Вместе с этим калькулятором также используют следующие:
Точки разрыва функции
Решение пределов:
Построение графика функции методом дифференциального исчисления
Экстремум функции двух переменных
Вычисление интегралов
см. также Вычисление приближенно с помощью дифференциала
Определение. Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.
Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x0).
Пусть f(x) дифференцируема в точке x0 и f ‘(x0)≠0, тогда ∆y=f’(x0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0.
то есть ∆y~f’(x0)∆x. Следовательно, f’(x0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x0 и обозначают dy(x0) или df(x0). Итак, для произвольных значений x
dy=f′(x)∆x. (1)
Полагают dx=∆x, тогда
Пример. Найти производные и дифференциалы данных функций.
а) y=4tg2x
Решение:
дифференциал:
б)
Решение:
дифференциал:
в) y=arcsin2(lnx)
Решение:
дифференциал:
г)
Решение:
=
дифференциал:
Пример.
Leave A Comment