрицательна, а функция производной показана под осью.
Красная стрелка показывает, где градиент положительный. Здесь график идет вверх слева направо.
Следовательно, производная функция здесь положительна, а производная функция показана над осью.
Фиолетовая точка указывает точку поворота исходной функции. Здесь градиент графика меняется с отрицательного на положительный. В этой точке градиент равен нулю.
Таким образом, соответствующая фиолетовая точка на производной функции находится на оси X, поскольку это показывает, что градиент равен нулю.
Краткий обзор первой производной
Первая производная – это градиент.
- Если градиент положительный и находится выше оси x
- Если градиент отрицательный и ниже оси x
- Если градиент равен нулю и находится на оси x
Как нарисовать производную функции
Чтобы нарисовать график производной функции:
Например, нарисуйте производную графика, показанного ниже.
Шаг 1. Отметьте нулями точки поворота или стационарные точки перегиба
Точки поворота — это места, где график разворачивается. На приведенном ниже графике есть две поворотные точки.
Мы отмечаем нули в тех же местах на нашем графике производной.
Нули — это точки на оси x.
Причина этого в том, что градиент графика равен нулю в точках поворота или стационарных точках перегиба. Поэтому значение производной равно нулю в этих точках. Поэтому график производной имеет нули в этих местах.
Шаг 2. Нарисуйте график производной над осью X, где функция возрастает
Функция возрастает, если она растет слева направо. Это место, где график имеет положительный градиент.
На приведенном графике функция возрастает слева от первой точки поворота.
Также увеличивается справа от второго поворотного пункта.
Таким образом, график производной будет располагаться над осью x слева от первого нуля и справа от второго нуля, как показано ниже.
Это связано с тем, что график производной описывает градиент исходной функции.
Когда функция возрастает, она имеет положительный градиент.
Если градиент функции положительный, то производная положительна. Следовательно, в этих областях производная находится выше оси абсцисс.
Шаг 3. Нарисуйте график производной под осью X, где функция убывает
Функция убывает, когда она идет вниз слева направо. Это место, где график имеет отрицательный градиент.
График уменьшается между двумя поворотными точками. Следовательно, график производной находится ниже оси x между двумя ее нулями.
Это связано с тем, что градиент между этими двумя точками отрицателен. Если градиент отрицательный, он должен быть ниже оси x.
Шаг 4. Нарисуйте точки перегиба в местах расположения любых точек перегиба
На исходном графике есть одна точка перегиба, как показано розовой точкой ниже. Это соответствует положению точки поворота на графике производной.
График производной теперь можно построить, соединив изогнутой линией показанные области в рамках, проходящей через нули и точку поворота.
Мы не знаем, насколько высока точка поворота, поэтому в эскизе сделано разумное предположение.
Исходная функция является кубической функцией с двумя точками поворота.
График производной представляет собой квадратичную функцию с одной точкой поворота.
Рисование производной по графику: примеры
Следующие функции имеют производные следующего вида:
Leave A Comment