Основания. Химические свойства и получение

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания – сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

 

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

 

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида).  Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH = Cu2+(OH)2↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3 + K+OH = K+NO3 + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф. металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др. ):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH + Si0 + H2+O=  Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li2O + H2O

 

Понравилось это:

Нравится Загрузка…

Прокаливание


Прокаливанием называют операцию нагревания твердых веществ до высокой температуры (выше 400° С) с целью: а) освобождения от летучих примесей; б) достижения постоянной массы; в) проведения реакций, протекающих при высоких температурах; г) озоления после предварительного сжигания -органических веществ. Нагревание до высокой температуры проводят в печах (муфельных или тигельных). Очень часто в лабораториях приходится прокаливать такие вещества, как СаСl2*бН2О, Na2SO4*10h3О и др., с целью обезвоживания. Прокаливание обычно ведут на газовых плитках, вещество помещают на стальные сковороды. Если нельзя допускать загрязнения препарата железом, то прокаливать нужно в шамотных тарелках или сковородах. Никогда не нужно помещать на сковороду большое количество соли, так как при обезвоживании соль разлетается, что вызывает значительные ее потери.

Если приходится что-либо прокаливать в фарфоровом или шамотном тигле, то тигель нагревают постепенно: вначале на небольшом пламени, потом пламя понемногу увеличивают. Во избежание потерь при прокаливании тигли обычно закрывают крышками. Если в таком тигле приходится что-либо озолять, то сначала при слабом нагревании сжигают вещество в открытом тигле и уже после этого закрывают тигель крышкой.

Если фарфоровый тигель после работы загрязнен внутри, то для очистки в него наливают концентрированную азотную кислоту или дымящую соляную кислоту и осторожно нагревают. Если ни азотная, ни соляная кислоты не удаляют загрязнение, то берут смесь их в пропорции: азотная кислота — 1 объем и соляная кислота — 3 объема. Иногда загрязненные тиглн обрабатывают или концентрированным раствором KHSO4 при нагревании, или плавлением этой соли в тигле с последующей промывкой его водой. Бывают, однако, случаи, когда все указанные приемы не помогают; такой не поддающийся очистке тигель рекомендуется применять для каких-» нибудь неответственных работ.

В практике аналитических работ», когда приходится прокаливать окислы металлов, например РегОз, нужно заботиться о том, чтобы пламя горелки не соприкасалось с прокаливаемым веществом (во избежание восстановления) . В таких случаях применяют платиновые пластинки с отверстием в центре, в которое вставляют тигель. . Эти пластинки можно укрепить в асбестовом картоне. Вместо платины можно применять также не окисляющиеся и не разрушающиеся при прокаливании глиняные или шамотные пластинки с круглым отверстием в центре.

При прокаливании осадка в тигле Гуча последний вставляют в обыкновенный, несколько больших размеров фарфоровый тигель так, чтобы стенки обоих тиглей не соприкасались. Для этого тигель Гуча обвертывают полоской увлажненного асбеста и, нажимая, вдавливают в предохранительный тигель так, чтобы расстояние между дном того и другого равнялось нескольким миллиметрам. Сначала все вместе высушивают при 100° С, затем тигель Гуча вынимают, а предохранительный тигель вместе с асбестовым кольцом перед первым употреблением сильно прокаливают.

Очень осторожного обращения требуют платиновые тигли, которые неопытные работники часто прожигают. Во избежание этого нагревание платиновой посуды на ‘ голом пламени нужно вести так, чтобы внутренний конус пламени горелки не касался платины. При соприкосновении же этого конуса с платиной образуется карбид платины. Сильные разрушения платины происходят при температуре, близкой к ее температуре плавления.

Незначительные разрушения поверхности устраняют путем накаливания в окислительной среде. Сильно поврежденный тигель вместе с образовавшимся порошком карбида платины (который обязательно следует собирать) сдают для переплавки.

Если платиновый тигель загрязнился, его следует очистить, нагревая в нем чистую азотпую кислоту (без следов соляной кислоты). Если это не помогает, в тигле плавят KHSO4 или NaHS04. Когда и этим не достигают цели, стенки тигля протирают тончайшим кварцевым (белым) песком или тонким наждаком (№ ООО).

Очень удобны кварцевые тигли, обладающие многими ценными свойствами, как-то: большая термическая прочность, химическая индиферентность к большинству веществ и пр.

Однако нужно помнить, что кварц сплавляется с щелочами или щелочными солями.

В некоторых случаях прокаливание или нагревание необходимо проводить или в окислительной, или в восстановительной, или в нейтральной среде. Чаще всего для этих целей применяют трубчатые либо специальные печи, через которые во время прокаливания пропускают соответствующий газ из баллона. Для создания окислительной среды пропускают кислород, для создания восстановительной среды — водород или окись углерода. Нейтральную атмосферу создают пропусканием аргона


Рис. 231. Разъемная печь для нагревания до высокой температуры.

и иногда азота. При решении вопроса, какой газ следует применять в каждом отдельном случае, нужно знать, не будет ли выбранный газ при высокой температуре реагировать с данным веществом. Даже такой казалось бы инертный газ, как азот, в известных условиях может образовывать соединения типа нитридов.

Для прокаливания при помощи газовых горелок очень удобна разъемная печь (рис. 231). Ее изготовляют из двух шамотных или диатомитовых кирпичей, выдалбливая в них одинакового размера выемки так, чтобы при наложении кирпичей друг иа друга внутри образовалась камера. В центре верхнего кирпича просверливают отверстие диаметром 15 мм, а в центре нижнего — 25 мм. В плоскости касания кирпичей делают желобки для укрепления фарфорового треугольника, в который ставят тигель.

Нагревая эту печь горелкой Теклю или Меккера, можно достичь температуры до 1100° С. Температуру регулируют, изменяя расстояние печи от горелки.

Когда прокаливать в платиновом тигле нельзя, можно применять так называемые «содовые» тигли. Тонко , измельченный и предварительно прокаленный углекислый натрий насыпают в фарфоровый тигель, например № 4, до половины его высоты. Затем тигель меньшего размера вдавливают в соль.


Рис. 232 Формование содовых тиглей

 

 

Помещают на ночь в выключенную после нагревания муфельную печь. К утру содовый тигель готов и в нем можно проводить щелочное плавление, например некоторых руд или минералов.

Na2CO3 плавится при температуре 870° С; следовательно, «содовый» тигель можно нагревать до 600° С.

К оглавлению

 

  1. Нагревательные приборы
  2. Электронагревательные приборы
  3. Газовые нагревательные приборы
  4. Жидкостные горелки
  5. Другие средства нагревания
  6. Нагревание (1 2)
  7. Нагревание в атмосфере инертных или других газов
  8. Нагревание полупроводниковыми пленками
  9. Нагревание в посуде из электропроводящего стекла
  10. Нагревание газов и паров.
  11. Нагревание при микро- и полумикрохимических работах
  12. Прокаливание
  13. Несколько замечаний о работах, связанных с нагреванием и прокаливанием

карбонат

В химии карбонат представляет собой соль или эфир угольной кислоты.

Дополнительные рекомендуемые знания

Содержимое

  • 1 Применение
  • 2 Химические свойства
  • 3 Кислотно-основная химия
  • 4 Карбонатные соли
  • 5 История
  • 6 Каталожные номера
  • 7 См. также

Приложения

Газированная вода (также известная как сельтерская вода) — это вода, содержащая CO 2 , растворенный под давлением. Вкус газированной воды открыл химик 18 века Джозеф Пристли.

Чтобы проверить наличие аниона карбоната в соли, добавление разбавленной минеральной кислоты (например, соляной кислоты) даст углекислый газ.

Карбонатсодержащие соли широко распространены в промышленном и минералогическом отношении. Термин «карбонат» также обычно используется для обозначения одной из этих солей или карбонатных минералов. Наиболее распространенным является кальцит или карбонат кальция, основной компонент известняка. Процесс удаления углекислого газа из этих солей путем нагревания называется прокаливанием.

Термин также используется как глагол для описания процесса повышения концентрации карбонатов и бикарбонатов в воде, см. также газированную воду, либо путем введения в воду углекислого газа под давлением, либо путем растворения карбонатных или бикарбонатных солей. в воду.

Химические свойства

Карбонат-ион представляет собой многоатомный анион с эмпирической формулой CO 3 2−

и молекулярной массой 60,01 дальтон; он состоит из одного центрального атома углерода, окруженного тремя идентичными атомами кислорода в тригональной плоской конфигурации. Ион карбоната несет два отрицательных формальных заряда и является сопряженным основанием иона гидрокарбоната, HCO 3 , который является сопряженным основанием H 2 CO 3 , угольной кислоты.

Карбонатная соль образуется, когда положительно заряженный ион присоединяется к отрицательно заряженным атомам кислорода иона, образуя ионное соединение. Большинство карбонатных солей нерастворимы в воде при стандартной температуре и давлении с константами растворимости менее 1×10 -8 . Исключение составляют карбонаты натрия, калия и аммония.

В водном растворе карбонат, бикарбонат, двуокись углерода и угольная кислота находятся в динамическом равновесии. В сильноосновных условиях преобладает ион карбоната, а в слабоосновных — бикарбонат-ион. В более кислых условиях водный диоксид углерода, CO 2 (водный), является основной формой, которая с водой, H 2 O, находится в равновесии с угольной кислотой — равновесие сильно направлено в сторону диоксида углерода. Так, карбонат натрия является основным, бикарбонат натрия — слабоосновным, а сам углекислый газ — слабой кислотой.

Газированная вода образуется путем растворения CO 2 в воде под давлением. При снижении парциального давления СО 2 , например при открытии банки содовой, равновесие для каждой из форм карбоната (карбоната, бикарбоната, углекислого газа и угольной кислоты) смещается до тех пор, пока концентрация СО 2 в растворе равна растворимости CO 2 при данной температуре и давлении. В живых системах фермент карбоангидраза ускоряет взаимное превращение СО 2 и угольной кислоты.

В органической химии карбонат может также относиться к функциональной группе в более крупной молекуле, которая содержит атом углерода, связанный с тремя атомами кислорода, один из которых связан двойной связью. Форма VSEPR карбонат-иона тригонально-плоская или трехплоскостная.

Кислотно-основная химия

Ион карбоната (CO 3 2− ) является сильным основанием. Это сопряженное основание слабокислотного бикарбоната (название IUPAC гидрокарбонат HCO 3 ), которое само по себе является сильным сопряженным основанием все еще слабокислой угольной кислоты. Таким образом, в водном растворе ион карбоната стремится восстановить атомы водорода.

Действует как буфер в крови следующим образом: когда pH слишком низкий, концентрация ионов водорода слишком высока, поэтому вы выдыхаете CO 2 . Это приводит к тому, что уравнение смещается влево, существенно уменьшая концентрацию ионов H + , что приводит к более щелочному pH.

При слишком высоком pH концентрация ионов водорода в крови слишком низкая, поэтому почки выделяют бикарбонат (HCO 3 ). Это приводит к тому, что уравнение сдвигается вправо, существенно увеличивая концентрацию ионов водорода, вызывая более кислый рН.

Карбонатные соли

См. Также: Категория: Карбонаты
  • Обзор карбонатов:
902:10 Те
H 2 CO 3 Он
Ли 2 СО 3 BeCO 3 Б С Н О Ф Не
Na 2 CO 3 MgCO 3 Ал Си П С Кл Ар
К 2 СО 3 СаСО 3 Sc Ти В Кр MnCO 3 FeCO 3 CoCO 3 NiCO 3 CuCO 3 ZnCO 3 Га Ге Как Се руб. Кр
руб. 2 CO 3 SrCO 3 Д Зр НБ Мо Тс Ру Правая палладий Ag 2 CO 3 CdCO 3 В Сн Сб КИ Хе
Cs 2 CO 3 BaCO 3 Хф Та Вт Ре Ос Ир Точка Золото рт.ст. Тл Pb 2 CO 3 Bi ПО В Р-н
Пт Ра РФ Дб Сг Бх Гс тонн Дс Рг Ууб Уут Уук Ууп Уух Уус Ууо
Ла 2 СО 3 Се Пр Нд вечера см ЕС гд Тб Дай Хо Эр тм Ыб Лу
Ас Чт 2 СО 3 Па У Нп Пу Ам см Бк См. Эс FM Мд Нет Лр

История

Принято считать, что наличие карбонатов в горных породах является недвусмысленным свидетельством присутствия жидкой воды. Недавние наблюдения планетарной туманности NGC 6302 показали наличие карбонатов в космосе 9 Squyres et al., (2006) doi 10.1029/2006JE002771

См. также

Бикарбонат

 
Эта статья находится под лицензией GNU Free Documentation License. Он использует материал из статьи Википедии «Карбонат». Список авторов есть в Википедии.

Прокаливание | химический процесс | Британника

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • В этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Самые популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • #WTFact Videos
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • Студенческий портал
    Britannica — это лучший ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.